当前位置:文档之家› 生化重点(非常好)

生化重点(非常好)

生化重点(非常好)
生化重点(非常好)

第二章蛋白质的结构与功能

一、名词解释

蛋白质的等电点:在某一pH值溶液中,蛋白质酸性基团和碱性基团的解离程度相当,蛋白质分子所带正负电荷相等,净电荷为零,此时溶液的pH值称为蛋白质的等电点(pI)。

变性:在某些理化因素作用下,蛋白质的构象被破坏,失去其原有的性质和生物活性,称为蛋白质的变性作用。

复性:除去变性因素后,有的变性蛋白质又可恢复其天然构象和生物活性,这一现象称为蛋白质的复性。

二、简单题

1. 什么是蛋白质的二级结构?列举其主要形式及维持二级结构的主要作用力。

蛋白质的二级结构指蛋白质分子中一段多肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及到aa侧链R基团的构象。

主要形式:α-螺旋结构,β-折叠结构,β-转角,无规卷曲

维持二级结构的主要作用力:氢键

2. 简述蛋白质结构与功能的关系

(一)蛋白质一级结构与功能的关系要明白三点:

1.一级结构是空间构象和功能的基础,空间构象遭破坏的多肽链只要其肽键未断,一级结构未被破坏,就能恢复到原来的三级结构,功能依然存在。

2.即使是不同物种之间的多肽和蛋白质,只要其一级结构相似,其空间构象及功能也越相似。

3.物种越接近,其同类蛋白质一级结构越相似,功能也相似。

但一级结构中有些氨基酸的作用却是非常重要的,若蛋白质分子中起关键作用的氨基酸残基缺失或被替代,都会严重影响其空间构象或生理功能,产生某种疾病,这种由蛋白质分子发生变异所导致的疾病,称为“分子病”。

(二)蛋白质空间结构与功能的关系

蛋白质多种多样的功能与各种蛋白质特定的空间构象密切相关。其构象发生改变,功能活性也随之改变。以肌红蛋白(Mb)和血红蛋白(Hb)为例阐述蛋白质空间结构与功能的关系。

Mb与Hb都是含有血红素辅基的蛋白质。携带氧的是血红素中的Fe 2+,Fe 2+有6个配位键,其中四个与吡咯环N配位结合,一个与蛋白质的组氨酸残基结合,另一个即可与氧结合。而血红素与蛋白质的稳定结合主要靠以下两种作用:一是血红素分子中的两个丙酸侧链与肽链中氨基酸侧链相连,另一作用即是肽链中的组氨酸残基与血红素中Fe 2+ 配位结合。

Mb只有一条肽链,故只结合一个血红素,只携带1分子氧,其氧解离曲线为直角双曲线,而Hb是由四个亚基组成的四级结构,共可结合4分子氧,其氧解离曲线为“S”形曲线,从曲线的形状特征可知,Hb第一个亚基与O 2结合,可促进第二、第三个亚基与O 2的结合,前三个亚基与O 2结合,又大大促进第四个亚基与O 2结合,这种一个亚基与其配体结合后,能影响蛋白质分子中另一亚基与配体结合能力的效应,称协同效应,O 2与

Hb之间是促进作用,称正协同效应。之所以会有这种效应,是因为未结合O 2时,Hb结构紧密,此时Hb与O 2亲和力小,随着O 2的结合,其亚基之间键断裂,空间结构松弛

此种状态Hb与O 2亲和力即增加。

这种一个氧分子与Hb亚基结合后引起亚基构象变化的效应称变构效应,有关此效应会在后面酶一章中详细解释。肌红蛋白只有一条肽链,不存在协同效应。

由此可见,Hb与Mb在空间结构上的不同,决定了它们在体内发挥不同的生理功能。

第三章核酸的结构与功能

一、名词解释

融解温度:紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度,又称熔解温度(melting temperature, Tm)。其大小与G+C含量成正比。

增色效应:DNA变性时其溶液A260增高的现象。

DNA变性(denaturation) :在某些理化因素作用下,DNA双链解开成两条单链的过程。DNA复性(renaturation):在适当条件下,变性DNA的两条互补链可恢复天然的双螺旋构象。

核酸分子杂交(hybridization):在DNA复性过程中,如果将不同种类的DNA单链分子或RNA分子放在同一溶液中,在适宜的条件(温度及离子强度)下,就可以在不同的分子间形成杂化双链,这种现象称为核酸分子杂交。

1.各种碱基、核苷酸、戊糖的分子结构特点,DNA、RNA化学组成的异同。

DNA:碱基为A,T,C,G 戊糖为脱氧核糖,脱氧核糖核苷酸

RNA:碱基为A,U,C,G 戊糖为核糖,核糖核苷酸

2.核酸(DNA、RNA)的一级结构的概念,连接键。

.核酸的一级结构:核酸中核苷酸的排列顺序,由于核苷酸间的差异主要是碱基不同,所以也称为碱基序列。

核苷酸之间以磷酸二酯键连接形成多核苷酸链,即核酸。

3. DNA双螺旋结构模型的要点。核小体结构特点

1、DNA分子是反向平行的互补双链结构,两链以-脱氧核糖-磷酸-为骨架,以右手螺旋方

式绕公共轴盘旋。螺旋直径为2nm,形成大沟及小沟相间。

2、碱基垂直螺旋轴在内侧,与对侧碱基形成氢键配对(互补配对形式:A=T; G C)

3、相邻碱基平面距离0.34nm,螺旋一圈螺距3.4nm,一圈10对碱基

4、氢键维持双链横向稳定性,碱基堆积力维持双链纵向稳定性。

真核生物染色体由DNA和蛋白质构成,其基本单位是核小体

核小体的组成:DNA:约200bp

组蛋白:H1,H2A,H2B,H3,H4

4. tRNA、mRNA、rRNA的结构特点与功能

tRNA:结构特点:①tRNA是细胞内分子量最小的RNA(占总RNA的15%)

②含 10~20% 稀有碱基包括双氢尿嘧啶(DHU)、假尿嘧啶(ψ)和甲基化的

嘌呤等

③tRNA的二级结构——三叶草形

④tRNA的三级结构——倒L形

功能:活化、搬运氨基酸到核糖体,参与蛋白质的翻译

mRNA:结构特点:①mRNA含量较少(占细胞总RNA的3%~5%), 种类最多

②5′末端形成帽子结构:m7GpppNm-

③3′末端有一个多聚腺苷酸(polyA)结构,称为多聚A尾

功能:把DNA所携带的遗传信息,按碱基互补配对原则,抄录并传送至核糖体,用以决定其合成蛋白质的氨基酸排列顺序。

rRNA:结构特点:①细胞内含量最多的RNA,占RNA总量的80%以上

功能:参与组成核糖体,作为蛋白质生物合成的场所。

第四章酶

1. 比较三种可逆性抑制作用的特点

竞争性抑制作用:(1)I与S结构类似,竞争酶的活性中心

(2)抑制程度取决于抑制剂与酶的相对亲和力及与底物浓度的相对比例

(3) Vmax不变,Km增大

非竞争性抑制作用:(1)抑制剂与酶活性中心外必需基团结合,底物与抑制剂之间无竞争关

(2)抑制程度取决于抑制剂的浓度

(3)Vmax降低,Km不变

反竞争性抑制作用:(1)抑制剂只与酶-底物复合物结合

(2)抑制程度取决于抑制剂浓度和底物浓度的相对比例

(3)Vmax降低,Km降低

2. 简述K m和V max的意义

①K m值等于酶促反应速率(V)为最大速率(V m)一半时的底物浓度。

②K m值是酶的特征性常数之一,只与酶的结构、酶催化的底物和反应环境(如温度、pH、离子强度)有关,与酶的浓度无关。

③K m可近似表示酶对底物的亲和力;

