当前位置:文档之家› 斐波那契数列与股市(DOC)

斐波那契数列与股市(DOC)

斐波那契数列与股市(DOC)
斐波那契数列与股市(DOC)

斐波那契数列在股市中的应用

时间周期理论

是股价涨跌的根本原因之一,它能够解释大多数市场涨跌的奥秘。在时间周期循环理论中,除了利用固定的时间周期数字寻找变盘点之外,还可以利用波段与波段之间的关系进行研究。但无论如何寻找变盘点,斐波那契数列都是各种重要分析的基础之一,本文将简单阐述斐波那契数列及其与市场的关系。

步骤/方法

1斐波那契数列由十三世纪意大利数学家斐波那契发现。数列中的一系列数字常被人们称之为神奇数奇异数。具体数列为:1,1,2,3,5,8,13,21,34,55,89,144,233等,从该数列的第三项数字开始,每个数字等于前两个相邻数字之和。而斐波那契数列中相邻两项之商就接近黄金分割数0.618,与这一数字相关的0.191、0.382、0.5和0.809等数字就构成了股市中关于市场时间和空间计算的重要数字。

大到整个宇宙空间到小到分子原子,从时间到空间,从自然到人类社会,政治、经济、军事等,各种现象中的规律

都能找到斐波那契数的踪迹。世界著名建筑如巴黎圣母院、埃菲尔铁塔、埃及金字塔等均能从它们身上找到0.618的影子。名画、摄影、雕塑等作品的主题都在画的0.618处。报幕员站在舞台的0.618处所报出的声音最为甜美、动听。人的肚脐眼是人体长度的0.618位置,人的膝盖是从脚底到肚脐眼长度的0.618。战争中0.618的运用也是无所不在,小到兵器的制造、中到排兵布阵到战争时间周期的运用,相传拿破仑大帝即败于黄金分割线。

在金融市场的分析方法中,斐波那契数字频频出现。

例如,在波浪理论中,一轮牛市行情可以用1个上升浪来表示,也可以用5个低一个层次的小浪来表示,还可继续细分为21个或89个小浪;

在空间分析体系中,反弹行情的高度通常是前方下降趋势幅度的0.382、0.5、0.618;回调行情通常是前方上升趋势的0.382、0.5和0.618。

2斐波那契数列在实际操作过程中有两个重要意义:

第一个实战意义在于数列本身。本数列前面的十几个数字对于市场日线的时间关系起到重要的影响,当市场行情处于重要关键变盘时间区域时,这些数字可以确定具体的变盘时间。使用斐波那契数列时可以由市场中某个重要的阶段变盘点向未来市场推算,到达时间时市场发生方向变化的概率

较大。

图1综合指数(1A0001)2009年7月29日—12月31日日线图

如图1所示,综合指数(1A0001)2009年8月4日的3478点到2009年9月1日阶段低点2639点的时间关系是21个交易日,2009年9月1日的阶段低点2639点到2009年9月18日的高点3068点是13个交易日的时间,到2009年9月29日的低点2712点是21个交易日,到2009年10月23日的高点3123点的时间是34个交易日,到2009年11月24日的年度次高点3361点的时间是55个交易日。

图2综合指数(1A0001)2009年7月10日—12月31日周线图

如图2所示,综合指数(1A0001)2009年8月4日的高点3478点到2009年9月4日2639点的运行时间是5周;2009年9月4日的低点2639点到2009年11月27日反弹高点3361点的时间是13周。

斐波那契数列在股市中的应用

斐波那契数列在股市中的应用

3第二个实战意义在于本数列的衍生数字是市场中纵向时间周期计算未来市场变盘时间的理论基础。这组衍生数列分别是:1.236、1.309、1.5、1.618、1.809、2、2.236、2.382、2.5等一系列与黄金分割0.618相关的数字。

4在使用神奇数列时主要有六个重要的时间计算方法:

