当前位置:文档之家› 金属塑性成形的有限元模拟技术及应用(谢水生,李雷著)思维导图

金属塑性成形的有限元模拟技术及应用(谢水生,李雷著)思维导图

有限元仿真技术的发展及其应用

有限元仿真技术的发展及其应用 许荣昌 孙会朝(技术研发中心) 摘 要:介绍了目前常用的大型有限元分析软件的现状与发展,对其各自的优势进行了分析,简述了有限元软件在冶金生产过程中的主要应用领域及其发展趋势,对仿真技术在莱钢的应用进行了展望。 关键词:有限元仿真 冶金生产 发展趋势 0 前言 自主创新,方法先行,创新方法是自主创新的根本之源,同时,随着市场竞争的日益激烈,冶金企业的产品设计、工艺优化也由经验试错型向精益研发方向发展,而有限元仿真技术正是这种重要的创新方法。近年来随着计算机运行速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的应用,比如,有限元分析在冶金、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域正在发挥着重要的作用,主要表现在以下几个方面:增加产品和工程的可靠性;在产品的设计阶段发现潜在的问题;经过分析计算,采用优化设计方案,降低原材料成本;缩短产品研发时间;模拟试验方案,减少试验次数,从而减少试验成本。与传统设计相比,利用仿真技术,可以变经验设计为科学设计、变实测手段为仿真手段、变规范标准为分析标准、变传统分析技术为现代的计算机仿真分析技术,从而提高产品质量、缩短新产品开发周期、降低产品整体成本、增强产品系统可靠性,也就是增强创新能力、应变能力和竞争力(如图1、2) 。 图1 传统创新产品(工艺优化)设计过程为大循环 作者简介:许荣昌(1971-),男,1994年毕业于武汉钢铁学院钢铁冶金专业,博士,高级工程师。主要从事钢铁工艺技术研究工 作。 图2 现代CA E 创新产品(工艺优化)设计过程为小循环 1 主要有限元分析软件简介 目前,根据市场需求相继出现了各种类型的应用软件,其中NASTRAN 、ADI N A 、ANSYS 、 ABAQUS 、MARC 、MAGSOFT 、COS MOS 等功能强大的CAE 软件应用广泛,为实际工程中解决复杂的理论计算提供了非常有力的工具。但是,各种软件均有各自的优势,其应用领域也不尽相同。本文将就有限元的应用范围及当今国际国内C AE 软件的发展趋势做具体的阐述,并对与冶金企业生产过程密切相关的主要有限元软件ANSYS 、AB AQUS 、MARC 的应用领域进行分析。 M SC So ft w are 公司创建于1963年,总部设在美国洛杉矶,M SC M arc 是M SC Soft w are 公司于1999年收购的MARC 公司的产品。MARC 公司始创于1967年,是全球首家非线性有限元软件公司。经过三十余年的发展,MARC 软件得到学术界和工业界的大力推崇和广泛应用,建立了它在全球非线性有限元软件行业的领导者地位。随着M arc 软件功能的不断扩展,软件的应用领域也从开发初期的核电行业迅速扩展到航空、航天、汽车、造船、铁 道、石油化工、能源、电子元件、机械制造、材料工程、土木建筑、医疗器材、冶金工艺和家用电器等,成为许多知名公司和研究机构研发新产品和新技术的重要工具。在航空业M SC N astran 软件被美国联邦航空管理局(F AA )认证为领取飞行器适 13