④Vmax与[E]成正比,当[S]>>K m,此时V=V max

V m 酶完全被底物饱和时的反应速率,

3. 举例说明竞争性抑制作用在临床上的应用

①磺胺类药物的化学结构与对氨基苯甲酸相似,是二氢叶酸合成酶的竞争性抑制剂,可抑制二氢叶酸合成,进而造成细菌的核苷酸与核酸的合成受阻而影响起生长繁殖。

②甲氨蝶呤,5-氟尿嘧啶,6-巯基嘌呤等都属于抗代谢药物,都是酶的竞争性抑制剂,分别通过抑制四氢叶酸,脱氧胸苷酸和嘌呤核苷酸的合成,而抑制肿瘤细胞的生长。

第五章维生素与微量元素

1、常见维生素活性形式及生理功能

维生素A:活性形式:视黄醇、视黄醛、视黄酸

生理功能:(1)合成视紫红质,与视觉有关。

(2)维持上皮组织结构完整。

(3)促进生长发育。

(4)抗氧化作用和防癌作用

(5)维持和促进免疫功能

维生素D(又称:抗佝偻病维生素、钙化醇)

活性形式:1 , 25-(OH)2-D3

生理功能:(1)促进钙,磷的吸收

(2)影响细胞分化

维生素E:活性形式:生育酚

生理功能:(1)抗氧化、抗衰老作用

(2)抗动物不育症

(3)促进血红素合成

(4)调节基因表达

维生素K(凝血维生素):活性形式:2-甲基1,4-萘醌

生理功能:谷氨酸羧化酶的辅助因子,促进凝血因子Ⅱ、Ⅶ、Ⅸ

及Ⅹ的合成

维生素B1:活性形式:焦磷酸硫胺素(TPP)

生理功能:(1)a-酮酸氧化脱羧酶辅酶

(2)抑制胆碱酯酶活性

(3)转酮醇酶的辅酶

维生素B2:活性形式:黄素单核苷酸(FMN)

黄素腺嘌呤二核苷酸(FAD)

生理功能:氢传递体,促进糖脂肪蛋白的代谢,维持皮肤粘膜视觉正常功能维生素PP:活性形式:尼克酰胺腺嘌呤二核苷酸(NAD+ ,又称辅酶Ⅰ)

尼克酰胺腺嘌呤二核苷酸磷酸(NADP+,又称辅酶Ⅱ)

生理功能:多种不需氧脱氢酶的辅酶,起传递氢的作用

维生素B6:活性形式:1. 磷酸吡哆醛

2. 磷酸吡哆胺

生理功能:(1)氨基酸脱羧酶和转氨酶的辅酶

(2)ALA和酶的辅酶

泛酸:活性形式:辅酶A(HSCoA)和酰基载体蛋白 (ACP)

生理功能:(1)构成辅酶A的成分,参与体内酰基的转移

(2)构成ACP的成分,参与脂酸合成

生物素:活性形式:生物素

生理功能:作为羧化酶的辅酶固定CO2和传递羧基的作用。

叶酸:活性形式:FH4

生理功能:FH4作为一碳单位转移酶的辅酶,在生物合成中起着传递一碳单位的作用

维生素B12:活性形式:甲基钴胺素(MeB12)

5’-脱氧腺苷钴胺素(5-dAR-B12)

生理功能:(1)促进甲基的转移

(2)促进DNA合成

(3)促进红细胞成熟

维生素C:活性形式:抗坏血酸

生理功能:(1)参与体内的氧化还原反应

(2)参与羟化反应

第六章生物氧化

生物氧化:物质在生物体内进行氧化称生物氧化。主要指糖、脂肪、蛋白质等在体内分解时逐步释放能量,最终生成CO2 和 H2O的过程(细胞呼吸)

呼吸链:代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水。由于此过程与细胞呼吸有关,所以将这一含多种氧化还原组分的传递链称为氧化呼吸链。

底物水平磷酸化:直接将代谢物分子(底物)中的能量转移至ADP(或GDP),生成ATP(或GTP)的过程。

氧化磷酸化:在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,因此又称为偶联磷酸化。

二、呼吸链5种组分的名称及分类

烟酰胺腺嘌呤二核苷酸(NAD+)或称辅酶Ⅰ(CoⅠ)

黄素蛋白(FP):以FMN或FAD为辅基的脱氢酶

铁硫蛋白( Fe-S):辅基: 铁硫簇(Fe-S)

泛醌( UQ或 Q):

细胞色素类(Cyt):是一类以铁卟啉为辅基的催化电子传递的酶类

三、两条呼吸链的异同点

36

两条呼吸链的比较

◆相同点

将H 传递给O 2生成水

H 和O 2消耗,其它可反复使用

CoQ 是两种呼吸链的汇合点

◆不同点

NADH 呼吸链琥珀酸呼吸链 普遍程度

较普遍次要 起始物

NADH+H +FADH 2 ATP

2.5 1.5Why?

四、氧化磷酸化偶联部位及影响因素

氧化磷酸化偶联部位:复合体Ⅰ、Ⅲ、Ⅳ

影响因素:1.抑制剂

(1)呼吸链抑制剂:此类抑制剂能阻断呼吸链中某些部位的电子传递,如CO 能抑制Cyt c

氧化酶,使电子不能传递给氧。

(2)解偶联剂(使氧化与磷酸化偶联过程脱离):破坏内膜两侧的质子电化学梯度,使ATP

的生成受到抑制;不影响电子传递。如二硝基苯酚(DNP )

(3)氧化磷酸化抑制剂 :此类抑制剂对电子传递及ADP 磷酸化均有抑制作用,如寡霉素可阻

止质子从F0质子通道回流,抑制ATP 生成

2.ADP 的调节作用:正常机体氧化磷酸化的速率主要受ADP 的调节,当ADP/ATP ↑时→氧化

磷酸化的速率加快,当ADP/ATP ↓时→氧化磷酸化的速率减慢。

3.甲状腺激素:能诱导细胞膜Na+,K+–ATP 酶的生成,使ATP 加速分解为ADP 和Pi ,ADP

增多促进氧化磷酸化,甲状腺激素还可使解偶联蛋白基因表达增加,因而引

起耗氧和产热均增加。

五、胞液中NADH 的氧化

胞浆中生成的NADH 所携带的氢必须经一定转运机制进入线粒体,再经呼吸链进行氧化磷酸化

转运机制主要有:

1. α-磷酸甘油穿梭:主要存在于脑和骨胳肌中

2. 苹果酸-天冬氨酸穿梭:主要存在于肝和心肌中

净生成2molATP

2、糖有氧氧化的过程、关键酶、ATP?