第一、通过完整的下跌波段时间推算未来行情上涨波段的运行时间。

第二、通过完整的上涨波段时间推算未来行情下跌波段的运行时间。

这两种比例关系就像生活中我们经常见到的作用力与反作用的关系,乒乓球垂直掉到地面的高度决定乒乓球触击地面以后反弹的高度是同样的道理。

第三、通过上升波段中第一个子波段低点到高点的时间推算本上升波段最终的运行时间。

第四、通过下降波段中第一子波段高点到低点的时间推算本下跌波段最终的运行时间。

这两种比例关系就像生活中我们经常见到的推动力与惯性的关系,当古代弓箭的弓与弦被拉开的距离直接决定了未来箭向前飞行的距离。

第五、通过本上升波段中第一子波段的两个相邻低点的时间推算未来上升波段的最终运行时间。

第六、通过下降波段中第一子波段的两个相邻高点的时间推算本下跌波段最终的运行时间。

这两种比例关系就像生活中我们经常见到的建筑物地基宽度影响未来高度一样重要。在材质相同的情况下,地基宽度越大,未来高度越高。

5在这六种重要的时间计算方法中最为重要的就是计算过程中实际使用的参数,利用不同的参数会得到不同的答案,而使用过程中几乎所有的重要参数都与斐波那契数列有

关。由于篇幅原因,这里先埋个伏笔,我会在以后的文章中为股民朋友详细阐述计算方法。

斐波那契数列应用

生活中我们常常相信亲眼所见,但又常常为自己的眼睛所骗,魔术就是一个很好的例子。数学中也有这种欺骗我们眼睛的奇妙的数学魔术,我们还是来看一个简单的问题吧,将图3中面积为13×13=169的正方形裁剪成图中标出的四块几何图形,然后重新拼接成图4,计算可知长方形的面积为8×21=168,比正方形少了一个单位的面积,真不可思议! 这两个问题是这样的令人惊奇和难以理解,我们在白纸上将正方形量好画出,剪成四块,重新安排后拼成长方形,除非图形做得很大并且作图和剪裁都十分精确,我们一般是不会发现拼接成的长方形在对角线附近发生了微小的重叠,正是沿对角线的微小重叠导致了一个单位面积的丢失。要证实这一点我们只要计算一下长方形对角线的斜率和正方形拼接各片相应边的斜率,比较一下就会清楚了。 问题2中涉及到四个数据5、8、13和21,有一定数学基础的同学会认出这是著名的斐波那契数列中的四项,斐波那契数列的特征是它的每一项都是前两项之和:1,1,2,3,5,8,13,21,34,……。我们还可以使用这个数列中的其他相邻四项来试验这个过程,无论选取哪四项,都可以发现正方形和长方形的面积是不会相等的,有时正方形的面积比长方形多一个单位面积,有时则正好相反。多做几次上述实验,我们就会得出斐波那契数列的一个重要性质:这个数列任意一项的平方等于它前后相邻两项之积加1或减1。用公式表示就是:。其中表示正方形的面积,表示长方形的面积。知道了这个事实,我们就可以自己构造类似于问题2的几何趣题。 爬梯子问题(斐波那契数列应用) 1.小明要上楼梯,他每次能向上走一级、两级或三级,如果楼梯有10级,他有几种不同的走法? 这里我们不妨也来研究一下其中的规律:如果楼梯就一级,他有1种走法;如果楼梯有两级,他有2种走法;如果楼梯有三级,他有4种走法;如果有五级楼梯,他有7种走法. 既:楼梯的级数:12345678... 上楼梯的走法:124713244481... 这其中的规律就是,这里从第4个数开始,每一个数都等于它前面的3个数之和。

斐波那契数列教案(六年级数学下册)

《斐波那契数列》教学设计 教学内容:第65页阅读资料“斐波那契数列”。 教学目标:1、使学生认识“斐波那契数列”及其部分特性。 2、在经历感知、分析、归纳和应用的过程中培养学生的思维能力。 3、培养积极的数学阅读习惯,形成积极的数学情感。 教学过程: 一、故事引入,提出问题 很久很久以前,有个意大利人发现了一对神奇的小兔子,和兔子相处一年之后,他便成为一个举世闻名的数学家。这一年到底发生了什么呢?他用一道数学题清楚的告诉了我们,请看大屏幕: 假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。那么,由一对刚出生的兔子开始,12个月后会有多少对兔子呢? 1、请学生读题,分析、理解题意。 你觉得题目中哪句话的意思很重要,需要提醒大家注意呢? 重点理解:①一对大兔生过一对小兔后,下个月会接着生,无死亡; ②小兔一个月后长成大兔,以后一直是大兔。 2、模拟兔子生长过程 ⑴请同学们讨论,你想了解哪些问题?如何解决?(这一年当中,兔子的数量到底是怎样增长的?)我们来模拟一下,好不好? ⑵师生共同参与模拟过程,记录数据。 1月—4月,由教师带领学生体会兔子变化过程。 ⑶引导发现规律,小组合作完成剩下月份的推导 ⑷汇报交流,解决问题。 二、合作探究,解决问题 1、刚才大家表现得很踊跃。下面我们就来研究这个著名的数学问题, 它就是这个数列:1,1,2,3,5,8,13,21,…… 2、观察前后数的关系,从这个数列中你发现了什么规律? ①学生举手汇报,说出规律:前两个数之和等于第三个数。 ②若一个数列,首两项等于 1,而从第三项起,每一项是前两项之和,则称该数列 为斐波那契数列。 三、应用新知,练习巩固 根据你发现的规律填空

黄金分割与斐波那契数列

第八讲 黄金分割与斐波那契数列 一、 黄金分割 1. 黄金分割的概念 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5-1):2,取其小数点后三位的近似值是0.618。由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字。 德国天文学家开普勒(J.Kepler )曾说“几何学有两大宝藏,其一为毕氏定理,其二为将一线段分成外内比。前者如黄金,后者如珍珠。” 所谓将一线段分成“中外比(或称中末比或外内比)”,这是欧几里得在《几何原本》(公元前三世纪前后)里的说法: A straight line is said to have been cut in extreme and mean radio when, as the whole line is to the greater segment, so is the greater to the less. 分一线段为二线段,当整体线段比大线段等于大线段比小线段时,则称此线段被分为中外比。 关于黄金分割的历史,可以追溯到公元前6世纪古希腊的毕达哥拉斯学派,他们已经研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。而《几何原本》是吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。中世纪后,黄金分割被披上神秘的外衣,意大利数学帕乔利称之为神圣比例,并专门为此著书立说。德国天文学家开普勒称之为神圣分割。当时,人们都还是称之为“中外比”,直到19世纪初,黄金分割这个名称才出现。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们常说的比例方法。 其实有关“黄金分割”,中国也有记载。虽然没有古希腊的早,但它是中国古代数学家独立创造的,后来传入了印度。经考证,欧洲的比例算法是源于中国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 2. 黄金分割的尺规作图 设线段为AB 。作BD ⊥AB ,且 ,连AD 。以D 为圆心,DB 为半径作圆弧,交AB BD 2 1