板料成形中有限元模拟技术的应用

板料成形中有限元模拟技术的应用 衡 猛 周建忠 (江苏大学机械工程学院,江苏镇江212013) 摘要:使用传统的靠经验和反复修模试模的方法研发模具,不仅难以掌握板料成形的真实过 程,而且会造成人、财、物、时的浪费。将有限元技术引入冲压成形模拟中是解决这一问题行之有效的方法,对板料冲压成形模拟进行了讨论,并重点介绍了Dynaform 软件的应用。 关键词:有限元模拟;Dynaform ;板料成形;汽车覆盖件模具 汽车工业是国民经济的重要产业之一,而覆盖件的研发周期长是阻碍新车型尽快推向市场的重要瓶颈。目前覆盖件及模具的设计制造工艺、先进装备及CAD/CAM 的应用已取得了重要进展,缩短了设计制造周期、提高了产品的质量、减轻了劳动强度,但CAE 的发展略显滞后。从模具开发的整个过程来看,设计初期的模具工艺结构、冲压工艺参数的合理选择,能有效地减少调试修模工作量,缩短了开发周期,降低模具成本。因而,推广应用CAE 技术,研究板料冲压的仿真成形是摆在覆盖件及模具行业 收稿日期:2003-10-23 第一作者简介:衡猛,男,1979年生,硕士研究生。 面前的重要课题。 1 板料冲压成形模拟的发展[1~4] 板料成形数值模拟研究始于20世纪60年代,之前人们主要用试验分析的方法了解塑性成形的性能,为设计提供依据。在20世纪70年代中期到80年代中期,主要是建立一些简单的有限元分析模型和应用,包括二维平面问题和轴对称问题,这阶段大多采用薄膜单元。20世纪80年代中后期开始三维板料成形分析研究,各种板壳单元被应用于成形分析。1973年,Kabayashi 采用刚塑性有限元法模拟了板料冲压成形过程。1976年,Weifi 用弹塑性有限元法模拟圆形板料在半球形凸模作用下的胀形和 最终,以该零件凹模为例,根据LOM 原型翻制的硅胶模、砂型以及熔射并补强后的凹模(表面硬度50~55HRC )如图15~17所示 。 图15 硅胶模—凹模 图16 砂型— 凹模 图17 带不锈钢壳层的硬模—凹模 3 结束语 采用与快速原型相结合的等离子熔射快速制造金属硬模新技术,成功地在短时间内制造出表面具有高耐磨性、高硬度的不锈钢模具。实践证明,该技术在制模周期、成本、模具精度和模具寿命几个关联因素中找到了一个很好的结合点,能满足当前汽车工业车型变化极快,换型时间短的需要。 后续试冲压结果表明,冲压成形有限元模拟对于冲压模具设计有良好的指导作用,采用LOM 制作原型有良好的复型性。参考文献: [1] 张海鸥.金属模具快速制造技术,电加工与模具,2002(2):6~9[2] 王伊卿,朱东波,卢秉恒.电弧喷涂制造汽车覆盖件模具,模具 工业,2001(9):41~44 [3] 徐达,宋玉华,张人佶,等.基于快速成形技术的汽车覆盖件金 属模具制造.清华大学学报(自然科学版),2000,40(5):1~5 设计?研究 《电加工与模具》2004年第2期

弹塑性力学总结汇编

弹塑性力学总结 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。通过一学期的弹塑性力学的学习,对其内容总结如下: 一、弹性力学 1、弹性力学的基本假定 求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。

在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。 (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。 (3)假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。 (4)假设物体是各向同性的。也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。 (5)假设物体的变形是微小的。即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。这样,在考虑物体变形以后的平衡状态时,可以用变

有限元与数值方法-讲稿19 弹塑性增量有限元分析课件

材料非线性问题有限元方法 教学要求和内容 1.掌握弹塑性本构关系和塑性力学的基本法则; 2.掌握弹塑性增量分析的有限元格式; 3.学习常用非线性方程组的求解方法: (1)直接迭代法; (2) Newton-Raphson 方法,修正的N-R 方法; (3)增量法等。 请大家预习,争取对相关内容有大概的了解和把握。

弹塑性增量有限元分析 一.材料弹塑性行为的描述 弹塑性材料进入塑性的特点:存在 不可恢复的塑性变形; 卸载时:非线性弹性材料按原路径 卸载; 弹塑性材料按不同的路径卸载,并 且有残余应变,称为塑性应变。

1.单向加载 1) 弹性阶段: 卸载时不留下残余变形; 2) 初始屈服:s σσ= 3) 强化阶段:超过初始屈服之后,按弹性规律卸载,再加载弹性范 围扩大:ss σσ'>,s σ'为相继屈服应力。

4) 鲍氏现象(Bauschinger ): 二.塑性力学的基本法则 1.初始屈服准则: 00(,)0ij F k σ= 已经建立了多种屈服准则: (1) V . Mises 准则:000(,)()0ij ij F k f k σσ=-= 2 2 001 1 ()(),()2 3ij ij ij s f s s J k σσ===第二应力不变量1122221 ,() 3 ij ij ij m m s σδσσσσσ=-=++偏应力张量:平均应力: (2) Tresca 准则(最大剪应力准则): 0max ()0ij s F S ττ=-=

2.流动法则 V . Mises 流动法则: 0(,)()ij ij p ij ij ij F k f d d d σσελ λ σσ??==??, 0d λ> 待定有限量 塑性应变增量 p ij d ε 沿屈服面当前应力点的法线方向增加。 因此,称为法向流动法则。 3.硬化法则: (1)各向同性硬化:(,)()0ij ij F k f k σσ=-=