第一阶段:丙酮酸的生成(胞浆)生成5或7molATP

第二阶段:丙酮酸氧化脱羧生成乙酰CoA(线粒体)生成5molATP 第三阶段:乙酰CoA进入三羧酸循环彻底氧化(线粒体)

⑴乙酰CoA与草酰乙酸缩合形成柠檬酸

⑵柠檬酸异构化生成异柠檬酸

⑶异柠檬酸氧化脱羧生成α-酮戊二酸

⑷α-酮戊二酸氧化脱羧生成琥珀酰辅酶A

⑸琥珀酰CoA转变为琥珀酸

⑹琥珀酸氧化脱氢生成延胡索酸

⑺延胡索酸水化生成苹果酸

⑻苹果酸脱氢生成草酰乙酸

第三阶段生成20molATP

净生成30或32molATP

关键酶:已糖激酶,6-磷酸果糖激酶-1,丙酮酸激酶,柠檬酸合酶,*异柠檬酸脱氢酶,α-酮戊二酸脱氢酶系

3、磷酸戊糖途径的主要产物、限速酶?

反应部位:胞浆

反应底物:6-磷酸葡萄糖

重要反应产物:NADPH、5-磷酸核糖

限速酶:6-磷酸葡萄糖脱氢酶(G6PD)

4、简述磷酸戊糖途径的生理意义

产生5-磷酸核糖和产生NADPH

①5-磷酸核糖体内合成核苷酸和核酸的必要原料

②NADPH的主要功能

1)作为供氢体参与体内多种生物合成反应(脂酸、胆固醇合成)

2)是谷胱甘肽还原酶的辅酶---对维持细胞中还原型谷胱甘肽的正常含量起重要作用

3)作为加单氧酶的辅酶------参与肝脏对激素、药物和毒物的生物转化作用

5、蚕豆病的发病机理是什么?

蚕豆病是一种先天性遗传性分子病,多见于儿童,常在食用蚕豆后诱发,蚕豆内含有氧化性化合物。蚕豆病患儿由于先天性缺乏6—磷酸葡萄糖脱氢酶,导致葡萄糖的磷酸戊糖途径受阻,使体内NADPH+H生成减少。后者可维持谷胱甘肽的还原状态,还原型谷胱甘肽是体内重要的抗氧化剂,可以保护某些含巯基的蛋白质或酶免受氧化剂的损害。当患儿食入含有氧化型化合物的蚕豆后,使红细胞尤其是较老的红细胞易于破裂,发生溶血性黄疸,常在食用后诱发,故称为蚕豆病。

6、乳酸循环的反应过程?

在缺氧情况下(如剧烈运动,呼吸或循环衰竭等),肌肉中糖酵解增强生成大量乳酸,通过细胞膜弥散入血并送至肝,通过糖异生作用合成肝糖原或葡萄糖,葡萄糖再释入血液被肌肉摄取,如此构成一个循环。

第八章脂类代谢

1、简述酮体包括哪些物质?酮体生成的脏器、亚细胞定位及其关键酶各是什么?

酮体包括乙酰乙酸, - 羟丁酸,丙酮

酮体生成的脏器:肝脏

酮体生成的亚细胞定位线粒体

限速酶:HMG-CoA合酶

原料:乙酰CoA

2、血浆脂蛋白可分为那几类?简述各自的来源和生理功用?

(1)电泳分类法:根据电泳迁移率的不同进行分类,可分为四类:

乳糜微粒→β-脂蛋白→前β-脂蛋白→α-脂蛋白。

(2)超速离心法:按脂蛋白密度高低进行分类,也分为四类:

CM →VLDL →LDL →HDL

乳糜微粒来源于小肠粘膜细胞,功能是转运外源甘油三脂

VLDL(或前β-脂蛋白) 来源于肝细胞,功能是转运内源甘油三脂

LDL(或β-脂蛋白)来源于血浆、肝,功能是转运内源胆固醇

HDL(或α-脂蛋白)来源于肝、小肠、血浆,功能是逆向转运胆固醇

(从肝外组织至肝细胞)

3、试述LDL和VLDL代谢

VLDL分泌入血后,也接受来自HDL的apoC和apoE:apoCⅡ激活LPL,催化甘油三酯水解,产物被肝外组织利用。同时VLDL与HDL之间进行物质交换,一方面是将apoC和apoE等在两者之间转移,另一方面是在胆固醇酯转移蛋白协助下,将VLDL的磷脂、胆固醇等转移至HDL,将HDL的胆固醇酯转至VLDL,这样VLDL转变为中间密度脂蛋白(IDL)。

在LDL代谢过程中,通过LDL受体介导将LDL吞入细胞内,并与溶酶体融合,胆固醇酯水解为胆固醇及脂肪酸。这种胆固醇除可参与细胞生物膜的生成之外,还对细胞内胆固醇的代谢具有重要的调节作用:①通过抑制HMG-CoA还原酶活性,减少细胞内胆固醇的合成;

②激活脂酰CoA胆固醇酯酰转移酶(ACAT)使胆固醇生成胆固醇酯而贮存;③抑制LDL受体蛋白基因的转录,减少LDL受体蛋白的合成,降低细胞对LDL的摄取。

第九章 氨基酸代谢

1. 简述血氨的来源和去路。 科学出版社案例版《生物化学》课件第九章氨基酸代谢

正常人血氨浓度≤60μmol/L

氨基酸、胺分解肠道吸收

肾脏产生合成尿素

合成谷氨酰胺合成含氮化合物铵盐一、体内氨的来源去路

第十章 核苷酸代谢

1、嘌呤核苷酸从头合成的概念

指用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料,经过一系列酶促反应合成嘌呤核苷酸的途径。

2、补救合成:利用体内游离的嘌呤碱或嘌呤核苷经过简单的反应过程,合成嘌呤核苷酸。

3、嘌呤和嘧啶核苷酸从头合成的异同点

4、别嘌呤醇治疗痛风症的机理

(1)他与次黄嘌呤结构类似,故可抑制黄嘌呤氧化酶,从而抑制尿酸的生成。

(2)别嘌呤与PRPP反应生成别嘌呤核苷酸,一方面消耗PRPP使其含量减少,另一方面别嘌呤核苷酸与IMP结构相似,有可反馈抑制嘌呤核苷酸从头合成的酶。

以上两方面均可以使嘌呤核苷酸合成减少,同时又可减少尿酸生成,达到治疗痛风症的目的。

5、PRPP(磷酸核糖焦磷酸)能参与哪些代谢

(1)在补救合成中,PRPP与游离碱基直接生成各种一磷酸核苷。

(2)嘌呤核苷酸从头合成过程中,PRPP作为起始原料与Gln生成PRA,然后逐步合成各种嘌呤核苷酸。

(3)嘧啶核苷酸从头合成过程中,PRPP参与乳清酸核苷酸的生成,再逐渐合成尿嘧啶一磷酸核苷等。

第12章DNA的生物合成

1.基本概念:

中心法则:是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。这是所有有细胞结构的生物所遵循的法则。在某些病毒中的RNA自我复制(如烟草花叶病毒等)和在某些病毒中能以RNA为模板逆转录成DNA的过程(某些致癌病毒)是对中心法则的补充。RNA的自我复制和逆转录过程,在病毒单独存在时是不能进行的,只有寄生到寄主细胞中后才发生。逆转录酶在基因工程中是一种很重要的酶,它能以已知的mRNA为模板合成目的基因。在基因工程中是获得目的基因的重要手段。

复制叉: DNA复制生长点的结构呈叉形。在此区域发生链的分离及新链的合成

半保留复制:双链DNA的复制方式,解开的双链各自作为模板,用以合成新的互补链。子代DNA双链中的一条链来自母链,另一条链重新合成。

半不连续复制:DNA复制过程中,一条链是连续复制,另一条链是不连续复制的现象。

岡崎片段:在复制过程中,随从链的合成是分段复制的,这些在复制中出现的不连续复制的片段称为岡崎片段

领头链:即前导链,复制时,亲代DNA双链解链为模板,顺解链方向连续复制下去的链为领头链。领头链是连续合成的。

随从链:已知的DNA 聚合酶不能催化DNA 链朝3/→5/方向延长,在两条亲代链起点的3/ 端一侧的DNA 链复制是不连续的,而分为多个片段,每段是朝5/→3/方向进行,所以随后链是不连续的。

突变:DNA分子上碱基的改变或表型功能的异常变化称为DNA损伤或突变

框移突变:是指三联体密码的阅读方式改变,造成蛋白质氨基酸排列顺序发生改变,其后果是翻译出的蛋白质可能完全不同。

光修复:可见光能激活细胞内的光修复酶,将DNA中因紫外线照射而形成的嘧啶二聚体分解为原来的非聚合状态的过程就是光修复

切除修复:在一系列酶的作用下,将DNA分子中受损伤部分切除,同时以另一条完整的链为模板,合成出被切除部分的空隙,使DNA恢复正常结构的过程。

重组修复:这个过程是先进行复制,再进行修复,复制时,子代DNA 链损伤的对应部位出现缺口,这可通过分子重组从完整的母链上,将一段相应的多核苷酸片段移至子链的缺口处,然后再合成一段多核昔酸键来填补母链的缺口,这个过程称为重组修复。

2.试述原核生物与真核生物复制的相同点与不同点。

答:原核生物与真核生物DNA复制共同的特点:

1分为起始、延伸、终止三个过程;

2必须有提供3’羟基末端的引物;

3亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质:DNA 拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、 DNA聚合酶、RNA酶以及DNA连接酶等。

4一般为双向复制、半保留复制、半不连续复制。

原核生物与真核生物DNA复制不同的特点:

1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA聚合酶的移动速度较原核生物慢。原核生物为一般为环形DNA,具有单一复制起始位点。

2真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。

3真核生物复制子大小不一且并不同步。

4原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式。

5真核生物有五种DNA聚合酶,需要Mg+。主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成。原核生物只有三种,主要复制酶为DNA聚合酶III。

6真核生物末端靠端粒酶补齐,而原核生物以多联体的形式补齐。

7真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生物冈崎片段由DNA 聚合酶I去除。 8真核生物DNA聚合酶γ负责线粒体DNA合成。 9真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用。原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用。

第13章RNA的生物合成(转录)

1.名词解释:

转录:生物体在DNA指导的RNA聚合酶催化下,以DNA为模板,以四种NTP为原料,按碱基配对原则,合成RNA的过程成为转录。通过转录,DNA把遗传信息传递给RNA。不对称转录:在DNA分子双链上,一股链用作模板指引转录,另一股为编码链不转录;模板链并非总是在同一单链上。

结构基因:在双链DNA 中,能转录出RNA的DNA区段

顺式作用元件:在真核生物中,与自身基因表达调控有关的DNA非编码序列,包括:启动子、增强子、沉默子和反应元件等

断裂基因:真核生物的结构基因,由若干个编码区和非编码区连续镶嵌而成,去除非编码区后再连接,可翻译出由连续氨基酸组成的完整蛋白质,这种结构基因称为断裂基因。

内含子:在断裂基因中的非编码序列称为内含子

剪接体:在剪接过程中形成的剪接复合物称为剪接体,剪接体的主要组成是蛋白质和小分子的核RNA。hnRNA剪接的场所

2.比较RNA转录和DNA复制的异同点。

第14 章蛋白质的生物合成(翻译)

1.简述遗传密码的特点

答:(1)方向性:遗传密码阅读方向从5'到3'端

(2)连续性:编码蛋白质氨基酸序列的各个三联体密码连续阅读,密码间既无间断也无交叉

(3)简并性:除Met、Trp外,其余氨基酸均由2个以上密码子编码。

(4)摆动性:转运氨基酸的tRNA的反密码需要通过碱基互补与mRNA上的遗传密码反向配对结合,但反密码与密码间不严格遵守常见的碱基配对规律

(5)通用性:遗传密码没有种属特异性,不同生物共用一套密码

2.试述翻译起始的过程的特点,并说明原核和真核生物的异同

答:(一)原核生物翻译起始过程

●核糖体大小亚基分离;

●mRNA在小亚基定位结合;

●起始氨基酰-tRNA的结合;

●核糖体大亚基结合

(二)真核生物翻译起始过程

●核糖体大小亚基分离;

●起始氨基酰-tRNA结合;

●mRNA在核糖体小亚基就位;

●核糖体大亚基结合

真核生物与原核生物翻译起始的不同点:

1. 起始Met-tRNAiMet不需甲酰化;

2. eIF种类多

3. 小亚基先与Met-tRNAiMet结合,再与mRNA结合;

4. mRNA与40s亚基的结合依靠帽子结合蛋白复合物与mRNA帽子结构的识别结合

5. ATP和GTP供能

真核生物与原核生物翻译起始的相同点:

1.核糖体小亚基结合起始氨基酸-tRNA;

2.在mRNA上必须找到合适的起始密码子

3.大亚基必须与已经形成复合物的小亚基、起始氨基酸-tRNA、mRNA结合

第15章基因表达调控

1.以乳糖操纵子模式说明原核生物基因转录的负性调节及正性调节、

答:精简版:1.阻遏蛋白的负性调节

(1)没有乳糖存在时,操纵子处于阻遏状态

(2)有乳糖时,操纵子处于诱导状态

2. CAP的正性调节

(1)无葡萄糖时,cAMP浓度高,可变构激活CAP

(2)有葡萄糖时,cAMP浓度低,CAP无活性

详尽版:

(1)乳糖操纵子的结构:含Z、Y、A三个结构基因,分别编码乳糖代谢的三个酶;一个操纵序列O,一个启动序列P,一个CAP结合位点和一个调节基因I共同构成乳糖操纵子的调控区

(2)阻遏蛋白的负性调节:I基因的表达产物为一种阻遏蛋白。在没有乳糖存在时,阻遏蛋白与O序列结合,阻碍RNA聚合酶与P序列结合,抑制转录起动,乳糖操纵子处于阻遏状态;当有乳糖存在时,