斐波那契数列与黄金分割的应用研究

斐波那契数列与黄金分割 应用研究 作者姓名 院系6系 学号

摘要 “斐波那契数列(Fibonacci)”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。斐波那契数列是一个古老而有趣的问题,由于其所具有的各种特殊属性,它与最优美的黄金分割有这密不可分的关系。在数学领域以及自然界中随处可见,而且正逐渐被应用在人们的日常生活与娱乐中。 关键词:斐波那契,黄金分割,应用 1 引言 斐波那契数列又称“斐波那契神奇数列”,是由13世纪的意大利数学家斐波那契提出的,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。假设一对成年兔子放于围栏中,每月可生下一对一雌一雄的小兔,而小兔出生一个月后便可以生育小兔,且每月都生下一对一雌一雄的小兔.问把这样一对初生的小兔置于围栏中,一年后围栏中共有多少对兔子(假定兔子没有死亡)?据此,可得月份与兔子对数之间的对应关系如下: 月份0 1 2 3 4 5 6 7 ? 大兔对数0 1 1 2 3 5 8 13 ? 小兔对数 1 0 1 1 2 3 5 8 ? 兔子总对数 1 1 2 3 5 8 13 21 ? 如果用F n 表示第n个月兔子的总对数,那么F n能构成一个数列:1,1,2,3,5,8,13,21,34,55,89?.这个数列显然有如下的递推关系: F n =F n-1 +F n-2 (n>1,n为正整数),F0 =0,F1 =1 (1) 满足(1)式的数列就叫做斐波那契数列,这是一个带有初值的用递推关系表示的数列。这个数列一问世就吸引了无数数学家的兴趣,以下是费氏数列的定义及通项公式。 费氏数列是是由一连串的数字所组成的(1、1、2、3、5、8、13、…),而且这串数字之间具有一定的规则,就是每一个数字必须是前两个数字的和( an =

数学-斐波那契数列01

内蒙古自治区中小学教师教育技术水平(初级)试卷(试卷科目:中学数学)01 第一部分:基本知识题(本部分共8个题,每题2.5分,满分20分) 第1题 (单选题)根据您对教育技术及相关基础知识的理解,下例选项不正确的一项是( C)。 (2.5分) A.教育技术就是为了促进学习,对有关的学习过程和资源进行设计、开发、利用、管理和评价的理论与实践 B.教学设计是运用系统方法分析教学问题和确定教学目标,建立解决教学问题的策略方案、试行解决方案、评价试行结果和对方案进行修改的过程C.教育技术与信息技术的涵义是一样的,只是用不同的名词来表述而已D.教育信息化是指在教育教学的各个领域中,积极开发充分应用信息技术和信息资源,以促进教育现代化,培养满足社会需求人才的过程 第2题 (单选题)在美国,教育技术作为一个新兴的实践和研究领域而出现始于下列选项内容的是( A)。 (2.5分) A.视听运动 B.计算机辅助教育 C.程序教学法 D.网络技术应用 第3题 (单选题)"教师不应一味以传统集体传授教学的方式进行教学,而应使用能够让学生进行操作或进行社会活动的方式来学习",这反映的是( A )的学习观。 (2.5分) A.建构主义 B.人本主义 C.行为主义 D.认知主义 第4题 (单选题)在视听教学运动背景下,对教育技术基本内涵表述不恰当的是( C)。 (2.5分) A.在教学过程中所应用的媒体技术手段和技术方法 B.在教学过程中所应用的媒体技术和系统技术 C.在教学过程中所应用的媒体技术 D.在教学过程中所应用的媒体开发和教学设计 第5题 (单选题)关于教学方法的选择,下列选项中说法正确的是( C )。 (2.5分) A.教学方法的选择不涉及学习者特征方面因素