弹塑性力学有限单元法-交通运输工程学院-中南大学

中南大学2014年博士研究生入学考试 《弹塑性力学有限单元法》考试大纲 本考试大纲由交通运输工程学院教授委员会于2013年7月通过。 I.考试性质 弹塑性力学有限单元法是我校“载运工具运用工程”专业博士生入学考试的专业基础课,它是为我校招收本专业博士生而实施的具有选拔功能的水平考试;其目的是科学、公平、有效地测试考生掌握弹性力学、塑性力学及有限单元数值方法课程的基本知识、基本理论,以及相关理论和方法分析解决实际问题的能力;评价的标准是高等学校优秀硕士毕业生能达到的及格或及格以上水平,以保证被录取者能较好的掌握了本专业必备的基础知识。 II.考查目标 弹塑性力学有限单元法课程考试弹性力学、塑性力学及有限单元数值方法等内容,重点在检查力学基本概念与基本方法的掌握和应用,难度适中,覆盖主要章节,能区分学生优劣层次。要求考生:(1)掌握弹塑性力学的基本知识、结构有限元分析的基本方法和过程,要求学生具备使用有限元方法进行车辆结构强度分析的能力。 Ⅲ.考试形式和试卷结构 1、试卷满分及考试时间 本试卷满分为100 分,考试时间为180 分钟 2、答题方式 答题方式为闭卷,笔试。 3、试卷内容结构 弹性力学约30 % 30 有限单元法约50 % 50

塑性力学基本理论约20 % 20 Ⅳ.考查内容 1. 弹性力学 (1)掌握弹性力学问题基本方程及边界条件。 (2)掌握应力理论及变形理论、二阶张量的坐标转换; (3)掌握使用位移法和应力法求解弹性力学问题; (4)掌握使用半逆解法求解简单平面问题; 2. 有限单元法 (1)掌握有限元方法的基本概念; (2)掌握平面、空间及等参单元分析的过程 (3)掌握有限单元位移模式的选取、刚度矩阵数值积分方法;(4)掌握结构刚度矩阵性质、边界条件处理; (5)掌握薄板弯曲问题有限元分析方法; (6)掌握车辆典型结构有限元分析的步骤和处理技巧; 3. 塑性力学 (1)掌握塑性力学的基本概念; (2)掌握Tresca和Mises屈服条件; (3)掌握几种常用的弹塑性力学模型; (4)掌握应力空间和屈服曲面的概念、加载曲面和塑性流动法则;

有限元分析及应用大作业

有限元分析及应用大作业 作业要求: 1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 也可根据自己科研工作给出计算实例。 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界 条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的 影响分析、不同网格划分方案对结果的影响分析等) 题一:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(注意ANSYS中用四边形单元退化为三节点三角形单元) 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 解:1.建模: 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作

用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况P=98000-9800*Y;建立几何模型,进行求解;假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3; 2:有限元建模过程: 2.1 进入ANSYS : 程序→ANSYS APDL 15.0 2.2设置计算类型: ANSYS Main Menu: Preferences →select Structural →OK 2.3选择单元类型: ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 182(三节点常应变单元选择Solid Quad 4node 182,六节点三角形单元选择Solid Quad 8node 183)→OK (back to Element Types window) →Option →select K3: Plane Strain →OK→Close (the Element Type window) 2.4定义材料参数: ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 →OK 2.5生成几何模型: 生成特征点: ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS →依次输入四个点的坐标:input:1(0,0),2(10,0),3(1,5),4(0.45,5) →OK 生成坝体截面: ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接四个特征点,1(0,0),2(6,0),3(0,10) →OK 2.6 网格划分: ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条直角边:OK→input NDIV: 15 →Apply→依次拾取斜边:OK →input NDIV: 20 →OK →(back to the mesh tool window)Mesh:Areas, Shape: tri, Mapped →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window) 2.7 模型施加约束: 给底边施加x和y方向的约束: ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On lines →pick the lines →OK →select Lab2:UX, UY →OK 给竖直边施加y方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数: 98000-9800*{Y};3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file:将需要的.func文件打开,参数名取meng,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取竖直边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷为meng参数名→OK 2.8 分析计算: ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load