乳糖转变为半乳糖,后者结合阻遏蛋白,使构象变化,阻遏蛋白与O序列解离,在CAP蛋白协作下发生转录

(3)CAP正性调节:分解代谢基因激活蛋白(CAP)分子内存在DNA和cAMP结合位点。当没有葡萄糖时,cAMP浓度较高,cAMP与CAP结合,cAMP-CAP结合于CAP结合位点,提高RNA转录活性;当有葡萄糖时,cAMP浓度较低,cAMP与CAP结合受阻,乳糖操纵子表达下降

(4)协调调节:乳糖操纵子阻遏蛋白的负性调节与CAP的正性调节机制协调合作,CAP 不能激活被阻遏蛋白封闭基因的表达,但如果没有CAP存在来加强转录活性,即使阻遏蛋白从操纵序列上解离仍无转录活性

2.试述真核基因表达调节特点

答:精简版:

(1)真核基因转录有三种RNA聚合酶,多种转录因子参与;

(2)活性染色体发生结构变化:核酸酶敏感、碱基修饰变化、组蛋白乙酰化、拓扑结构变化;

(3)以正性调节为主;

(4)转录与翻译分隔进行;

(5)在转录及翻译后的修饰、加工和运输等环节均可进行调控

详尽版:

(1)活性染色质的结构的变化:当真核基因被激活时,染色质结构主要表现如下变化:

①对核酸酶敏感性提高:活化基因的一个明显特征是对Dnase特别敏感。

②DNA拓扑结构变化:当基因活化时,RNA聚合酶前方的转录区DNA拓扑结构为正超螺旋构象,其后面的DNA则为负超螺旋构象。

③DNA碱基修饰变化:在真核DNA中,有5%的胞嘧啶被甲基化为5-甲基胞嘧啶,这种基化常发生在某些基因的CpG序列的5’侧翼区。甲基化范围与基因表达程度呈反比。④组蛋白的修饰变化

(2)正性调节占主导地位:尽管已发现某些真核基因含有负性调控元件,但并不普通存在。绝大多数真核基因以正性调节为主,这与原核基因以负性调控为主正好相反。

(3)RNA聚合酶:真核RNA聚合酶有三种,即RNA polⅠ、Ⅱ、Ⅲ。它们分别在不同转录因子的帮助下作用于不同的启动子,负责三种RNA转录,故比原核生物转录要精确

(4)转录与翻译在时空上的分割:原核细胞转录与翻译偶联进行。在真核生物中,转录在先,翻译在后;转录在细胞核,翻译在细胞质。这种时空差别使真核基因表达调控更为复杂有序

(5)转录后加工修饰:真核基因转录初级产物的加工剪接及修饰等过程比原核生物复杂。

第16 章细胞信号转导

名词解释:

第一信使:由细胞分泌的调节靶细胞生命活动的化学物质,又称第一信使

第二信使:由第一信使经转导刺激产生的细胞内传递细胞调控信号的化学物质,又称第二信使

受体:细胞膜上或细胞内的具有对信息分子特异识别和结合功能,进而引起生物学效应的一类生物大分子,其本质大多数是蛋白质,个别是糖脂

G蛋白:G蛋白是一类和GTP或GDP相结合、位于细胞膜胞浆面的外周蛋白质,具有信号传导功能蛋白的总称

蛇型受体:这类受体由单一的多肽链构成,含400~500个氨基酸残基,分细胞外、细胞膜上和细胞内三个区。细胞膜结构域由高度保守的7个a螺旋构成,故该受体称蛇形受体PKA:又称依赖于c A M P蛋白激酶A,一种由环腺苷酸(cAMP)激活,催化将磷酸基从ATP转移至蛋白质的丝氨酸和苏氨酸残基上的蛋白激酶。在无cAMP存在时成无活性状态

PKC:蛋白激酶C,广泛分布于各组织,以脑中含量最高存在于细胞膜和胞浆,胞浆中PKC

呈无活性状态

CaM:钙调蛋白是结合Ca2+的一种蛋白质,CaM有4个Ca2+结合位点,常受Ca2+浓度变化影响

1、按照亚细胞的定位,受体分为哪几类?

答:1)膜受体:A)G蛋白偶联受体B)配体门控离子通道受体C)单跨膜α螺旋受体D)鸟苷酸环化酶活性受体

2)胞内受体:A)高度可变区B)DNA结合区C)激素结合区D)铰链区蛋白激酶。

2、各种膜受体与配体结合的特点是什么?

答:1)高度特异性2)高度亲和力3)可饱和性4)可逆性5)特定的作用模式

3、试述cAMP- 蛋白激酶途径的组成及信号转导流程。

答:1)组成:胞外信息分子、受体、Gs或Gi蛋白、腺苷酸环化酶(adenylate cyclase,AC) 、cAMP、蛋白激酶A(protein kinase A,PKA)

2)流程:胞外信号——受体——Gs或Gi蛋白—(AC)—cAMP——PKA(激活)——底物蛋白(磷酸化)——表达生物学效应

4、试述Ca2+ -依赖性蛋白激酶途径的组成及信号转导流程。

答:(1)Ca2+-磷脂依赖性蛋白激酶途径

1)组成:胞外信息分子(促甲状腺素释放激素、去甲肾上腺素、血管紧张肽、抗利尿激素等)、G蛋白偶联受体(Gp)、磷脂酶C( PLC)、三磷酸肌醇(IP3 )、二酰甘油(DAG)、蛋白激酶C(PKC) 2)流程:受体+信息分子——G蛋白偶联受体(Gp)激活——PLC激活——PIP2——(IP3)+DAG ——PKC激活——DAG-PKC——蛋白质——磷酸蛋白质——生物学效应

(2)Ca2+-钙调蛋白依赖性蛋白激酶途径

1)组成:受体、G蛋白(Gp) 、PLC、IP3、Ca2+、钙调蛋白、钙调蛋白激酶

2)流程:受体+信息分子——G蛋白偶联受体(Gp)激活——PLC激活——PIP2——IP3+(DAG)——Ca2+——CaM——钙调蛋白激酶——蛋白质——磷酸蛋白质——生物学效应

第18章血液生物化学

1.NPN 的概念。

答:非蛋白质类含氮化合物中的氮总称为非蛋白氮(non-protein nitrogen, NPN) 临床上通过测定血中的NPN含量可了解肾的排泄功能。

2.简述2,3-BPG旁路,并说明2,3-BPG是如何调节血红蛋白的携氧功能的?

