当前位置:文档之家› 《新编基础物理学》 第十六章早期量子论习题解答和分析

《新编基础物理学》 第十六章早期量子论习题解答和分析

《新编基础物理学》 第十六章早期量子论习题解答和分析
《新编基础物理学》 第十六章早期量子论习题解答和分析

习题十六

16-1 某物体辐射频率为Hz .14

1006?的黄光,这种辐射的能量子的能量是多大? 分析 本题考察的是辐射能量与辐射频率的关系. 解: 根据普朗克能量子公式有:

16-2 热核爆炸中火球的瞬时温度高达K 7

10,试估算辐射最强的波长和这种波长的能量子hv 的值。

分析 本题考察的是维恩位移定律及普朗克能量子公式的应用。

解: 将火球的辐射视为黑体辐射, 根据维恩位移定律, 可得火球辐射峰值的波长为: 上述波长的能量子的能量为:

16-3 假定太阳和地球都可以看成黑体,如太阳表面温度T S =6000K ,地球表面各处温度相同,试求地球的表面温度(已知太阳的半径R 0=6.96×105

km ,太阳到地球的距离r =1.496×108

km )。 分析 本题是斯忒藩—玻尔兹曼定律的应用。 解:由40T M σ= 太阳的辐射总功率为 地球接受到的功率为

把地球看作黑体,则24244E

E E E E R T R M P πσπ== 16-4 一波长nm 2001=λ的紫外光源和一波长nm 7002=λ的红外光源,两者的功率都是400W 。问:(1)哪个光源单位时间内产生的光子多?(2)单位时间内产生的光子数等于多少?

分析 本题考察光的粒子性及光源的功率与单位时间发射的光子数间的关系. 解: (1)光子的能量

设光源单位时间内产生的光子数为n ,则光源的功率

可见w 相同时,λ越大,n 越大,而12λλ>,所以红外光源产生的光子数多。 (2)紫外光源 红外光源

16-5 在天体物理中,一条重要辐射线的波长为21cm ,问这条辐射线相应的光子能量等于多少?

分析 本题考察光子能量的计算。 解: 光子能量

即辐射线相应的光子能量为eV 6

109.5-?

16-6 一光子的能量等于电子静能,计算其频率、波长和动量。在电磁波谱中,它属于哪种

射线?

分析 本题考察光的粒子性的物理量的计算。 解: 电子静能 则光子

它属于γ射线。

16-7 钾的光电效应红限波长是550nm, 求(1)钾电子的逸出功; (2)当用波长nm 300=λ的紫外光照射时,钾的截止电压U.

分析 本题考察的是爱因斯坦光电效应方程.根据红限波长,可以求出与该波长相应的光子能量, 这个能量就是该金属 的逸出功. 然后根据光电效应方程就可以求出对应某一特定波长的光子的遏止电压.

解:由爱因斯坦光电效应方程 (1) 当光电子的初动能为零时, 有: (2) eV J A hc m eU 88.1)(10014.32119=?=-==

2max v 所以遏止电压U=1.88V

16-8 波长为200nm 的紫外光照射到铝表面,铝的逸出功为4.2eV 。 试求:(1)出射的最快光电子的能量;(2)截止电压; (3)铝的截止波长;(4)如果入射光强度为2.02

-?m W ,单位时间内打到单位上的平均光子数。

分析 本题考察的是爱因斯坦光电效应方程。 解: (1) 入射光子的能量为:

由光电效应方程可得出射的最快光电子的能量为: (2) 截止电压为:

(3) 铝的截止波长可由下式求得:

(4) 光强I 与光子流平均密度N 的关系为I=Nhv , 所以有:

16-9 当照射到某金属表面的入射光的波长从1λ减小到2λ(1λ和2λ均小于该金属的红限波长). 求(1)光电子的截止电压改变量.(2)当nm 2951=λ,nm 2652=λ时截止电压的改变量。

分析 本题考察光电效应方程的应用. 解 (1) 截止电压 对1λ,有 e A

e hc U -=

101λ 对2λ,有 e

A e hc U -=

202λ

两式相减得

(2) 当nm 2951=λ,nm 2652=λ时,

16-10 试求: (1)红光(cm 107-5

?=λ); (2)X 射线(cm 102.5-9

?=λ); (3)γ射线(cm 101.24-10

?=λ)的光子的能量、动量和质量。

分析 本题考察的是光子的能量、动量和质量与光子的波长之间的关系。 解:根据光子能量公式hv =ε、光子动量公式λ

h

p =和质量公式λεh c M ==2进行计

算可得:

16-11 用波长为λ的单色光照射某一金属表面时, 释放的光电子最大初动能为30eV, 用波长为2λ的单色光照射同一金属表面时, 释放的光电子最大初动能为10eV. 求能引起这种金属表面释放电子的入射光的最大波长为多少?

分析 本题考察的是爱因斯坦光电效应方程.根据不同波长的入射光产生的光电子的动能的大小,可以求出该金属的逸出功的大小,从而求出相应的入射光的波长. 解: 设A 为该金属的逸出功, 则有: 因此可以得到:

即能引起该金属表面释放电子的最大波长为λ4.

16-12 波长0.100nm 0=λ的X 射线在碳块上受到康普顿散射, 求在900

方向上所散射的X

射线波长以及反冲电子的动能。

分析 本题考察康普顿散射公式。 根据散射角的大小可以求出散射波长, 然后根据散射前后的总的能量守恒可以求出反冲电子的动能。 解: 由康普顿散射公式 由此可知散射波长为:

由能量守恒可知, 电子的动能应等于散射前后光子的能量之差, 即:

16-13 在康普顿散射中,入射光子的波长为0.003nm, 反冲电子的速度为0.6c , c 为真空中的光速. 求散射光子的波长及散射角.