有限元分析材料塑性

有限元分析材料塑性 篇一:塑性成形有限元分析 贵州师范大学 《塑性成形有限元分析》 课程期末考查 学年第学期 学院:机电学院专业:材料成型及控制工程姓名:谭世波学号:111404010056科目:dEFoRm-3d塑性成形caE应用教程日期:20XX 年1月3日 塑性成形有限元分析 20XX级材料成型与控制工程 (谭世波111404010056) 摘要:本文主要是在dEFoRm-3d软件上模拟圆柱形毛坯的墩粗成型,对零件 进行有限元模拟分析。 引言:何为有限元模拟分析?如何完成一个墩粗的模拟 分析,运用dEFoRm-3d对毛坯进行分析的目的。 模拟直径为50mm,高度60mm的钢棒的镦粗成形工艺,工艺工序参数如下: (1)几何体与工具采用整体分析;(2)单位:公制

(3)材料:aiSi-1045(4)温度:20℃ (5)上模移动速度:2mm/s(6)模具行程:10mm; 模拟过程:先用UG画出钢棒的三维模型,导出为STL格 式。 1.在dEFoRm-3d软件中进行模拟分析,打开软件创建 一个新的问题。 2.设置模拟控制 3.设置材料基本属性 篇二:塑性成形有限元分析考查题目 《塑性成形有限元分析》课程期末考查试题 (20XX级材料成型与控制工程) 下面试题二选一,上交时间:20XX年1月5日上午9:00。 1、请模拟直径为50mm,高度60mm的钢棒的镦粗成形工序,工艺参数如下: (1)几何体与工具采用整体分析; (2)单位:公制 (3)材料:aiSi-1045 (4)温度:20℃ (5)上模移动速度:2mm/s (6)模具行程:10mm; 按照论文的格式撰写研究报告(打印),描述模拟过程,并详细解读分析模拟结果(注:交报告时带上演示模拟结果)。

塑性成形过程中的有限元法

塑性成形过程中的有限元法 金属塑性成形技术是现代化制造业中金属加工的重要方法之一。它是金属材料在模具和锻压设备作用下发生变形,获得所需要求的形状、尺寸和性能的制件的加工过程。金属成形件在汽车、飞机仪表、机械设备等产品的零部件中占有相当大的比例。由于其具有生产效率高,生产费用低的特点,适合于大批量生产,是现代高速发展的制造业的重要成形工艺。据统计,在发达国家中,金属塑性成形件的产值在国民经济中的比重居行业之首,在我国也占有相当大的比例。 随着现代制造业的高速发展,对塑性成形工艺分析和模具设计方面提出了更高的要求。若工艺分析不完善、模具设计不合理或材料选择不当,则会造成产品达不到质量要求,造成大量的次品和废品,增加了模具的设计制造时间和费用。为了防止缺陷的产生,以提高产品质量,降低产品成本,国内外许多大公司企业及大专院校和研究机构对塑性成形件的性能、成形过程中的应力应变分布及变化规律进行了大量的理论分析、实验研究与数值计算,力图发现各种制件、产品成形工艺所遵循的共同规律以及力学失效所反映的共同特征。由于塑性成形工艺影响因素甚多,有些因素如摩擦与润滑、变形过程中材料的本构关系等机理尚未被人们完全认识和掌握,因而到目前为止还未能对各种材料各种形状的制件成形过程作出准确的定量判定。正因为大变形机理非常复杂,使得塑性成形研究领域一直成为一个充满挑战和机遇的领域。 一般来说,产品研究与开发的目标之一就是确定生产高质量产品的优化准则,而不同的产品要求不同的优化准则,建立适当的优化准则需要对产品制造过程的全面了解。如果不掌握诸如摩擦条件、材料性能、工件几何形状、成形力等工艺参数对成形过程的影响,就不可能正确地设计模具和选择加工设备,更无法预测和防止缺陷的生成。在传统工艺分析和模具设计中,主要还是依靠工程类比和设计经验,经过反复试模修模,调整工艺参数以期望消除成形过程中的产品缺陷如失稳起皱、充填不满、局部破裂等。仅仅依靠类比和传统的经验工艺分析和模具设计方法已无法满足高速发展的现代金属加工工业的要求。因此,现代金属成形工艺分析过程中,建立适当的“过程模拟”非常重要。随着计算机技术的发展,人们已经认识到数值模拟在金属成形工程中的重要价值,这一领域已成为现代国内外学者的研究热点。 应用塑性成形的数值模拟方法主要有上限法(Upper Bound Method)、边界元法(Boundary Element Method)和有限元法(Finite Element Method)。上限元法常用于分析较为简单的准稳态变形问题;而边界元法主要用于模具设计分析和温度计算。对于大变形的体积成形和板料成形,变形过程常呈非稳态,形状、边界、材料性质等都会发生很大的变化,有限元法可由实验和理论方法给出的本构关系、边界条件、摩擦关系式,按变分原理推导出场方程,根据离散技术建立计算模型,从而实现对复杂成形问题进行数值模拟。分析成形过程中的应力应变分布及其变化规律,由此提供较为可靠的主要成形工艺参数。因此基于有限元法的塑性成形数值模拟技术是当前国际上极具发展潜力的成形技术前沿研究课题之一。 正确设计和控制金属塑性成形过程的前提条件是充分掌握金属流动、应力应变状态、热传导、润滑、加热与冷却及模具结构设计等方面的知识。任何分析方法都是为工程技术人员服务的,其目的是帮助工程技术人员掌握金属流动过程中应力应变状态等方面知识,一个好的分析方法至少应包括以下几个功能: (1)在未变形体(毛坯)与变形体(产品)之间建立运动学关系,预测金属塑性成形过程中的金属流动规律,其中包括应力应变场量变化、温度变化及热传导等。 (2)计算金属塑性成形极限,即保证金属材料在塑性变形过程中不产生任何表面及内部缺陷的最大变形量可能性。 (3)预测金属塑性成形过程得以顺利进行所需的成形力及能量,为正确选择加工设备和进行模具设计提供依据。 当前,有限元法已成为分析和研究金属塑性成形问题的最重要的数值分析方法之一,它具有以下优点:(1)由于单元形状具有多样性,有限元法使用与任何材料模型,任意的边界条件,任意的结构形状,在原则上一般不会发生处理上的困难。金属材料的塑性加工过程,均可以利用有限元法进行分析,而其它的数值