答:在糖酵解过程中生成的1,3-二磷酸甘油酸有一部分可转变为2,3-二磷酸甘油酸,2-3-二磷酸甘油酸脱磷酸转变为3-磷酸甘油酸,再进一步分解为乳酸。这一糖酵解的侧支循环为红细胞所特有。

(1)2,3-BPG是一个负电性很高的分子,可与Hb结合,其结合部位在Hb分子的四个亚基的对称中心孔穴内。(2) 2,3-BPG的负电集团与空穴侧壁的带正电基团形成盐键,从而使

(3)当血流经过PO2较高的肺部时,2,3-BPG Hb分子的T构象更趋稳定,降低Hb与氧的亲和力。

的影响不大,而当血流经过PO2较低的组织时,红细胞中2,3-BPG的存在则显著增加O2释放,以供组织需要。在PO2相同条件下,2,3-BPG浓度增大,HbO2释放的O2增多,即人体可通过改变红细胞内2,3-BPG的浓度来调节对组织的供氧状况。

第19章 肝的生物化学

1.何谓尿三胆?如何鉴别3种黄疸

各种黄疸时血、尿、粪的改变

血清胆红素

总量<

1mg/dl >1mg/dl >1mg/dl >1mg/dl

结合胆红素0~0.8mg/dl ↑↑↑

游离胆红素<1mg/dl ↑↑↑

尿三胆

尿胆红素——++ ++

尿胆素原少量↑不定↓

尿胆素少量↑不定↓

粪便颜色正常深变浅或正常陶土色

完全阻塞时

指标正常溶血性肝细胞性阻塞性

2.比较胆汁酸与胆素原肠肝循环。

3. 正常人尿中无未结合胆红素, Why ?

答:非结合胆红素是脂溶性物质,不溶于水,于循环中附着于白蛋白上,以胆红素一白蛋白复合物的形式随血流到肝脏,在循环过程中不能经肾小球滤过,故尿中无非结合胆红素。

生化生物化学名词解释(1)重点知识总结

第一章 蛋白质的结构与功能 等电点(isoelectric point, pI)在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 蛋白质的一级结构(pri mary structure): 蛋白质分子中,从N-端至C-端的氨基酸残基的排列顺序。 蛋白质的二级结构(se condary structure): 蛋白质的二级结构是指多肽链中主链骨架原子的局部空间排布,不涉及氨基酸侧链的构象。 肽单元: 参与肽键的6个原子—— Cα1、C、H、O、N、Cα2 处于同一平面,称为肽单元α-helix:以α-碳原子为转折点,以肽键平面为单位,盘曲成右手螺旋状的结构。 螺旋上升一圈含3.6个氨基酸残基,螺距0.54nm 氨基酸的侧链伸向螺旋的外侧。 螺旋的稳定是靠氢键。氢键方向与长轴平行。 β-折叠:蛋白质肽链主链的肽平面折叠呈锯齿状 结构特点:锯齿状;顺向平行、反向平行 稳定化学键:氢键 蛋白质的三级结构(tert iary structure) : 蛋白质的三级结构是指在各种二级结构的基础上再进一步盘曲或折迭。也就是整条肽链所有原子在三维空间的排布位置。 结构域(domain) : 分子量大的蛋白质三级结构常可分割成一个和数个球状或纤维状的区域,折叠得较为紧密,各有独特的空间构象,并承担不同的生物学功能。 分子伴侣 (chaperon): 帮助形成正确的高级结构 使错误聚集的肽段解聚 帮助形成二硫键 蛋白质的四级结构(quar ternary structure):蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用 亚基(subunit):二条或二条以上具有独立三级结构的多肽链组成的蛋白质。其中,每条具有独立三级结构的多肽链 模体一个蛋白质分子中几个具有二级结构的肽段,在空间位置上相互接近,形成特殊的空间构象,称为“模体”(motif) 蛋白质的变性: 天然蛋白质在某些物理或化学因素作用下,其特定的空间结构被破坏,而导致理化性质改变和生物学活性的丧失,称为蛋白质的变性作用 (denaturation)。 蛋白质的复性当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能 盐析(salt precipitation)是将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质沉淀。 电泳蛋白质在高于或低于其pI的溶液中为带电的颗粒,在电场中能向正极或负极移动。这种通过蛋白质在电场中泳动而达到分离各种蛋白质的技术, 称为电泳(elctrophoresis) 第二章 核酸的结构与功能 脱氧核糖核酸(deoxyribonucleic acid, DNA):主要存在于细胞核内,是遗传信息的储存和携带者,是遗传的物质基础。 核糖核酸(ribonucleic acid, RNA): 主要分布在细胞质中,参与遗传信息表达的各过程。DNA和RNA的一级结构:核苷酸的排列顺序,即碱基的排列顺序。

生物化学试题带答案

一、选择题 1、蛋白质一级结构的主要化学键就是( E ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 2、蛋白质变性后可出现下列哪种变化( D ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物就是( B ) A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、嘌呤核苷酸从头合成中,首先合成的就是( A ) A、IMP B、AMP C、GMP D、XMP E、ATP 6、体内氨基酸脱氨基最主要的方式就是( B ) A、氧化脱氨基作用 B、联合脱氨基作用 C、转氨基作用 D、非氧化脱氨基作用 E、脱水脱氨基作用 7、关于三羧酸循环,下列的叙述哪条不正确( D ) A、产生NADH与FADH2 B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 8、胆固醇生物合成的限速酶就是( C ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶就是酵解过程中的限速酶( D ) A、醛缩酶 B、烯醇化酶 C、乳酸脱氢酶 D、磷酸果糖激酶 E、3一磷酸甘油脱氢酶

10、DNA二级结构模型就是( B ) A、α一螺旋 B、走向相反的右手双螺旋 C、三股螺旋 D、走向相反的左手双螺旋 E、走向相同的右手双螺旋 11、下列维生素中参与转氨基作用的就是( D ) A、硫胺素 B、尼克酸 C、核黄素 D、磷酸吡哆醛 E、泛酸 12、人体嘌呤分解代谢的终产物就是( B ) A、尿素 B、尿酸 C、氨 D、β—丙氨酸 E、β—氨基异丁酸 13、蛋白质生物合成的起始信号就是( D ) A、UAG B、UAA C、UGA D、AUG E、AGU 14、非蛋白氮中含量最多的物质就是( D ) A、氨基酸 B、尿酸 C、肌酸 D、尿素 E、胆红素 15、脱氧核糖核苷酸生成的方式就是( B ) A、在一磷酸核苷水平上还原 B、在二磷酸核苷水平上还原 C、在三磷酸核苷水平上还原 D、在核苷水平上还原 16、妨碍胆道钙吸收的物质就是( E ) A、乳酸 B、氨基酸 C、抗坏血酸 D、柠檬酸 E、草酸盐 17、下列哪种途径在线粒体中进行( E ) A、糖的无氧酵介 B、糖元的分解 C、糖元的合成 D、糖的磷酸戊糖途径 E、三羧酸循环 18、关于DNA复制,下列哪项就是错误的( D ) A、真核细胞DNA有多个复制起始点 B、为半保留复制 C、亲代DNA双链都可作为模板 D、子代DNA的合成都就是连续进行的