分析 本题散射前后能量守恒, 由反冲电子和入射光子的能量差就可以求出散射光子的波长, 然后根据康普顿散射公式求出散射角. 解: 反冲电子的能量为:

根据能量守恒, 该能量同时也等于入射光子能量的减少, 所以有:

由此可以解出散射光子的波长为: 根据康普顿散射公式可得: 所以可求出散射角为:

16-14 设康普顿散射实验的反射光波长为0.0711nm, 求: (1)这些光子的能量多大?(2) 在θ=1800

处, 散射光子的波长和能量多大?(3)在θ=1800

处, 电子的反冲能量多大?

分析 本题考察康普顿散射公式.

解: (1) )(108.210

11.71031063.61511

8

340J c

h ---?????===λε (2) 34

12318

022 6.6310 4.8610m 9.1110310

h m c λ---???===???? 相应的散射光子的能量为: (3) J E e 160108.1-?=-=εε

16-15 一光子与自由电子碰撞,电子可能获得的最大能量为6 keV ,求入射光子的波长和能量(用J 或eV 表示)。

分析 本题考察康普顿散射的规律。

解 光子反向弹回时(πθ=),电子将获得最大的能量 电子获得的能量 整理后得 解得入射光波长 入射光子能量

16-16 氢与其同位素氘(质量数为2)混在同一放电管中, 摄下两种原子的光谱线, 试问其巴耳末线系的第一条(αH )光谱线之间的波长差λ?有多大? 已知氢的里德堡常量

17H m 100967758.1R -?=, 氘的里德堡常量17H m 100970742.1R -?=.

分析 本题考察的是氢光谱的波数公式.

解: 由氢光谱的波数公式和巴尔末线系的第一条光谱线的条件, 可得: 将上式两边同时取微分, 可得: 因而有:

16-17 计算氢原子的电离电势和第一激发电势. 分析 本题考察的是氢原子的能级公式. 解: 由氢原子能级光子公式 因此电离能: 所以电离电势:

从基态到第一激发态所需要能量为:

所以第一激发电势为10.2V.

16-18 试求(1)氢原子光谱巴尔末线系辐射的、能量最小的光子的波长;(2)巴尔末线系的线系极限波长.

分析 本题考察的是氢光谱的波数公式.

解: (1) 巴尔末线系为氢原子的高激发态向n =2的能级跃迁产生的谱线系, 因此能量最小的谱线对应于由n =3的能级向n =2的能级的跃迁。因此该能量为: 相应的波长为:

(2)该线系的极限波长为n =∞能级向n =2能级的跃迁产生,因此类似于上面的计算有: 16-19 氢原子放出489nm 光子之后跃迁到激发能为10.19eV 的状态, 确定初始态的结合能. 分析 激发能是指将原子从基态激发到某一个激发态所需要的能量,因此根据题目给出的激发能可求出氢原子放出光子后的能量。然后根据发出光子的波长求出光子的能量,再加上氢原子所处氢原子所处的末态的能量,我们可以求出氢原子初态的能量,从而求出初态的结合能。

解:依题意,激发能为10.19eV 的激发态的能量为: 489nm 的光子的能量为: 因此氢原子的初态能量为:

所以该氢原子初态的结合能为0.87eV 。

16-20 用12.2eV 能量的电子激发气体放电管中的基态氢原子, 求氢原子所能放出的辐射光的波长?

分析 依题意,氢原子吸收12.2eV 能量后将被激发到某一个激发态上,根据氢原子能级的能量与主量子数之间的关系,我们可以得出该激发态的主量子数。因此此时的氢原子所能发出的辐射即为从该激发态向其下的各种能量状态以及各种能量状态之间跃迁所发出的辐射。 解:吸收12.2eV 能量后,该氢原子的能量为:

由于能级的能量与主量子数之间的关系为2/6.13n E n -=,因此有:

由于n 必须是整数,能打到的最高态对应于n =3。从而该氢原子跃迁到基态有三种方式,即3→2、2→1和3→1,这对应了三种可能的辐射,相应的波长分别为656.3nm 、121.6nm 和102.6nm 。

量子力学考试题

量子力学考试题 (共五题,每题20分) 1、扼要说明: (a )束缚定态的主要性质。 (b )单价原子自发能级跃迁过程的选择定则及其理论根据。 2、设力学量算符(厄米算符)∧ F ,∧ G 不对易,令∧K =i (∧F ∧G -∧G ∧ F ),试证明: (a )∧ K 的本征值是实数。 (b )对于∧ F 的任何本征态ψ,∧ K 的平均值为0。 (c )在任何态中2F +2 G ≥K 3、自旋η/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为 S H ??ω= ∧ H =ω∧ z S +ν∧ x S (ω,ν>0,ω?ν) (a )求能级的精确值。 (b )视ν∧ x S 项为微扰,用微扰论公式求能级。 4、质量为m 的粒子在无限深势阱(0