浅谈斐波那契数列在生活中的应用

浅谈斐波那契数列在生活中的应用 发表时间:2019-07-29T11:38:49.093Z 来源:《基层建设》2019年第14期作者:孙烨赵倩[导读] 摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。 山东协和学院山东济南 250107摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。数列知识在生活中也有着广泛的应用,例如生物种群数量的变化,银行的利息计算,人口增长,粮食增长、住房建设等,都会用到数学知识。本文介绍斐波那契数列的简单情况,可以帮助学生提高对数列的知识。数列是数学学习中一个非常重要的分支,并且因为数列的研究和计算与社会经济和资源生活紧密相关,加上灵活 多变的计算,有趣的问题等,都使得对于数列的研究受到越来越多人的关注。 关键词:斐波那契数列应用黄金分割 1 引言 数列在我们的生活中具有广泛的应用,例如资源计算等问题,并且在解决诸如投资分配,汇率计算和资源利用分配等问题方面具有无可比拟的优势。本文将简要介绍数列广泛应用,分析斐波那契数在上述几个生活领域中的应用。 斐波那契数列在现实生活中被广泛使用,研究它以使其服务于我们的生活具有很大的意义。 人类很早就看到了大自然的数学特征:蜜蜂的繁殖规律,树枝、钢琴音阶的排列以及花瓣在花托边缘的对称分布、整个花朵几乎完美无缺地呈现出辐射对称性……,所有这一切向我们展示了许多美丽的数学模式。对自然、社会和生活中的许多现象的解释,通常可归因于斐波那契数列上来。 斐波那契数列在数学理论中有许多有趣的特性,似乎在自然界中也存在着这个性质,都被斐波那契数列支持。 2 斐波那契数列的应用 (1)斐波那契数列和花瓣数花瓣数是极有特征的。多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,海棠2瓣花瓣,铁栏、百合花和兰花以及茉莉花都有3瓣花瓣,洋紫荆、黄蝉和蝴蝶兰是5瓣花瓣。万寿菊的花瓣有13瓣;至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;雏菊属植物有89、55或者34个瓣花瓣。 (2)斐波那契数列和仙人掌的结构在仙人掌的结构中有这一数列的特征。研究人员分析了仙人掌的形状、叶片的厚度以及控制仙人掌情况的其他因素,并将数据输入计算机,结果发现仙人掌的斐波那契序列结构使仙人掌能够最大限度地减少能量消耗并适应干旱沙漠中的生长环境。 (3)斐波那契数列和向日葵种子排列向日葵种子的排列是典型的数学模型。仔细观察向日葵盘,你会发现两组螺旋,一组顺时针旋转,另一组螺旋逆时针旋转,彼此嵌套。虽然不同向日葵品种的种子选装方向和螺旋线的数量有所不同,但往往不会超出34和55、55和89或者89和144这3组数字,每组数字就是斐波那契序列中的两个相邻数字。前一个数字是顺时针旋转的线数,后一个数字是逆时针旋转的线数。回想起向日葵。种子全都紧密排列在花盘当中,每个种子都保证按照适合的角度生长大小还基本保持一致又疏密得当,与此同时,螺旋的数目也是斐波那契序列中的数字,世界如此繁琐,却又如此的井然有序。 (4)斐波那契数列与台阶问题当只有一个台阶时,只有一种移动方式,F1=1两个台阶,有2种走法,一步上两个台阶或者一阶一阶的上,所以F2=2。三个台阶时,走法有一步一阶,2阶再1阶,1阶再2阶,因此,F3=3。四个台阶时,走法有(1,1,1,1),(1,1,2),(1,2,1),(2,1,1)(0,2,2),共5种方法,所以F4=5依此类推,有数列:1,2,3,5,8,13,21,34,55,89,144,233,...斐波那契与自然,生活和科学上有很多联系,但是从这几个例子中,我们可以看到斐波那契数列的应用的广泛性,我们可以看到数学之美无处不在。它是一门科学,同时也是一种艺术,一种语言,它就像一朵盛开的茉莉花,白皙而优雅,简言而之,数学伴随着自然生活共同发展。 (5)斐波那契数列与蜜蜂的家谱蜜蜂的“家谱”:蜜蜂的繁殖规律十分有趣。雄蜂只有一个母亲,没有父亲,因为蜂后所产的卵,未受精的孵化为雄蜂,受精的孵化为雌蜂(即工蜂或蜂后)。人们在追踪雄蜂的家谱时,发现1只雄蜂的第n代子孙的数目刚好就是斐波那契数列的第n项f(n)。 (6)黄金分割与斐波那契的联系斐波那契和黄金比例(也称黄金分割,Φ,取三位小数1.618)密切相关。黄金法则,也称为黄金比率,是指将直线分成两部分,使得一部分与整体的比率等于剩余部分与该部分的比率,即0.618/1=0.382/0.618。0.618是斐波那契数列相邻两项之比的近似值,一般称之为黄金分割数。这是古希腊哲学家、数学家毕达哥拉斯于公元前6世纪由提出,后被著名的希腊美学家柏拉图称为“黄金比例率”。 (7)斐波那契数列和鳞片的关系菠萝果实上的菱形鳞片排成一列,8排向左倾斜,13排向右倾斜;挪威云杉的球果在一个方向上有3排鳞片,在另一个方向上有5排鳞片;常见的落叶松是一种针叶树,松果上有鳞片,两个方向也排成5行8行;美国松树松鳞片在两个方向上排成3行和5行。 (8)影视作品中的斐波那契数列斐波那契数列在欧美可以说是是每个人都知道,在电影这种通俗艺术中也经常的出现,例如在风靡一时的《达芬奇密码》当中它就作为一个重要的符号和情节线索出现,在《魔法玩具城》当中也出现过。由此可见此数列就像黄金分割那样的流行。可是虽说叫得上名,大多数人并没有深入理解研究。在电视剧中也经常看到斐波那契数列的影子,比如:日剧《考试之神》的第五回,义嗣做全国模拟考试题中的最后一道数学题。还在FOX热播美剧《Fringe》中也是多次引用,甚至被当做全剧宣传海报的主要设计元素。 3 结束语 除了上文中涉及的几个方面外,斐波那契数列在生活的其他领域当中例如现代物理、准晶体结构、化学等领域,斐波纳契数列都有着广泛的应用。这个奥秘神奇的序列就在我们生活中任何常见的事物中隐藏,植被如一朵向日葵,一棵花菜,宏观如飓风以及星系,微观小至细胞的分裂,斐波那契数列都有存在。而且,通过对上文数列在生活中应用的几个方面的分析,也希望能激发大家对斐波那契数列的兴趣,感受数学的魅力。

斐波那契数列中的数学美

最美丽的数列------斐波那挈数列 数学科学院宋博文1100500163 在原理课上,我们了解了斐波那挈数列,在课余生活中,我再读小说<达芬奇密码>时,提到了斐波那挈数列,它是被一个艺术家当作线索留给他人的,当时不知道他为什么被艺术家这么看重,以至于可以上升到生命的高度,因此我对斐波那挈数列产生了浓厚的兴趣,所以我结合了老师上课讲的东西,以及自己课下的了解,对斐波那挈数列有了一些认识,现在总结在这里,展示自己学到了什么. 在课上老师讲了斐波那挈数列是由意大利数学家,斐波那挈发明的.当时他是用一个形象的故事为例子而引入的斐波那挈数列. 兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子? 我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对; ------ 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12 兔子对数:---1---1---2---3---5---8--13--21--34--55--89--144 表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。 这个特点的证明:每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,相加。 斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*[(1+√5/2)^n-(1-√5/2)^n](n=1,2,3.....) 因此斐波那挈数列又叫做兔子数列,我想这个例子真的让我感到数学源于生活,生活的需要是我们不段地通过现象发现数学问题,而不是为了学习而学习,我想斐波那挈不可能真的是通过兔子来发现的这个问题,但他是伟大的数学家,他想告诉我们这种数学问题的本质. 回到正体,提到了斐波那挈的伟大,现在我们在了解一下斐波那挈,我再课下了解到他竟叫做列昂纳多斐波那挈,与列昂纳多达芬奇,并被誉为比萨的列昂纳多.我想数学家有艺术家的称号,并不是一件简单的事. 直观的讲斐波那挈数列1、1、2、3、5、8、13、21、……从第三项开始,每一项都等于前两项之和,有趣的是这样的完全是自然数的数列,竟然可以用无理数来表达的,我记得老师当时好像讲过这一点但是当时好像并不太在意这一点,因为觉得这没什么,但是当我了解到,随着数列项的增加,前一项与后一项之比愈来愈逼近黄金分割的数值0.618时我却是被震惊到了,因为数学可以表达美,我想这是我们不得不赞叹的地方,当数学创造了好多的奇迹时,我想可能会很少人注意到我们数学本质是可以回归到自然的,这样的事例还有很多, 在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的