生化-选择题

选择题 第十章核苷酸代谢 一、单项选择题 (在备选答案中只有一个是正确的) 1.嘌呤核苷酸从头合成时首先生成的是: A.GMP B.AMP C.IMP D.ATP E.GTP 2.人体内嘌呤核苷酸分解的终产物是: A.尿素 B.肌酸 C.肌酸酐 D.尿酸 E.β丙氨酸 3.最直接联系核苷酸合成与糖代谢的物质是: A.葡萄糖 B.6磷酸葡萄糖 C.1磷酸葡萄糖 D.1,6二磷酸葡萄糖 E.5磷酸核糖 4.体内脱氧核苷酸是由下列哪种物质直接还原而成? A.核糖 B.核糖核苷 C.一磷酸核苷 D.二磷酸核苷 E.三磷酸核苷 5.HGPRT(次黄嘌呤-鸟嘌磷酸核糖转移酶)参与下列哪种反应:A.嘌呤核苷酸从头合成 B.嘧啶核苷酸从头合成 C.嘌呤核苷酸补救合成 D.嘧啶核苷酸补救合成 E.嘌呤核苷酸分解代谢 6.氟尿嘧啶(5Fu)治疗肿瘤的原理是: A.本身直接杀伤作用 B.抑制胞嘧啶合成 C.抑制尿嘧啶合成 D.抑制胸苷酸合成 E.抑制四氢叶酸合成

7.提供其分子中全部N和C原子合成嘌呤环的氨基酸是: A.丝氨酸 B.天冬氨酸 C.甘氨酸 D.丙氨酸 E.谷氨酸 8.嘌呤核苷酸从头合成时GMP的C-2氨基来自: A.谷氨酰胺 B.天冬酰胺 C.天冬氨酸 D.甘氨酸 E.丙氨酸 9.dTMP合成的直接前体是: A.dUMP B.TMP C.TDP D.dUDP E.dCMP 10.在体内能分解为β-氨基异丁酸的核苷酸是: A.CMP B.AMP C.TMP D.UMP E.IMP 11.使用谷氨酰胺的类似物作抗代谢物,不能阻断核酸代谢的哪些环节? A.IMP的生成 B.XMP→GMP C.UMP→CMP D.UMP→dTMP E.UTP→CTP 二、多项选择题 (在备选答案中有二个或二个以上是正确的,错选或未选全的均不给分) 1.下列哪些反应需要一碳单位参加? A.IMP的合成 B.IMP→GMP C.UMP的合成 D.dTMP的生成 2.嘧啶分解的代谢产物有: A.CO2 B.β-氨基酸 C.NH3

生物化学重点笔记(整理版)

教学目标: 1.掌握蛋白质的概念、重要性和分子组成。 2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。 3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。 4.了解蛋白质结构与功能间的关系。 5.熟悉蛋白质的重要性质和分类 导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性? 1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。 蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。 单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。生物的运动、生物体的防御体系离不开蛋白质。蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。 第一节蛋白质的分子组成 一、蛋白质的元素组成 经元素分析,主要有C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。有些蛋白质还含微量的P、Fe、Cu、Zn、Mn、Co、Mo、I等。 各种蛋白质的含氮量很接近,平均为16%。因此,可以用定氮法来推算样品中蛋白质的大致含量。 每克样品含氮克数×6.25×100=100g样品中蛋白质含量(g%) 二、蛋白质的基本组成单位——氨基酸 蛋白质在酸、碱或蛋白酶的作用下,最终水解为游离氨基酸(amino acid),即蛋白质组成单体或构件分子。存在于自然界中的氨基酸有300余种,但合成蛋白质的氨基酸仅20种(称编码氨基酸),最先发现的是天门冬氨酸(1806年),最后鉴定的是苏氨酸(1938年)。 (一)氨基酸的结构通式 组成蛋白质的20种氨基酸有共同的结构特点: 1.氨基连接在α- C上,属于α-氨基酸(脯氨酸为α-亚氨基酸)。 2.R是側链,除甘氨酸外都含手性C,有D-型和L-型两种立体异构体。天然蛋白质中的氨基酸都是L-型。 注意:构型是指分子中各原子的特定空间排布,其变化要求共价键的断裂和重新形成。旋光性是异构体的光学活性,是使偏振光平面向左或向右旋转的性质,(-)表示左旋,(+)表示右旋。构型与旋光性没有直接对应关系。 (二)氨基酸的分类 1.按R基的化学结构分为脂肪族、芳香族、杂环、杂环亚氨基酸四类。 2.按R基的极性和在中性溶液的解离状态分为非极性氨基酸、极性不带电荷、极性带负电荷或带正电荷的四类。 带有非极性R(烃基、甲硫基、吲哚环等,共9种):甘(Gly)、丙(Ala)、缬(Val)、亮(Leu)、异亮(Ile)、苯丙(Phe)、甲硫(Met)、脯(Pro)、色(Trp) 带有不可解离的极性R(羟基、巯基、酰胺基等,共6种):丝(Ser)、苏(Thr)、天胺(Asn)、谷胺(Gln)、酪(Tyr)、半(Cys)带有可解离的极性R基(共5种):天(Asp)、谷(Glu)、赖(Lys)、精(Arg)、组(His),前两个为酸性氨基酸,后三个是碱性氨基酸。 蛋白质分子中的胱氨酸是两个半胱氨酸脱氢后以二硫键结合而成,胶原蛋白中的羟脯氨酸、羟赖氨酸,凝血酶原中的羧基谷氨酸是蛋白质加工修饰而成。 (三)氨基酸的重要理化性质 1.一般物理性质 α-氨基酸为无色晶体,熔点一般在200 oC以上。各种氨基酸在水中的溶解度差别很大(酪氨酸不溶于水)。一般溶解于稀酸或稀碱,

生物化学试题及答案(6)

生物化学试题及答案(6) 默认分类2010-05-15 20:53:28 阅读1965 评论1 字号:大中小 生物化学试题及答案(6) 医学试题精选2010-01-01 21:46:04 阅读1957 评论0 字号:大中小 第六章生物氧化 【测试题】 一、名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4. P/O比值 5.解偶联剂 6.高能化合物 7.细胞色素 8.混合功能氧化酶 二、填空题 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。 10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。 11.胞液中的NADH+H+通过____和____两种穿梭机制进入线粒体,并可进入____氧化呼吸链或____氧化呼 吸链,可分别产生____分子ATP或____分子ATP。 12.ATP生成的主要方式有____和____。 13.体内可消除过氧化氢的酶有____、____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 15.铁硫簇主要有____和____两种组成形式,通过其中的铁原子与铁硫蛋白中的____相连接。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 17.FMN或FAD作为递氢体,其发挥功能的结构是____。 18.参与呼吸链构成的细胞色素有____、____、____、____、____、____。 19.呼吸链中含有铜原子的细胞色素是____。 20.构成呼吸链的四种复合体中,具有质子泵作用的是____、____、____。 21.ATP合酶由____和____两部分组成,具有质子通道功能的是____,____具有催化生成ATP 的作用。 22.呼吸链抑制剂中,____、____、____可与复合体Ⅰ结合,____、____可抑制复合体Ⅲ,可抑制细胞色 素c氧化酶的物质有____、____、____。 23.因辅基不同,存在于胞液中SOD为____,存在于线粒体中的 SOD为____,两者均可消除体内产生的 ____。 24.微粒体中的氧化酶类主要有____和____。 三、选择题

生化练习题(带答案)