(a )能量有确定值。力学量(不显含t )的可能测值及概率不随时间改变。 (b )(n l m m s )→(n’ l’ m’ m s ’) 选择定则:l ?=1±,m ?=0,1±,s m ?=0 根据:电矩m 矩阵元-e → r n’l’m’m s ’,n l m m s ≠0 2、(a )6分(b )7分(c )7分 (a )∧ K 是厄米算符,所以其本征值必为实数。 (b )∧ F ψ=λψ,ψ∧ F =λψ K =ψ∧ K ψ=i ψ∧F ∧ G -∧ G ∧F ψ =i λ{ψ∧ G ψ-ψG ψ}=0 (c )(∧F +i ∧G )(∧F -i ∧G )=∧ F 2 +∧ G 2 -∧ K ψ(∧F +i ∧G )(∧F -i ∧G )ψ=︱(∧ F -i ∧ G )ψ︱2≥0 ∴<∧ F 2 +∧ G 2-∧ K >≥0,即2F +2 G ≥K 3、(a),(b)各10分 (a) ∧ H =ω∧ z S +ν∧ x S =2ηω[1001-]+2ην[0110]=2η[ων ν ω -] ∧ H ψ=E ψ,ψ=[b a ],令E =2η λ,则 [λωννλω---][b a ]=0,︱λων ν λω---︱ =2λ-2ω-2ν=0 λ=±22νω+,E 1=-2η22νω+,E 2=2η 22νω+ 当ω?ν,22νω+=ω(1+22ων)1/2≈ω(1+222ων)=ω+ων22 E 1≈-2η[ω+ων22],E 2 =2η [ω+ων22] (b )∧ H =ω∧z S +ν∧ x S =∧H 0+∧H ’,∧ H 0=ω∧ z S ,∧ H ’=ν∧ x S ∧ H 0本征值为ωη21± ,取E 1(0)=-ωη21,E 2(0) =ωη21 相当本征函数(S z 表象)为ψ1(0)=[10],ψ2(0)=[01 ] 则∧ H ’之矩阵元(S z 表象)为

量子论基础

第一章 量子论基础 §1.1经典物理学的困难 19世纪末20世纪初,经典物理学,主要是经典力学、热力学和 经典统计物理学、经典电动力学,已经发展得相当完善。比方说,速度 远小于光速的物体的机械运动遵从牛顿力学规律;电磁现象满足 麦克斯韦方程组;光的现象满足光的波动理论;特别是当时已认识到热 辐射和光辐射都是电磁波,还提出了热辐射满足的基尔霍夫(Kirchhoff) 定律和斯式藩(Stefan)定律-玻耳兹曼(Boltzmann ),证实黑体辐射场的 能量密度与温度的四次方成正比。对于热现象,除了已经有了非常系 统的热力学理论外,还有玻耳兹曼、吉布斯(Gibbs )等人提出的统计物理学。经典物理学的大厦已经建立得相当完美了。 但是,在和实验进一步对比的过程中,也出现了一些困难,而 且这些困难,在经典物理的范畴内是无法解释的。这主要表现在: 1. 黑体辐射. 任何物体总在吸收投射在它身上的辐射。物体吸收的辐射能量与投射到物体上的辐射能之比称为该物体的吸收系数。一般地,物体只吸收投射到它表面上的部分能量,吸收系数小于1。如果一个物体,能吸收投射到它表面上的全部辐射,即其吸收系数为1时,则称这个物体为绝对黑休,简称黑体。一个开有一个小孔的空腔可近似视为黑体。因为一旦光线通过小孔射入空腔后,就很难再通过小孔反射出来。 另一方面,由于腔壁具有一定温度,它还会发出热辐射。当空腔和内部的热辐射达到平衡后,实验发现,在频率υυυd +→之间的辐射能量密度只与频率和热力学温度T 有关,在不同度下,ρν随ν的变化曲线如图1.1.1所示。实验曲线存在维恩(Wien)位移:辐射能量密度按波长分布的最大值m λ与T 的乘积为常数: K m T m ??=-2102898.0λ (1.1.1) 而且满足 ?∞ == 4aT d E υρυ (1.1.2) 其中a 是常数。 1983年,维恩利用经典热力学和电动力学给出了辐射能量密度的经验公式是 υυυρυυd e C d T C 231-= (1.1.3)

量子力学习题集及答案

09光信息量子力学习题集 一、填空题 1. 设电子能量为4电子伏,其德布罗意波长为( 6.125ο A )。 2. 索末菲的量子化条件为=nh pdq ),应用这量子化条件求得一维谐振 子的能级=n E ( ηωn )。 3. 德布罗意假说的正确性,在1927年为戴维孙和革末所做的( 电 )子衍 射实验所证实,德布罗意关系(公式)为( ηω=E )和( k p ρηρ = )。 4. 三维空间自由粒子的归一化波函数为()r p ρ ρψ=( r p i e ρ ρη η?2 /3) 2(1π ), () ()=? +∞ ∞ -*'τψψd r r p p ρρρρ( )(p p ρ ρ-'δ )。 5. 动量算符的归一化本征态=)(r p ρ ρψ( r p i e ρ ρηη?2/3)2(1π ),=' ∞ ?τψψd r r p p )()(*ρρρρ( )(p p ρ ρ-'δ )。 6. t=0时体系的状态为()()()x x x 2020,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 522 0)(2)(--+ )。 7. 按照量子力学理论,微观粒子的几率密度w =2 ),几率流密度= ( () ** 2ψ?ψ-ψ?ψμ ηi )。 8. 设)(r ρψ描写粒子的状态,2)(r ρψ是( 粒子的几率密度 ),在)(r ρψ中F ?的平均值为F =( ??dx dx F ψψψψ* *? ) 。 9. 波函数ψ和ψc 是描写( 同一 )状态,δψi e 中的δi e 称为( 相因子 ), δi e 不影响波函数ψ1=δi )。 10. 定态是指( 能量具有确定值 )的状态,束缚态是指(无穷远处波函数为 零)的状态。 11. )i exp()()i exp()(),(2211t E x t E x t x η η-+-=ψψψ是定态的条件是 ( 21E E = ),这时几率密度和( 几率密度 )都与时间无关。 12. ( 粒子在能量小于势垒高度时仍能贯穿势垒的现象 )称为隧道效应。 13. ( 无穷远处波函数为零 )的状态称为束缚态,其能量一般为( 分立 )谱。 14. 3.t=0时体系的状态为()()()x x x 300,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 732 0)()(--+ )。 15. 粒子处在a x ≤≤0的一维无限深势阱中,第一激发态的能量为