浅谈菲波纳契数列的内涵和应用价值

浅谈菲波纳契数列的内涵和应用价值 99数学本四班 莫少勇 指导教师 孙丽英 摘 要 本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。 关键词 Fibonacci 数列 黄金数 优选法 数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。 一. F ibonacci 数列的由来 Fibonacci 数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n = A n +B n 根据题设,有 显然,F 1=1,F 2=1,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,于是按此规律我们得到一个带有初值的递推关系式: ?? ?==∈≥+=1 F 1,F Z)n 3,(n F F F 212-n 1-n n 若我们规定F 0=1,则上式可变为 ?? ?==∈≥+=1F 1,F Z)n 2,(n F F F 102-n 1-n n 这就是Fibonacci 数列的通常定义,也就是数列1,1,2,3,5,8,13,21,34,55,89,……, 这串数列的特点是:其中任一个数都是前两数之和。 这个兔子问题是意大利数学家梁拿多(Leomardo )在他所著的《算盘全集》中提出的,而梁拿多又名菲波纳契(Fibonacci ),所以这个数列称作菲波纳契数列,其中每一项称作Fibonacci 数。 它的通项是F n =51[(25 1+)n+1-(251-)n+1 ],由法国数学家比内(Binet )求出的。 二.Fibonacci 数列的内涵 (1)Fibonacci 数列的通项的证明我们可以通过求解常系数线性齐次递推关系或者利用生成函数法来实现。 证法一:

浅谈菲波纳契数列的内涵和应用价值

浅谈菲波纳契数列的内涵和应用价值 99数学本四班莫少勇指导教师孙丽英 摘要本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。 关键词 Fibonacci数列黄金数优选法 数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。 一.Fibonacci数列的由来 Fibonacci数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,

而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n = A n +B n 根据题设,有 显然,F 1=1,F 2=1,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,于是按此规律我们得到一个带有初值的递推关系式: ?? ?==∈≥+=1 F 1,F Z)n 3,(n F F F 212-n 1-n n 若我们规定F 0=1,则上式可变为 ?? ?==∈≥+=1 F 1,F Z)n 2,(n F F F 102-n 1-n n

使用fork()调用计算Fibonacci数列

实验二Linux 进程创建 实验目的 ?加深对进程概念的理解 ?练习使用fork()系统调用创建进程 ?练习Linux操作系统下C程序设计 实验准备知识 1. fork()函数:创建一个新进程. ?调用格式: #include #include int fork(); ?返回值: 正确返回时,等于0表示创建子进程,从子进程返回的ID值;大于0表示从父进程返回的子进程的进程ID值。 错误返回时,等于-1表示创建失败 实验内容:使用fork()调用计算Fibonacci数列 ?Fibonacci数列是0,1,1,2,3,5,8…….通常表示为:fib0=0, fib1=1,fib n=fib n-1+fib n-2 ?写一个C程序,使用fork()系统调用产生一个子进程来计算 Fibonacci数列,序列通过命令行显示。例如,如果参数为5,Fibonacci数列的前5个数字将在子进程中被输出。 ?因为父进程和子进程拥有各自的数据拷贝,所以需要由子进程

输出。在退出程序之前,父进程调用wait()等待子进程完成。 要求提供必要的错误检测以保证在命令行传递的参数是非负数. 实验程序: #include #include #include #include int main(int argc, char* argv[]) { pid_t pid; int i; int f0,f1,f2; f0=0; f1=1; if(argv[1]<0) { fprintf(stderr,"request a nun-negative number"); } pid=fork(); //printf("pid = %d ",pid); if(pid<0) { fprintf(stderr,"fork failed"); exit(-1); } else if(pid==0) { printf("argv[1] = %d\n",atoi(argv[1])); printf("0 1 "); for(i=2; i<=atoi(argv[1]);i++) { f2=f0+f1; f0=f1; f1=f2; printf("%d ",f2); }

高考数学题型全归纳:斐波那契数列(含答案)