有限元仿真技术的发展及其应用

有限元仿真技术的发展及其应用 许荣昌 孙会朝 (技术研发中心) 摘 要:介绍了目前常用的大型有限元分析软件的现状与发展,对其各自的优势进行了分析,简述了有限元软件在冶金生产过程中的主要应用领域及其发展趋势,对仿真技术在莱钢的应用进行了展望。 关键词:有限元仿真 冶金生产 发展趋势 0 前言 自主创新,方法先行,创新方法是自主创新的根本之源,同时,随着市场竞争的日益激烈,冶金企业的产品设计、工艺优化也由经验试错型向精益研发方向发展,而有限元仿真技术正是这种重要的创新方法。近年来随着计算机运行速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的应用,比如,有限元分析在冶金、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域正在发挥着重要的作用,主要表现在以下几个方面:增加产品和工程的可靠性;在产品的设计阶段发现潜在的问题;经过分析计算,采用优化设计方案,降低原材料成本;缩短产品研发时间;模拟试验方案,减少试验次数,从而减少试验成本。与传统设计相比,利用仿真技术,可以变经验设计为科学设计、变实测手段为仿真手段、变规范标准为分析标准、变传统分析技术为现代的计算机仿真分析技术,从而提高产品质量、缩短新产品开发周期、降低产品整体成本、增强产品系统可靠性,也就是增强创新能力、应变能力和竞争力(如图1、2) 。 图1 传统创新产品(工艺优化)设计过程为大循环 作者简介:许荣昌(1971-),男,1994年毕业于武汉钢铁学院钢铁冶金专业,博士,高级工程师。主要从事钢铁工艺技术研究工 作。 图2 现代CAE 创新产品(工艺优化)设计过程为小循环 1 主要有限元分析软件简介 目前,根据市场需求相继出现了各种类型的应用软件,其中NAST RAN 、AD I N A 、ANSYS 、ABAQUS 、MARC 、MAGS OFT 、COS MOS 等功能强大的CAE 软件应用广泛,为实际工程中解决复杂的理论计算提供了非常有力的工具。但是,各种软件均有各自的优势,其应用领域也不尽相同。本文将就有限元的应用范围及当今国际国内CAE 软件的发展趋势做具体的阐述,并对与冶金企业生产过程密切相关的主要有限元软件ANSYS 、ABAQUS 、MARC 的应用领域进行分析。 MSC 1Soft w are 公司创建于1963年,总部设在美国洛杉矶,MSC 1Marc 是MSC 1Soft w are 公司于1999年收购的MARC 公司的产品。MARC 公司始创于1967年,是全球首家非线性有限元软件公司。经过三十余年的发展,MARC 软件得到学术界和工业界的大力推崇和广泛应用,建立了它在全球非线性有限元软件行业的领导者地位。随着Marc 软件功能的不断扩展,软件的应用领域也从开发初期的核电行业迅速扩展到航空、航天、汽车、造船、铁道、石油化工、能源、电子元件、机械制造、材料工程、土木建筑、医疗器材、冶金工艺和家用电器等,成为许多知名公司和研究机构研发新产品和新技术的重要工具。在航空业MSC 1Nastran 软件被美国联邦航空管理局(F AA )认证为领取飞行器适 3 1