《应用泛函分析》前四章重点复习大纲

1 第1章预备知识 1.1集合的一般知识 1.1.1概念、集合的运算 上限集、上极限 下限集、下极限 1.1.2映射与逆映射 1.1.3可列集 可列集 集合的对等关系~(定义1.1)1.2实数集的基本结构 1.2.1建立实数的原则及实数的序关系 阿基米德有序域(定义1.4)1.2.2确界与确界原理 上确界sup E(定义1.5) 下确界inf E 确界原理(定理1.7) 1.2.3实数集的度量结构 数列极限与函数极限 单调有界原理 区间套定理 Bolzano-Weierstrass定理 Heine-Bore定理 Cauchy收敛准则 1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续 函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛 逐点收敛(定义1.11) 一致收敛(定义1.12) Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质 极限与积分可交换次序 1.4 Lebesgue积分 1.4.1一维点集的测度 开集、闭集 有界开集、闭集的测度m G m F 外测度内测度 可测集(定义1.16) 1.4.2可测函数 简单函数(定义1.18) 零测度集 按测度收敛 1.4.3 Lebesgue积分 有界可测集上的Lebesgue积分 Levi引理 Lebesgue控制收敛定理(性质1.9) R可积、L可积 1.4.4 Rn空间上的Lebesgue定理 1.5 空间 Lp空间(定义1.28) Holder不等式 Minkowski不等式(性质1.16)

2 第2章度量空间与赋范线性空间 2.1度量空间的基本概念 2.1.1距离空间 度量函数 度量空间(X,ρ) 2.1.2距离空间中点列的收敛性 点列一致收敛 按度量收敛 2.2度量空间中的开、闭集与连续映射 2.2.1度量空间中的开集、闭集 开球、闭球 内点、外点、边界点、聚点 开集、闭集 2.2.2度量空间上的连续映射 度量空间中的连续映射(定义2.7) 同胚映射 2.3度量空间中的可分性、完备性与列紧性 2.3.1度量空间的可分性 稠密子集(定义2.9) 可分性 2.3.2度量空间的完备性 度量空间中Cauchy列(定义2.11) 完备性 完备子空间 距离空间中的闭球套定理(定理2.9) 闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性 列紧集、紧集(定义2.13) 全有界集 2.4 Banach压缩映射原理 压缩映像 不动点 Banach压缩映射原理(定理2.16)2.4.1应用 隐函数存在性定理(例2.31) 2.5 线性空间 2.5.1线性空间的定义 线性空间(定义2.17) 维数与基、直和 2.5.2线性算子与线性泛函 线性算子 线性泛函(定义2.18) 零空间ker(T)与值域空间R(T) 2.6 赋范线性空间 2.6.1赋范线性空间的定义及例子 赋范线性空间 Banach空间(定义2.20) 2.6.2赋范线性空间的性质 收敛性——一致收敛 绝对收敛 连续性与有界性 2.6.3有限维赋范线性空间 N维实赋范线性空间

数学分析课本(华师大三版)-习题及答案20+22

习 题 二十、二十二 1.计算下列第一型曲线积分. (1) ,其中L 是的上半圆周. ()x y ds L +∫ x y R 22+=2 (2) x y d L 22+∫ s 2,其中L 是的右半圆周. x y R 22+= (3) e d x y L 22 +∫s 2,其中L 是圆,直线x y a 22+=y x =以及x 轴在第一象 限中所围成图形的边界. (4) xyds L ∫,其中L 是由所构成的矩形回路. x y x y ====004,,,2(5) ,其中: xds L ∫ (a) L 是上从原点O 到点y x =2(,)00B (,)11间的一段弧. (b) L 是折线OAB 组成,A 的坐标为(,,B 的坐标为. )10(,)11(6),其中∫L ds y 2L 为曲线)cos 1()sin (t a y t t a x ?=?=,,其中, 0>a π20≤≤t . (7) ,其中L 是螺旋线弧段 (x y z d L 222++∫)s cos sin ,,x a t y a t z bt ===)(π20,0≤≤>t a . (8) ,其中∫L yzds x 2L 为折线,这里依次为点 (0,0,0),(0,0,2),(1,0,2),(1,3,2) ABCD D C B A ,,,2.计算下列第二型曲线积分. (1) ,其中∫?L ds y x )(22L 为在抛物线上从点(0,0)到点(2,4)的一段弧. 2x y =(2) ,其中L 为 xdy ydx L ?∫① 沿直线从点(,到点(,; )00)12② 沿抛物线x y =2 4 从点到点; (,)00(,)12③ 沿折线从点(,经点(,到点(,. )00)02)12(3) xydx L ∫,其中L 是由所构成的沿逆时针 方向的矩形回路. x y x y ====004,,,2

早期量子论(附答案)