斐波那契数列 每一对兔子过了出生第一个月之后,每个月生一对小兔子。现把一对初生小兔子放在屋内,问一年后屋内有多少对兔子? 先不在这里考虑兔子能否长大,或是某些月份没有生小兔子一类的问题,完全只由数学角度去考虑这问题,意大利数学家斐波那契(Fibonacci)解了这个题目,其内容大约是这样的:在第一个月时,只有一对小兔子,过了一个月,那对兔子成熟了,在第三个月时便生下一对小兔子,这时有两对兔子。再过多一个月,成熟的兔子再生一对小兔子,而另一对小兔子长大,有三对小兔子。如此推算下去,我们便发现一个规律: 不难发现,每个月成熟兔子的数目是上个月的兔子总数,而初生兔子的数目是上个月成熟兔子的数目,也即是两个月前的兔子总数,因此每个月的兔子总数刚好是上个月和两个月前的的兔子总数之和。由此可得每个月的兔子总数是 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 23, 377...,由此可知一年后有 377 对兔子。 若把上述数列继续写下去,得到的数列便称为斐波那契数列,数列中每个数便是前两个数之和,而数列的最初两个数都是 1。若果设 F0=1, F1=1, F2=2, F3=3, F4=5, F5=8, F6=13... 则成立这个关系式:当 n 大于 1,Fn+2=Fn+1+ Fn,而 F0=F1=1。下面是一个古怪的式子: (1) Fn看似是无理数,但当 n 是非负整数时,Fn都是整数,而且组成斐波那契数列,因为F0=F1=1,并且Fn+2=Fn+1+ Fn,这可用数学归纳法来证明。 利用斐波那契数列解决兔子数目的问题似乎没有甚么用途,因为不能保证兔子真的每月只生

斐波那契数列的应用

+斐波那契数列的应用 第一章斐波那契数列的提出 意大利数学家斐波那契在《算盘全集》中提出了一个有趣的兔子繁殖问题:如果每队兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同)每队兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子。假定这些兔子都不死亡现象,那么从一对刚出生的兔子开始,一年只有会有多少对兔子呢?解释说明为:一个月:只有一对兔子;第二个月:仍然只有一对兔子;第三个月:这对兔子生了一对小兔子,共有1+1=2对兔子。第四个月:最初的一对兔子又生一堆兔子,共成为2+1=3对兔子。后人为了纪念兔子繁殖问题的斐波纳契将这个兔子数列成为斐波那契数列。也就是把1,1,2,3,5,8,13,21,34…这样的数列称为斐波那契数列。 第二章斐波那契数列的应用 人类很早就从自然界中看到了数学特征:蜜蜂的繁殖规律,树的分枝,钢琴音阶的排列以及花瓣对称排列在花托边缘、整个花朵几乎完美无缺地呈现出辐射对称状……,所有这一切向我们展示了许多美丽的数学模式。而对这些自然、社会以及生活中的许多现象的解释,最后往往都能归结到Fibonacci数列上来。

斐波那契数列在数学理论上有许多有趣的性质,不可思议的是在自然界中也存在着这个性质,似乎完全没有秩序的植物的纸条彼此相隔的距离或叶子的生长凡是,都被斐波那契数列支持着。 2.1 斐波那契数列与花朵的花瓣数 花瓣数是极有特征的。多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,百合花有3瓣花瓣,至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;万寿菊的花瓣有13瓣,更有趣的是,有一位学者细心地数过一朵花的花瓣,发现这朵花的花瓣刚好有157瓣。且他又发现其中有13瓣与其他144瓣有显著的不同,是特别长并卷曲向内,这表明这朵花的花瓣树木是由F1=13和F2=144合成的。 2.2 斐波那契数列与仙人掌的结构 在仙人掌的结构中有这一数列的特征。研究人员分析了仙人掌的形状、叶片厚度和一系列控制仙人掌情况的各种因素,并将所得数据输入电脑,结果发现仙人掌的Fibonacci数列结构特征能让仙人掌最大限度地减少能量消耗,适应其在干旱沙漠的生长环境。 2.3 斐波那契数列与向日葵种子排列方式 向日葵种子的排列方式,就是一种典型的数学模式。仔细观察向日葵花盘,你就会发现两组螺旋线,一组顺时针方向盘旋,另一组则逆时针方向盘旋,并且

人教B版高中数学必修5-2.3斐波那契数列的应用

斐波那契数列的应用 在期货应用技术分析时,大家知道黄金分割率的重要性,并能够举出大量例子证明其神奇的功能。事实上,自然界中,无数现象也在默默地展示菲波那奇数列的神奇规律。 一、从黄金分割到斐波那契 1、黄金分割早在古希腊时代,人们就已经认识到0.618的神奇,并将其称为黄金分割率。出于对这一数字的偏爱,它被应用到建筑和绘画等领域,从巴台农神庙到美国纽约众议院大楼,甚至基督十字架的分割比例也由它来定义,黄金分割率已经成为西方人追求外在美的内在规则。与此同时,人们也逐渐认识到黄金分割率广泛存在于自然界中,从花朵的图案、棕榈树的叶子到肚脐对人体的分割,几乎无处不在。 2、斐波那契数列在黄金分割被应用了很久以后,1202年斐波那契出版了一本名为《关于算盘的书》。书中,他用了一个简单的数学题提出了斐波那契数列的概念。问题是这样的:″假定每对家兔每月可繁殖两只小兔,并且每只家兔到两个月后就可以繁殖后代。那末,若开始时有一对家兔,经过一年的时间将繁殖多少只家兔?″问题的答案并不复杂,但由此了一个有趣的现象,即每月底的家兔数量将做如下变化:1、2、 3、5、8、13、21、3 4、5 5、89、144、233、……,该数列中每个数字均是前两个数字之和。这就是著名的斐波那契数列,将数列中每相邻两数的前者除以后者,其极限结果就是″黄金分割率″--0.618。这一数列的提出使我们对黄金分割的认识从静态走向动态,自然界的变化规律已经触手可及了。 二、从斐波那契到普遍性的增长和衰竭在技术分析的领域中,每一种价格的变动模式都对应着斐波那契数列的不同的表现。因此,下面就从应用的角度扩展数列的模型。 1、从自然增长到普遍增长在菲波那奇数列中,“1、1”的基点是数列的基础,但在现实世界中,基点“1、1”只是一种特殊的现象,如果将基点加以推广,就能构造出更加普遍的增长数列。例如:以4和7为基点进行推倒的增长数列就是不同于斐波那契数列的新数列,但最终极限值仍是0.618,只是基点不同形成了