弹塑性有限元方法

第三章 弹塑性有限元方法的实施 §3.1 增量平衡方程和切线刚度矩阵 1、 分段线性化的求解思想 塑性变形的特点决定了塑性本构关系的非线性和多值性,上面由塑性增量理论给 出了塑性应力—应变关系{}{}ep d D d σε=???? 其中 [][] {}{}[]{}[]{} T ep T F F D D D D F F A D σσ σ σ ????=- ??+ ?????? 说明当前应力状态不仅与当前应变有关,而且和达到这一变形状态的路径(加载历史)有关。这里包含了屈服准则、强化条件和加卸载准则。 由此,对物理非线性问题,通常采用分段线性化的纯增量法和逐次迭代的方法求解。即将加载过程分成若干个增量步,选择其中任意一个增量步建立它的增量平衡方程并求解,对整个过程的求解有普遍意义。 2、 增量平衡方程和切线刚度矩阵 设t 时刻(加载至i -1步终),结构(单元)在当前载荷(广义体力{}v f 和表面力{}s f ) 的作用下处于平衡状态,此时物体内一点的应力、应变状态为{}{}σε、。在此基础上,施加一个载荷增量{}{}v s f f ??和,即从t t t →+?时刻,则在体内必然引起一个位移增量{}u ?和相应的{}σ?、{}ε?,只要{}{}v s f f ??和足够小,就有{}{}ep D σε?=?????。 倘若初始状态{}σ已知,加载过程已知,则ep D ????可以确定(即p ij d ε?可以确定,然后 可在硬化曲线上得到1p ε所对应的硬化系数)于是上面的方程成为线性的。在t t t →+?这一增量过程中,应用于虚功原理可得到如下虚功方程: ()()()0e e T T T V V s s V S f f u dV f f u dS σσδεδδ??+?-+??-+??=?? ?? (1) 根据小变形几何关系u N q B q ε?=??=?和,再由虚位移()q δ?的任意性,并设 ()()e e T T v v s s V S P P N f f dV N f f dS +?= +?+ +?? ? ,展开后,其中单元在t 时刻载荷等效节点 力:e e T T v s V S P N f dV N f dS = + ? ? ;t ?内增量载荷的等效力e e T T v s V S P N f dV N f dS ?= ?+ ?? ? 。

有限元分析技术的应用

计算机辅助分析 题目:有限元分析技术的应用 学院:机电工程学院 专业:机械设计制造及其自动化 班级: 姓名: 学号: 年月日

有限元分析技术的应用 摘要 有限元单元法,简称有限元法,是伴随着电子计算机技术的进步而发展起来 的一种新兴数值分析方法,是力学、应用数学与现代计算技术相结合的产物。有 限元法是一种高效能、常用的计算方法。本文主要讲述了有限元的特点、作用、 基本思想、分析步骤,以及有限元的应用,除此之外,也对有限元的应用软件进 和有限元的发展趋势行了简单介绍。 关键词:有限元法,基本思想,应用软件,发展趋势 The application of finite element analysis technology Summary The finite element method, finite element method, is accompanied by advances in computer technology and the development of a new numerical analysis method, is a product of mechanics, applied mathematics and modern technology combine. The finite element method is an efficient computing method, commonly used. This paper mainly describes the characteristics, finite element function, basic thought, analysis steps, and the application of finite element method, in addition, also do a simple introduction on the application software of finite element and finite element development trend. Keywords: finite element method, the basic idea, application, development trend