早期量子论(初稿) 一、填空题(10道) 1.在加热黑体过程中,其最大单色辐射度对应的波长由0.8μm变到0.4μm,则其辐射度增 大为原来的______________倍。 2.100W的白炽灯灯丝表面积为 5.3×10-5 m2。若视其为黑体,则工作温度为 ______________K。 3.若黑体的半径有R增大为2R,则总辐射功率为原来的______________倍。 4.当绝对黑体的温度从27 oC升到327 oC时,其辐射出射度(总辐射本领)增加为原来的 ______________倍。 5.在均匀磁场B内放置一极薄金属片,其红限波长为λ0。今用单色光照射,发现有电子放 出,有些放出的电子(质量为m,电荷绝对值e)在垂直于磁场的平面内做半径为R的圆周运动,那么此照射光光子的能量是______________。 6.当照射光的波长从4000 ?变到3000 ?时,光强保持不变,对同一金属,在光电效应实 验中测得的遏止电压将增大______________。 7.在康普顿散射中,若入射光子与散射光子的波长分别为λ和λ',则反冲电子获得的动能 E k=______________。 8.在X射线实验中散射角为45o和60o的散射光波长改变量之比为______________。 9.质量为1 g,以速度v=1cm/s运动的小球的德布罗意波长为______________。 10.某金属产生光电效应的红限为υ0,当用频率为υ(υ>υ0)的单色光照射该金属时,从金 属中溢出的光电子(质量为m)的德布罗意波长为______________。 二、计算题(10道) 1. 红限波长为λ0=0.15?的金属箔片至于B=30×10-4T的均匀磁场中。现用单色γ射线照射儿释放出电子,且电子在垂直于磁场的平面内做R=0.1m的圆周运动。求γ射线的波长。 2.处于静止状态的自由电子是否能吸收光子,并把全部能量用来增加自己的动能?为什么? 3.用波长λ0=1 ?的光子做康普顿实验。 (1)散射角?=90o的康普顿散射波长是多少? (2)反冲电子获得的动能有多大?

第一章-量子论基础

第五章 近似方法 一、概念与名词解释 1. 斯塔克效应 2. 跃迁概率 3. 费米黄金规则 4. 选择定则 二、计算 1. 如果类氢原子的核不是点电荷,而是半径为r 0,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正. 2. 转动惯量为I ,电矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰理论求转子基态能量的二级修正. 3. 转动惯量为I ,电矩为D 的平面转子处在均匀弱电场E 中,电场处在转子运动的平面上,用微扰法求转子的能量的二级修正. 4. 设哈密顿量在能量表象中的矩阵是 ,a E b b a E 0201???? ??++a 、b 是实数. (1) 用微扰公式求能量至二级修正; (2) 直接用求解能量本征方程的方法求能量的准确解,并与(1)的结果比较. 5. 设哈密顿量在能量表象中的矩阵是)E (E E E 0 0 E 010202* b * a b 01a 01>?????? ? ?λλλλ, (1) 用简并微扰方法求能量至二级修正; (2) 求能量的准确值,并与(1)的结果比较. 6. 在简并情况下,求简并微扰论的波函数的一级修正和能量的二级

修正. 7. 线谐振子受到微扰aexp(-βx 2)的作用,计算基态能量的一级修正,其中常数β>0. 8. 设线谐振子哈密顿算符用升算符a +与降算符a 表示为 , 1/2)a (a H ?0 ω+=+ 此体系受到微扰ω+λ=+ a)(a 'H ?的作用,求体系的能级到二级近似. 已知升与降算符对0 H ?的本征态|n>的作用为.1n n n a ;1n 1n n a -=++=+ 9. 一个电荷为q 的线谐振子受到恒定弱电场i E ε=的作用,利用微扰 论求其能量至二级近似,并与其精确结果比较. 10. 一维非简谐振子的哈密顿量为H=p 2/2m+m ω2x 2/2+βx 3. β是常数,若将3x H'β=看成是微扰,用微扰论求能量至二级修正,求能量本征函数至一级修正. 11. 二维耦合谐振子的哈密顿量为H=(p x 2+p y 2)/2μ+μω2(x 2+y 2)/2+λxy. 若λ<<1,试用微扰论求其第一激发态的能级与本征函数. 12. 在各向同性三维谐振子上加一微扰 , bz ax y H'2+=求第一激发态的一级能量修正. 13. 一维无限深势阱(0

量子力学习题汇集

第一章习题 1.证明下列算符等式 [][][][][][][][][][][][][][][]0 ,,,,,,,,,,,,,,,=+++=+=+=+B A C A C B C B A B C A C B A C AB C B A C A B BC A C A B A C B A 2.设粒子波函数为),,(z y x ψ,求在()dx x x +, 范围内找到粒子的几率. 3.在球坐标中,粒子波函数为()??ψ,,r ,试求: 1)在球壳(r,r+dr)中找到粒子的几率; 2)在()??,方向的立体角Ωd 中找到粒子的几率. 4.已知力学量F 的本征方程为 n n n F ?λ?= 求在状态波函数 332211???ψc c c ++= 下测力学量F 的可能值,相应的几率及平均值(假设波函数ψ已归一或不归一的情况). 第二章习题 1.一粒子在二维势场

???∞=,,0),(y x V 其它b y a x <<<<0,0 中运动,求粒子的能级和波函数.能级是否简并 2.由哈密顿算符 () 2232 22221222 2z y x m m H ωωω+++?-=η 所描述的体系,称各向异性谐振子.求其本征态和本征值. 3.利用递推关系 ??? ? ??--=+-1121 2)(n n n n n x dx d ψψαψ 证明 ( ) 222 22)2)(1()12()1(2 +-++++--=n n n n n n n n n dx d ψψψαψ 并由此证明在n ψ态下 2 ,0n E T P = = 第 四 章 习 题 1. 证明 )cos sin (cos ???i A +=ψ 为2L 和y L 的共同本征态,并求相应的本征值。说明当体系处在此状态时, z L 没有确定值。