小学数学《斐波那契数列课题》教学设计

《斐波那契数列的应用》课题设计 一、课题的确定: 孩子们小学六年学习了六年的数学,却从来没有想过为什么要学习数学,有的同学是认为学习数学是为了计算,而有的同学是认为学习数学是为了应用于生活,却从来没有亲身体会感受过数学的神奇,有没有一个课题能让学生感受到学习数学的目的,特别是让学生亲自体会感受一下数学的美,感受大自然的造物的神奇呢?我思考再三最终确定了研究课题《斐波那契数列的应用》。 二、课题的布置与指导: 《斐波那契数列的应用》是数学史上非常著名的一个数列,课本是作为一段阅读材料呈现的,以《兔子的繁殖》为例介绍了斐波那契数列的产生,我本节课确定的目标主要是通过研究让孩子们领略学习数学的目的,感受一下数学本身的魅力以及大自然造物的神奇。我是从四个方面来布置的课题研究任务:1、以《兔子的繁殖》为例,研究数列的产生,每个小组都要进行研究。前一天进行了布置,第二天我们就进行了交流汇报,孩子们研究的不错。于是又接着分组布置了任务:第一小组:从计算的角度研究斐波那契数列的秘密。第二三小组:从应用的角度出发,到大自然中到生活中去观察是否有斐波那契数列。孩子们真的是很善于思考,第二小组潘珂在爸爸领着去花棚里买花时,发现了花瓣里的斐波那契现象,而另一个同学惠鹏程却在住的小区里发现了植物叶序也存在着斐波那契现象。第三小组的费枫舒在和妈妈去超市买东西时看到了正在削菠萝的阿姨,产生了兴趣蹲在那一个多小时发现了菠萝里的斐波那契现象。而惠荣薪则是在一次上课快迟到了,大步流星的迈楼梯,突发奇想研究研究台阶的迈法,和她的小伙伴发现了楼梯里的斐波那契的秘密,组成了课题研究的第四小组。我把孩子们的研究情况进行了汇总,考虑到时间有限,最终确定了把数列的产生不纳入到本节课的汇报当中。 三、课堂实录: (一)、导入: 师:大家喜欢数学吗?问大家一个问题:我们天天在学习数学,那你知

斐波那契数列在一维搜索中的应用

Fibonacci数列在一维搜索中的应用 斐波那契数列: 斐波那契数列又称“斐波那契神奇数列”,是由13世纪的意大利数学家斐波那契提出的,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、34 、…… 这个数列从第三项开始,每一项都等于前两项之和。 即:如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) ∴F(n)=(1/ 即:F(n)= 111 22 n n ?? ???? +- ?? - ? ? ? ? ?? ???? ??

一维搜索: 在求无约束多维最优化问题时,通常时根据目标函数的特征,构造出一类逐次使目标函数值下降的搜索(迭代)算法,方法如下: 选择初始近似点()0X ,(当然,()0X 越靠近极小点越好),按照某种规则 确定一个方向(0)P ,从()0X 出发沿(0)P 方向求目标函数的最优解()1 X ,()2X ,。。。。。。。。设迭代中已得到()k X ,按同样的规则确定一个方向()k P ,从()k X 出发沿方向()k P 求目标函数()()k f X 在此方向上的最优解,即: ()()()()min ()()k k k k k f X P f X P λ λλ+=+ 得到新点 ()()()1k k k k X X P λ+=+ ,其中k λ称为最优步长。再从 ()1k X +出发,继续上述过程产生一个收敛于问题的最优解的点列{()k X }。在这个过程中要求我们去求解一系列单变量函数 ()()()()k k k F f X P λλ=+的极值问题,即一维搜索。 这种方法不仅对于解决一维极值问题本身很重要,而且它还是求解多维极值问题的重要组成部分。一维搜索的方法很多,一下介绍2种具有代表性的方法,这两种方法的第一步都要确定一个初始搜索区间。

中学数学-1(斐波那契数列)

内蒙古自治区中小学教师教育技术水平(初级)试卷 (试卷科目:中学数学) 第一部分:基本知识题(本部分共8个题,每题2.5分,满分20分) 第1题 (单选题)教育技术的本质特征是( C )。 (2.5分) A.运用技术手段去优化教育、教学过程,以提高教育、教学的效果、效率和效益的教学实践B.本题答案中所给出的其它3个选项都不对 C.运用技术手段去优化教育、教学过程,以提高教育、教学的效果、效率和效益的理论和实践D.运用技术手段去优化教育、教学过程,以提高教育、教学的效果、效率和效益的理论研究 第2题 (单选题)关于教学评价中收集数据的工具与方法,下列说法中不正确的是( D )。 (2.5分) A.形成性练习是教学评价中经常使用的方法 B.结构化观察是教学评价中经常使用的方法 C.总结性测验是教学评价中经常使用的方法 D.在教学评价中无需使用态度量表 第3题 (单选题)课程结束时进行期末考试,考试依据课程标准来确定试题范围,采用纸笔测验试卷评分的方式。就这一评价(考试)的类型,以下选项中不准确的一项是( B )。 (2.5分) A.它是一种定量评价 B.它是诊断性评价 C.它是总结性评价 D.它是一种绝对评价 第4题 (单选题)将认知领域的教学目标分为了解(识记)、理解、运用、分析、综合、评价六个层次的美国心理学家是( C )。 (2.5分) A.加涅 B.布鲁纳 C.布卢姆 D.奥苏贝尔 第5题 (单选题)"知识积累的关键因素是刺激、反应以及两者之间的联系",持这一观点的学习理论流派是( D )。 (2.5分) A.建构主义 B.认知主义 C.人本主义 D.行为主义 第6题 (单选题)根据您对教育技术及相关基础知识的理解,下例选项不正确的一项是( B )。 (2.5分) A.教学设计是运用系统方法分析教学问题和确定教学目标,建立解决教学问题的策略方案、试行解决方案、评价试行结果和对方案进行修改的过程 B.教育技术与信息技术的涵义是一样的,只是用不同的名词来表述而已 C.教育信息化是指在教育教学的各个领域中,积极开发充分应用信息技术和信息资源,以促进教育现代化,培养满足社会需求人才的过程 D.教育技术就是为了促进学习,对有关的学习过程和资源进行设计、开发、利用、管理和评价的理论与实践