弹塑性有限元法与刚塑性有限元法

弹塑性有限元法与刚塑性有限元法 板料成形数值模拟涉及到连续介质力学中材料非线性、几何非线性、边界条件非线性三非线性问题的计算,难度很大。随着非线性连续介质力学理论、有限元方法和计算机技术的发展,通过高精度的数值计算来模拟板料成形过程已成为可能。从70年代后期开始,经过近二十年的发展,板料成形数值模拟逐渐走向成熟,并开始在汽车、飞机等工业领域得到实际应用。 本文评述了板料成形数值模拟的发展历史和最新进展,并指出了该领域的发展趋势。 1、板料成形的典型成形过程、物理过程与力学模型 典型成形过程 板料成形的具体过程多种多样,在模拟分析时,可归纳成如图1所示的典型成形过程。成形时,冲头在压力机的作用下向下运动,给板料一个作用压力,板料因此产生运动与变形。同时,冲头、压力圈和凹模按一定方式共同约束板料的运动与变形,从而获得所要求的形状与尺寸。 物理过程 板料成形的物理过程包括模具与板料间的接触与摩擦;由于金属的塑性变形而导致的加工硬化和各向异性化;加工中可能产生的皱曲、微裂纹与破裂及由于卸载而在零件中产生回弹。 力学模型 板料成形过程可归纳成如下的力学问题:

给定冲头位移、凹模位移及压边圈历程函数,求出板料的位移历程函数,使其满足运动方程、初始条件、边界条件、本构关系及接触摩擦条件。 2板料成形数值模拟的发展历史 塑性有限元方法的发展 根据材料的本构关系,用于板料成形分析的非线性有限元法大体上分为刚-(粘)塑性与弹-(粘)塑性两类。 粘塑性有限元法很早就在板料成形分析中应用过,只是未能推广。事实上,粘塑性有限元法适用于热加工。在热加工时,应变硬化效应不显著,材料形变对变形速率有较大敏感性。

刚粘塑性有限元法的基本原理

第二章 刚粘塑性有限元法的基本原理 在金属塑性成形过程中,对于大多数体积成形的问题,弹性变形量相对非弹性变形量来说很小,一般情况下是可以忽略不计的,也就是说可以将材料视为刚(粘)塑性材料。本章主要介绍刚粘塑性有限元法的理论基础,基于等效积分形式的虚功原理以及泛函变分法。 2.1刚粘塑性材料流动的基本方程 设变形体的体积为V ,在V 内给定体力i p ;表面积为S ,在S 的一部分力面t S 上给定面力i q ,在S 的另一部分速度(位移)面V S 上给定速度o i v ,则材料在流动过程中满足下列力学基本方程 1.力平衡方程 0,=+i j ij p σ (2.1) 2.力边界条件 即在t S 上 i j ij q n =σ (2.2) 3.几何方程 )(2 1,,i j j i ij v v +=ε (2.3) 4.速度边界条件 即在V S 上 0i i v v = (2.4) 5.体积不可压缩方程 0==ij ij v εδε (2.5) 6.屈服准则 采用Misers 屈服准则和等向强化模型,初始屈服准则为 0=-s σσ (2.6) 后继屈服条件,对于静态加载只考虑应变强化 )(,0? ==-εσd H K K (2.7) 式中H 可以由单向拉伸试验曲线确定。 对于粘塑性材料,加载还应考虑时间因素即变形速度的影响,瞬时屈服条件为 ),(,0ε εσ Y Y Y ==- (2.8) 式中Y 可以由一维动力试验确定。 7. 本构关系 对于粘塑性材料的本构关系将在下一章作详细的讨论。