泛函分析习题解答

第一章 练习题 1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下: (,)|()()|,,([,])b a f g f x g x dx f g C a b ρ=-?∈?, (1)([,])C a b 按ρ是否完备? (2)(([,]),)C a b ρ的完备化空间是什么? 答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2, n =,定义 ,01, ():1,1 2. n n x x f x x ?≤<=? ≤≤? 则{()}([0,2])n f x C ?在本题所定义的距离的意义下是Cauchy 列, 因为 1 11 (,)|()()|110,(,).11 n m n m n m f f f x f x dx x dx x dx m n n m ρ=-≤+= +→→∞++??? 另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有 0,[0,1) ()()1,[1,2].n x f x g x x ∈?→=? ∈? 因此, 根据Lebesgue 有界收敛定理, 可以得到 1 1 1 00(,)|()()|1 |0|0.1 n n n n f g f x g x dx x dx x dx n ρ=-=-==→+??? 但()([0,2])g x C ?. (2) ([,])C a b 的完备化空间是1 ([,])L a b . 因为 (i) 在距离ρ的意义下, ([,])C a b 是1 ([,])L a b 的稠密子集. 事实上, 任意取定一个 1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得 [,] (,)|()()|a b f g f x g x dx ρε=-, 使得当[,]E a b ?, 只要mE δ<, 就有

应用泛函分析相关习题.doc

泛函分析练习题 一?名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共貌算子 6.内点、内部: 7.线性算子、线性范函: 8.自然嵌入算子 9.共貌算子 10.内积与内积空间: 11.弱有界集: 12.紧算子: 13.凸集 14.有界集 15.距离 16.可分 17.Cauchy 列 18.自反空间 二、定理叙述 1、压缩映射原理 2.共鸣定理 3.逆算子定理 4.闭图像定理 5.实空间上的Hahn-Banach延拓定理 6、Bai re纲定理 7、开映射定理 8、Riesz表现定理 三证明题: 1.若(x,p)是度量空间,则d = d也使X成为度量空间。 1 + Q 证明:Vx,y,zcX 显然有(1)d(x, y) > 0 ,日3,),)= 0当且仅当x = (2) d(x9y) = d(y,x) (3)由/(/) = — = !一一, (/>0)关于,单调递增,得 1+,1+r d(x, z) = PE < Q(x,.y)+Q(y,z)

' 1 + Q(x, z) 一1 + p(x, y) + Q(y, z) 匕Q(x,)') | Q()',z) 一1 + Q(3)1+ /?(),, z) = d(x,y) + d(y,z) 故』也是X上的度量。 2,设H是内积空间,天则当尤〃—尤,乂T y时"(七,月)t (寻),),即内积关于两变元连续。 证明:| (% X,)一(x, y) I2 =| (x/t - x, >; - y)\2<\\x n-x\\-\\y tt-y\\ 己知即II七一尤II—0,|| 乂一>||—0。 故有I ,以)一(x, y)『—。 即Cw〃)T(x,y)。 5.设7x(r) = 若T是从心[0,1]-匕[0,1]的算子,计算||T||;若T是从 ZJ0,1]T ZJ0,1]的算子再求1171。 解:(1)当T是从ZJ0,l]—匕[0,1]的算子。 取x&)=同,贝j]||x()||2=1>||片)川=[后广出=*. 所以||T||>-^e 故有11『11=±? (2)当T是从ZJ0,1]T ZJ0,1]的算子时 ||八||2=(。誓⑴力度严=nxii2 Vn,(!--

量子力学练习题

第 五 篇 第 一 章 波粒二象性 玻尔理论 一、选择题 1. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0 (使电子从金属逸出需作功eU 0),则此单色光的波长λ必须满足: [ A ] (A) 0eU hc ≤ λ (B) 0 eU hc ≥λ (C) hc eU 0≤λ (D) hc eU 0≥λ 解:红限频率与红限波长满足关系式hv 0= λhc =eU 0,即0 0eU hc = λ 0λλ≤才能发生光电效应,所以λ必须满足0 eU hc ≤ λ 2. 在X 射线散射实验中,若散射光波长是入射光波长的1.2倍,则入射光光子能量0ε与散射光光子能量ε之比ε0 为 [ B ] (A) 0.8 (B) 1.2 (C) 1.6 (D) 2.0 解: λ εhc = ,0 0λεhc = ,02.1λλ= ,所以 2.10 0==λλεε 3. 以下一些材料的功函数(逸出功)为 铍 -----3.9 eV 钯 ---- 5.0 eV 铯 ---- 1.9 eV 钨 ---- 4.5 eV 今要制造能在可见光(频率范围为3.9×1014 Hz ~ 7.5×1014Hz)下工作的光电管,在这些材料中应选 [ C ] (A) 钨 (B) 钯 (C) 铯 (D) 铍 解:可见光的频率应大于金属材料的红限频率0νh , 才会发生光电效应。这些金属的红限频率由A h =0ν可以得到: 1419 34 )(01086.101063.610 6.15.4?=???= --钨ν(Hz) 1419 34 )(01007.121063.610 6.10.5?=???= --钯ν(Hz) 1419 34 ) (01059.41063.610 6.19.1?=???= --铯ν(Hz) 1419 34 )(01041.91063.610 6.19.3?=???= --铍ν(Hz) 可见应选铯

习题 第九章 领导

一、填空题 1.通过精神或物质上的威胁来强迫服从的一种权力是。 2.领导行为二元四分图的纵轴与横轴分别代表与。 3.领导集体的结构包括年龄结构、、与性格结构。 4.领导者的权力来源有法定权力、、、专家权力与五种。 5.管理方格图的纵坐标和横坐标分别是和。 6.通过描述最难与之共事的人来测定领导风格的方法是。 7.双因素理论把影响人的行为与动机的因素分为两类与。 8. 理论认为通过奖励等手段对员工的某一行为进行鼓励和肯定,可使该行为重复出现和加强。 9.、增加报酬以增强所希望的行为的强化方式为,按周给付薪金的强化方式属于,对销售员每做成一笔交易就给予一定奖励属于。 10.路径——目标理论区分了四种基本的领导风格类型,分别、参与型 和。 11.麦克利兰把人的需要分为、友谊需要和三种。 12.菲德勒区分的三种领导情景因素分别是、和。 二、单项选择题 1.通过组织中等级制度所赋予的权力是() A.专家权力B.感召权力C.表率权力D.法定权力 2.领导者和非领导者的差异在于领导者具有一些可以被确认的基本特质,持有这种观点的理论被称为() A.领导特质理论B.管理方格理论C.领导权变理论D.领导行为理论 3.以信息或知识为基础的权力是() A.法定权力B.奖励权力C.专家权力D.强制权力 4.假设领导者不能改变领导风格来适应情景的理论是() A.路径——目标理论B.期望理论 C.领导生命周期理论D.双因素理论 5.根据领导生命周期理论,领导风格随着下属成熟程度不同而不同,对于高度成熟的下属,领导者应当采取以下哪种领导同风格() A.高工作,高关系B.低工作,低关系 C.高工作,低关系D.低工作,低关系 6.强调下属的领导理论是() A.路径——目标理论B.菲德勒权变理论 C.领导生命周期理论D.领导特质理论 7.任务导向型的领导行为在下述因素中最关心的是() A.下属的意见、感情B.下属的满意程度