斐波那契数列——汇编语言

datarea segment string1 db 'please input the number: ',13,10,'$' string2 db 13,10,'here is:',13,10,'$' Buffer db 4 db ? db 4 dup(?) number db ? mulfact db 1 fei db 254 dup(?) datarea ends codearea segment mainproc far assume cs:codearea,ds:datarea start: push ds sub ax,ax push ax mov ax,datarea mov ds,ax lea dx,string1 mov ah,09 int 21h lea dx,Buffer mov ah,0ah int 21h call convertnum mov al,number lea dx,string2 mov ah,09 int 21h call init ; mov al,Buffer+1 ; and ax,00ffh ; mov si,ax call outputfei ; mov fei[si+1],24h ; lea dx,fei ; mov ah,09 ; int 21h ret mainendp ;======================================= convertnum proc near push bx

mov si,Buffer[1] and si,00ffh mov cx,si mov mulfact,1 mov bx,0 Next: mov al,Buffer[si+1] ; cmp al,'0' ; js Exit ; cmp al,'9' ; ja Exit sub al,30h and ax,000fh mov dl,mulfact mul dl add bx,ax mov al,mulfact mov dl,10 mul dl mov mulfact,ax dec si loop Next mov number,bl pop bx ret convertnum endp ;================================== init proc near mov cx,al and cx,00ffh and ax,00ffh mov si,1 ; and si,00ffh mov fei+1,1 mov fei+2,1 loop1: sub cx,2 cmp si,cx jnb exit mov bl,0 add bl,fei[si] add bl,fei[si+1] mov fei[si+2],bl inc si

斐波那契与斐波那契数列

斐波那契与斐波那契数列(初一、初二、初三) (519015)广东省珠海市第四中学陈湘平斐波那契(Leonardo Fibonacci,约1170-约1250),12、13世纪欧洲数学界的代表人物,生于比萨的列奥纳多家族,是一位意大利海关设在南部非洲布吉亚的官员的儿子。早年在北非受教育,由于他父亲的工作,成年后曾到埃及、叙利亚、希腊西西里、法国等地游学,并拜访过各地著名的学者,也熟悉了各国在商业上的所用的算术体系,掌握了印度-阿拉伯的十进制系统,该系统具有位置值并使用了零的符号。斐波那契看到了这种美丽的印度-阿拉伯数字的价值,并积极提倡使用它们。1202年他写了《算盘书》一书(注:“算盘”指的是当时欧洲人用来计算的沙盘,而非中国的算盘),这是一本广博的工具书,其中说明了怎样应用印度-阿拉伯数字,以及如何用它们进行加、减、乘、除计算和解题。此外还对代数和几何进行了进一步的探讨。此外他还出版了《几何实习》等书,书中首次引用了阿拉伯数字,这对当时盛行的罗马数字来讲也是一种挑战。后来人们通过对阿拉伯数字的不断接触,加上斐波那契和其他数学家的工作,终于使印度-阿拉伯数字系统被慢慢地接受,并得以推广。 很有意思的是,斐波那契在今天的出名,是缘于一个数列,而这个数列则来自于他的《算盘书》中一道并不出名的问题。他当时写这道题只是考虑作为一个智力练习。然而,到了19世纪,法国数学家E.

卢卡斯出版了一部四卷本的有关娱乐数学方面的著作时,才把斐波那契的名字,加到该问题的解答和所出现的数列上去。 《算盘书》中“兔子问题”,题目假定一对大兔子(一雌一雄)每一个月可以生一对小兔子(一雌一雄),而小兔子出生后两个月就有生育能力,问从一对小兔子开始,一年后能繁殖成多少对兔子?”由此引出了一个重要的数列――“斐波那契数列”:1,1,2,3,5,8,13,21,…,其规律是每一项(从第3项起)都是前两项的和。 斐波那契用顺推的办法解算如下: 第一个月:只有一对小兔。 第二个月:小兔尚未成熟,仍然是一对兔子。 第三个月:这对兔子生了一对小兔,这时共有兔子两对。 第四个月:原来的兔子又生了一对小兔,但上月出生的小兔仍未成熟,这样小兔共有三对。 ………… 如此分析下去,可以得到一年后的兔子数为144对。 上面顺推的办法着实有点笨,下面我们换一种思路推推看,我们容易发现: 从第三个月起兔子可以分为两类:一类是上个月的兔子,一类是当月新生的兔子,而这些兔子的对数恰好等于前两个月时的兔子对数,因为那个月份的的兔子在该月均能生小兔,这就是说:从第三个月起每月兔子数均为前两个月(上月和上上月)的兔子对数之和。这样一、二、三……诸月兔子数依次为:

相关主题
文本预览
相关文档 最新文档