通常我们把满足上述所有基本方程的应力场、应变率场、速度场称为真实应力场、应变率场、速度场。满足方程1、2、6即满足应力平衡方程,应力边界条件和屈服条件的应力场称为静力许可应力场;满足3、4、5的速度场称为运动许可速度场。 利用上述方程和边界条件,变形体在塑性成形时的场变量从理论上是可以求解的,但实际上很困难,只有在少数几种简单情况下才能求出较准确的解析解。对于大多数情况利用传统的解析方法如主应力法、滑移线法等往往需要对实际的问题进行简化,难以获得满意的计算结果。而塑性加工中的有限元法借助于虚功原理或变分法,采用离散化的方法将变形体进行离散,可以根据实际工程的需要得到较为满意的结果。下面着重阐述塑性加工有限元的基础,基于等效积分形式的近似方法:虚功原理和变分法。 2.2虚功原理 变形体的虚功原理可以叙述如下:变形体中满足平衡的力系在任意满足协调条件的变形状态上作的虚功等于零,即体系外力的虚功与内力的虚功之和等于零。 虚功原理是虚位移(功率)原理和虚应力(率)原理的总称,它们都是与某些控制方程相等效的积分“弱”形式,虚位移(功率)原理是平衡方程和力的边界条件的等效积分“弱”形式;虚应力原理则是几何方程和位移(速度)边界条件的等效积分“弱”形式。下面来推导虚功率原理。 首先考虑平衡方程 0,=+i j ij p σ (2.9) 以及力的边界条件 i j ij q n =σ (2.10) 我们可以采用相应的方法建立与他们等效的积分形式,在这里权函数不失一般地取速度的变分i v δ及其边界值(取负值)。这样就可得到上面两式的等效积分形式 0)()(,=--+??ds q n v dv p v i j ij s i i j ij i v t σδσδ (2.11) 对上式体积分中的第一项进行积分,并注意到应力张量是对称张量,以及由于i v δ是速度的变分,因而有在速度边界上0=i v δ,再考虑体积内部满足几何方程,则可以得到 ds n v dv dv v j ij s i ij v ij j ij v i t σδσεδσδ???+-= , (2.12) 将上式代入(2.11)式,就得到经分部积分后的“弱”形式虚功率方程 0=++-???ds q v dv p v dv i s i i v i ij v ij t δδσεδ (2.13) 上式第一项是变形体内应力在虚应变率上所作之功,即内力虚功率;第二、第三项分别为体积力、面力所作的虚功率。外力和内力的虚功率和为零。这就是虚功率原理。 应当指出虚功率原理是力系平衡的必要和充分条件。还应指出的是,在推导虚功效率方程时,并未涉及物理方程(应力—应变率)关系,所以虚功率方程不仅可以用于线弹性问题,而且还可用于非线性问题。所以虚功方程是建立塑性加工过程中有限元法的一个重要工具。

最新有限元分析及其应用思考题附答案

有限元分析及其应用-2010 思考题: 有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什么?是如何将无限自由度问题转化为有限自由度问题的? 答:基本思想:几何离散和分片插值。 基本步骤:结构离散、单元分析和整体分析。 离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。 有限元法与经典的差分法、里兹法有何区别? 区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低; 里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解; 有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试 建立其受拉伸的微分方程及边界条件; 构造其泛函形式; 基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。 以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩阵)。什么是节点力和节点载荷?两者有何区别? 答:节点力:单元与单元之间通过节点相互作用 节点载荷:作用于节点上的外载 单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自由度和节点解释)? 答:单元刚度矩阵:对称性、奇异性、主对角线恒为正 整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。 Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。 单元的形函数具有什么特点?有哪些性质? 答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。 形函数Ni在i节点的值为1,而在其他节点上的值为0; 单元内任一点的形函数之和恒等于1; 形函数的值在0~1间变化。 描述弹性体的基本变量是什么?基本方程有哪些组成? 答:基本变量:外力、应力、应变、位移 基本方程:平衡方程、几何方程、物理方程、几何条件 何谓应力、应变、位移的概念?应力与强度是什么关系? 答:应力:lim△Q/△A=S △A→0 应变:物体形状的改变 位移:弹性体内质点位置的变化 问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么? 答:强弱的区分在于是否完全满足物理模型的条件。所谓强形式,是指由于物理模型的复杂

ANSYS弹塑性分析教程

弹塑性分析 在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面: ? 什么是塑性 ? 塑性理论简介 ? ANSYS 程序中所用的性选项 ? 怎样使用塑性 ? 塑性分析练习题 什么是塑性 塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也 就 是说,当 移 走 载 荷 时,其应变也完全消失。 由于屈服点和比例极限相差很小,因此在ANSYS 程序中,假定它们相同。在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 率相关性: 塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性,但在大多数静 力分 析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力(P A )与工程应变(?l l ),也可 能是真实应力(P/A )与真实应变( n L l l ()0 ) 。 大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。 什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。而屈服应力本身可能是下列某个参数的函数。 ? 温度 ? 应变率 ? 以前的应变历史 ? 侧限压力 ? 其它参数 塑性理论介绍 在这一章中,我们将依次介绍塑性的三个主要方面: ? 屈服准则 ? 流动准则 ? 强化准则 屈服准则: 对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。 屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示。因此,知道了应力状态和屈服准则,程序就能确定是否有塑性应变产生。 屈服准则的值有时候也叫作等效应力,一个通用的屈服准则是Von Mises 屈服准则,当等效应力超过材料的屈服应力时,将会发生塑性变形。 可以在主应力空间中画出Mises 屈服准则,见 图3-1。 在3-D 中,屈服面是一个以 1 2 3 σσσ ==为轴的圆柱面,在2-D 中,屈服面是一个椭圆,在屈服面内部的任 何应力状态,都是弹性的,屈服面外部的任

相关主题
文本预览
相关文档 最新文档