量子力学练习题

量子力学练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一. 填空题 1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。 2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为 λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。 3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量 E=kT 23 (k 为玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。 4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能量E n = ,相应的波函数 =)(x n ψ()a x a x n a n <<= 0sin 2πψ和 。 5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E= eV eV 51.13 6 .132-=;L= ;L z = ,轨道磁矩M z = 。 6.两个全同粒子组成的体系,单粒子量子态为)(q k ?,当它们是玻色子时波函数为 ),(21q q s ψ= ;玻色体系 为费米子时 =),(21q q A ψ ;费米体系 7.非简并定态微扰理论中求能量和波函数近似值的公式是 E n =() () +-'+'+∑≠0 020m n n m mn mn n E E H H E , )(x n ψ = () ) () +-'+∑≠000 2 0m m n n m mn n E E H ψψ, 其中微扰矩阵元 'mn H =()() ?'τψψd H n m 00?; 而 'nn H 表示的物理意义是 。该方法的适用条 件是 本征值, 。

数学专业参考材料书汇总整编推荐

学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理: 从数学分析开始讲起: 数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。 记住以下几点: 1,对于数学分析的学习,勤奋永远比天分重要。 2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。 3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。 4,看得懂的仔细看,看不懂的硬着头皮看。 5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。 6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。 7,经常回头看看自己走过的路 以上几点请在学其他课程时参考。 数学分析书: 初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。 中国人自己写的:

1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒) 应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。 2《数学分析》华东师范大学数学系著 师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。3《数学分析》陈纪修等著 以上三本是考研用的最多的三本书。 4《数学分析》李成章,黄玉民 是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。 5《数学分析讲义》刘玉链 我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。 6《数学分析》曹之江等著 内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n 维扩展。适合初学者。国家精品课程的课本。

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ? ),故: 2e E P /(2)=μ 69 h /p h / hc / 1.2410/0.7110 m 0.71nm --λ====?=?=1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 10 2.07K 1K J 10 381.12 32 323 1 23 ---?=????= = kT E 于是有 一维谐振子处于2 2 /2 ()x x Ae α ψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知: 22 * 2x 2 (x)(x)dx A e dx 1 A /1 ∞∞-α-∞ -∞ ψψ===α=? ? 取相因子为零,则归一化系数1/21/4A /=απ 2.

2222 2 2 22 2 2 22 22 22 22 2 * 2x /2 x /22 2 2 x /2 x /2 2 2 x /2 2x /2 2 222x 2x /2 2 2 24 2x 2T (x)T (x)dx A e (P /2)e dx d A e ()e dx 2dx d A e (xe )dx 2dx A {xe (xe )dx} 2A x e dx A 22∞∞-α-α-∞-∞ ∞-α-α-∞∞-α-α-∞ ∞ ∞-α-α-∞ -∞ ∞-α-∞ = ψψ=μ=- μ =- -αμ=- -α- -αμ = α = μμ ? ?? ? ? ? =(= = 22 2 2 2 2 4 x 22 24 x x 2 2 22 24 21()xd(e ) 21A (){xe e dx}221A ()2442∞-α-∞ ∞ ∞-α-α-∞ -∞ α- α =α- -- μααα- - μ α μ μ α ? ? 若αT 4 ω= 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H 定理是 非常方便的。 一维谐振子的哈密顿量为: 2 2 22 d 1H x 2dx 2 =- + μωμ 它的基态能量01E 2 = ω 选择 为参量,则: 0dE 1d 2 = ω ; 2 2 2 d H d 2d 2()T d dx 2dx =- = - = μμ d H 20 0T d = 由F-H 定理知: 0dE d H 210 T d d 2= ==ω 可得: 1T 4 = ω

泛函分析第4章 内积空间

第四章 内积空间 在第三章中,我们把n 维Euclid 空间n R 中的向量的模长推广到一般线性空间中去,得到了赋范线性空间的概念。但在n R 中可以通过两个向量的夹角讨论向量与方向的问题。这对仅有模长概念的赋范线性空间是做不到的。我们知道,n R 中向量的夹角是通过向量的内积描述的,因此在本章我们引入了一般的内积空间的概念。 4.1 内积空间的基本概念 首先回忆几何空间3R 中向量内积的概念。设123(,,)x t t t =,123(,,)y s s s R =∈,设x 与y 夹角为?,由解析几何知识可得 112233 cos t s t s t s x y ?++= ? 其中, 13 2 2 1 ()k k x t ==∑,13 22 1 ()k k y s ==∑ 令3 1 ,k k k x y t s ==∑,称为x 与y 的内积,不难证明它有如下性质: (1)3,0,,,0;x y x R x x x θ≥?∈=?=且 (2)3,,,,;x y y x x y R =?∈ (3)3121212,,,,,,;x x y x y x y x x y R +=+?∈ (4)3,,,,,.x y x y R x y R λλλ=?∈?∈ 注:由定义可得x = 内积我们可以讨论如向量的直交及投影等重要几何问题。 现在我们引入一般的内积空间的概念。 【定义 4.1】 设X 为数域F 上线性空间,若对任两个元素(向量)x ,y X ∈,有惟一F 中数与之对应,记为,x y ,并且满足如下性质: (1),0,,,0;x y x X x x x θ≥?∈=?=且 (2),,,,;x y y x x y X =?∈

应用泛函分析相关习题

泛函分析练习题 一名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共轭算子 6. 内点、内部: 7. 线性算子、线性范函: 8. 自然嵌入算子 9. 共轭算子 10. 内积与内积空间: 11. 弱有界集: 12. 紧算子: 13. 凸集 14. 有界集 15. 距离 16. 可分 17. Cauchy 列 18.自反空间 二、定理叙述 1、 压缩映射原理 2. 共鸣定理 3.逆算子定理 4. 闭图像定理 5.实空间上的Hahn-Banach 延拓定理 6、Baire 纲定理 7、开映射定理 8、Riesz 表现定理 三证明题: 1.若(,)x ρ是度量空间,则1d ρρ= +也使X 成为度量空间。 证明:,,x y z X ?∈ 显然有 (1)(,)0d x y ≥,(,)0d x y =当且仅当x y =。 (2)(,)(,)d x y d y x = (3)由1()111t f t t t = =-++,(0)t >关于t 单调递增,得 (,)(,)(,)(,)1(,)1(,)(,) x z x y y z d x z x z x y y z ρρρρρρ+=≤+++

(,)(,)1(,)1(,) x y y z x y y z ρρρρ≤+++ (,)(,)d x y d y z =+ 故d 也是X 上的度量。 2, 设H 是内积空间,,,,n n x x y y H ∈,则当,n n x x y y →→时,(,)(,)n n x y x y →,即内积关于两变元连续。 证明:22|(,)(,)||(,)|||||||||n n n n n n x y x y x x y y x x y y -=--≤-?- 已知 ,n n x x y y →→,即||||0,||||0n n x x y y -→-→。 故有 2|(,)(,)|0n n x y x y -→ 即 (,)(,)n n x y x y →。 5.设2()(),Tx t t x t =若T 是从21[0,1][0,1]L L →的算子,计算||||;T 若T 是从 22[0,1][0,1]L L →的算子再求||||T 。 解:(1)当T 是从21[0,1][0,1]L L →的算子。 1 2 10|||||()|Tx t x t dt =?≤? 所以 |||| T ≤。 取2 0()x t =,则02|||| 1.x = 4010||||Tx dt ==? 所以 |||| T ≥。 故有 |||. T = (2)当T 是从22[0,1][0,1]L L →的算子时 11 421/221/22200||||(())(())||||Tx t x t dt x t dt x =≤=?? 所以 |||| 1.T ≤

量子力学基础简答题(经典)【精选】

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在 ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1 ?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

量子论习题(2)

一. 二. 16.静止质量为m e的电子,经电势差为U12的静电场加速后,若不考虑相对论相应,电子的德布罗意坡长 = ______________________。 三. 四. 17在下列各组量子数的空格上,填上适当的数值,以便使它们可以描述原子中电子的状态:(1)n = 2, l =_____, m l = -1, m s = -1/2. (2) n = 2, l = 0, m l = ______ , m s = 1/2. (3) n =2, l = 1, m l = 0, m s = ____. 五.

六. 9. 关于不确定关系有以下几种理解: (1) 粒子的动量不可能确定. (2) 粒子的坐标不可能确定. (3) 粒子的动量和坐标不可能同时准确确定. (4) 不确定关系不仅适用于电子,也适用于其它粒子. 其中正确的是: (A) (!),(2). (B)(2),(4). (C) (3),(4). (D) (4), (1). [ ] 七. 八. 2.原子内电子的量子态由n, l, m l及m s四个量子数表征。当n, l, m l一定时,不同的量子态数目为_________。当n, l,一定时,不同的量子态数目为__________。当n,一定时,不同的量子态数目为_________。 九.

24. 设康普顿效应中入射X 射线(伦琴射线)的波长λ = 0.700?(1 ? =10-10 m), 散射的X 射线与入射的X 射线垂直,求: (1) 反冲电子的动能E k 。 (2) 反冲电子运动的方向与入射的射线之间的夹角θ。 (普朗克常量h = 6.63x1037J.s ,电子静止质量m e = 9.11x1031kg ) 十. 3. 设描述粒子运动的波函数为ψ(r, t ),则ψψ*表示_________________ ______________________________,ψ(r, t )须满足的条件是______________ __________________;其归一化条件是____________________________。 十一. 24. 已知μ子的静止能量为105.7 MeV ,平均寿命为τo =2.2x10-8s ,求动能为150 MeV 的μ子的速度是多少?动量p 是多少?以速度v 运动是的平均寿命τ是多少?(1MeV=1.6x10-13J) 十二. 15. 已知钾的逸出功为2.0eV ,如果用波长为3.60x10-7m 的光照射在钾上,则光电效应的遏止电压的绝对值o U 。从钾表面射出电子的最大速度v max = ________________. (h=6.63x10-34J.s, 1eV=1.6x10-19J, m o =9.11x10-31kg, 基本电荷e=1.60x10-19C) 十三. 8. 静止质量不为零的微观粒子作高速运动,这时粒子物质波的波长与速度有如下关系: (A) λ ∝ v, (B) λ ∝ 1/ v, (C) λ ∝ 2211c -ν. (D) λ ∝22v c -

相关主题
文本预览
相关文档 最新文档