第一章蛋白质 选择题 1.某一溶液中蛋白质的百分含量为45%,此溶液的蛋白质氮的百分浓度为:E A.8.3% B.9.8% C.6.7% D.5.4% E.7.2% 2.下列含有两个羧基的氨基酸是:D A.组氨酸B.赖氨酸C.甘氨酸D.天冬氨酸E.色氨酸 3.下列哪一种氨基酸是亚氨基酸:A A.脯氨酸B.焦谷氨酸C.亮氨酸D.丝氨酸E.酪氨酸 4.维持蛋白质一级结构的主要化学键是:C A.离子键B.疏水键C.肽键D.氢键E.二硫键 5.关于肽键特点的错误叙述是:E A.肽键中的C-N键较C-N单键短 B.肽键中的C-N键有部分双键性质 C.肽键的羰基氧和亚氨氢为反式构型 D.与C-N相连的六个原子处于同一平面上 E.肽键的旋转性,使蛋白质形成各种立体构象 6.关于蛋白质分子三级结构的描述,其中错误的是:B A.天然蛋白质分子均有这种结构 B.有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要是次级键维系 D.亲水基团聚集在三级结构的表面 E.决定盘曲折叠的因素是氨基酸残基 7.具有四级结构的蛋白质特征是:E A.依赖肽键维系四级结构的稳定性 B.在三级结构的基础上,由二硫键将各多肽链进一步折叠、盘曲形成 C.每条多肽链都具有独立的生物学活性 D.分子中必定含有辅基 E.由两条或两条以上具有三级结构的多肽链组成 8.含有Ala,Asp,Lys,Cys的混合液,其pI依次分别为6.0,2.77,9.74,5.07,在pH9环境中电泳分离这四种氨基酸,自正极开始,电泳区带的顺序是:B A.Ala,Cys,Lys,Asp B.Asp,Cys,Ala,Lys C.Lys,Ala,Cys,Asp D.Cys,Lys,Ala,Asp E.Asp,Ala,Lys,Cys 9.变性蛋白质的主要特点是:D A.粘度下降 B.溶解度增加

医学生物化学名词解释大全(附加重点问答题)

《医学生物化学》名词解释大全(附加重点问答题) 当年吐血亲自整理……生化勉强上了90…… 名词解释超出该范围的当年貌似就一个,问答题100%全击中…… 考前攒RP!营养+临五看过来了喂~ 名词解释 1、肽键、肽 2、蛋白质的一级、二级、三级(亚基)、四级结构 3、超二级结构(模序)、结构域 4、蛋白质变性、蛋白质的别构作用 5、核酸的构件分子 6、核小体 7、基因、基因组 8、内含子、外显子、5’帽子、3’多聚腺苷酸(polyA)尾 9、增色效应 10、核酸的变性、复性、杂交 11、辅酶、辅基、酶的活性中心 12、酶原、酶原激活、同工酶、别构酶、修饰酶 13、多酶复合体、多酶体系、多功能酶 14、脂溶性维生素、水溶性维生素 15、糖的无氧酵解、有氧氧化、磷酸戊糖途径、糖原合成和分解、糖异生 16、三羧酸循环(TCA cycle)、丙酮酸羧化支路 17、营养必须脂肪酸 18、脂肪动员 19、脂解激素、抗脂解激素 20、脂肪酸的β氧化 21、酮体、酮血症、酮尿症、酮症酸中毒

22、CTP、CDP-胆碱、CDP-乙醇胺 23、血脂、载脂蛋白 24、血浆脂蛋白、乳糜微粒(CM)、极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL) 25、生物氧化 26、呼吸链(NADH氧化呼吸链、琥珀酸氧化呼吸链) 27、氧化磷酸化、底物水平磷酸化 28、α-磷酸甘油穿梭系统、苹果酸-天冬氨酸穿梭系统 29、加单氧酶 30、必需氨基酸(8种必需氨基酸口诀:甲携来一本亮色书) 31、氨基酸代谢库 32、鸟氨酸循环 33、生糖氨基酸、生酮氨基酸、生糖兼生酮氨基酸 34、一碳单位、甲硫氨酸循环 35、谷胱甘肽(GSH) 36、核苷酸的从头合成、补救合成 37、关键酶、限速酶 38、分子生物学中心法则 39、半保留复制、半不连续复制、前导链、随从链、冈崎片段、RNA引物 40、Klenow片段、单链DNA解链酶(SSB)、DNA拓扑异构酶、引发体 41、端粒、端粒酶 42、切除修复 43、基因工程(重组DNA技术)、限制性核酸内切酶 44、转录、不对称转录 45、?-因子 46、依赖ρ因子的转录终止、不依赖ρ因子的转录终止 47、核酶 48、逆转录、逆转录酶

生物化学试题带答案

生物化学试题带答案. 一、选择题 1、蛋白质一级结构的主要化学键是( E ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 2、蛋白质变性后可出现下列哪种变化( D )

A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物是( B ) A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮 酸 4、嘌呤核苷酸从头合成中,首先合成的是( A ) A、IMP B、AMP C、GMP D、XMP E、ATP 6、体内氨基酸脱氨基最主要的方式是( B ) A、氧化脱氨基作用 B、联合脱氨基作用 C、转氨基作用

D、非氧化脱氨基作用 E、脱水脱氨基作用 7、关于三羧酸循环,下列的叙述哪条不正确( D ) A、产生NADH和FADH2 B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 8、胆固醇生物合成的限速酶是( C ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶是酵解过程中的限速酶( D ) A、醛缩酶 B、烯醇化酶 C、乳酸脱氢酶 D、磷酸果糖激酶一磷酸甘油脱氢酶3、E. 10、DNA二级结构模型是( B ) A、α一螺旋 B、走向相反的右手双螺旋 C、三股螺旋 D、走向相反的左手双螺旋 E、走向相同的右手双螺旋11、下列维生素中参与转氨基作用的是( D )

A、硫胺素 B、尼克酸 C、核黄素 D、磷酸吡哆醛 E、泛酸 12、人体嘌呤分解代谢的终产物是( B ) A、尿素 B、尿酸 C、氨 D、β—丙氨酸 E、β—氨基异丁酸 13、蛋白质生物合成的起始信号是( D ) A、UAG B、UAA C、UGA D、AUG E、AGU 14、非蛋白氮中含量最多的物质是( D ) A、氨基酸 B、尿酸 C、肌酸 D、尿素 E、胆红素 15、脱氧核糖核苷酸生成的方式是( B )

生物化学选择题

生化习题 选择题 1.含有2个羧基的氨基酸是:( A ) A.谷氨酸 B. 苏氨酸 C.丙氨酸 D. 甘氨酸 2.酶促反应速度V达到最大反应速度Vmax的80%时,底物浓度[S]: ( D ) A. 1 Km B. 2 Km C. 3 Km D. 4 Km 3.三碳糖、六碳糖与七碳糖之间相互转变的糖代谢途径是:( D ) A.糖异生 B.糖酵解 C.三羧酸循环 D.磷酸戊糖途径 4.哪一种情况可用增加[S]的方法减轻抑制程度:( B ) A.不可逆抑制作用 B.竞争性可逆抑制作用 C.非竞争性可逆抑制作用 D 反竞争性抑制作用 5.鸟氨酸循环中,尿素生成的氨基来源有:( C ) A.鸟氨酸 B.精氨酸 C.天冬氨酸 D.瓜氨酸 6.糖酵解途径中,第二步产能的是: ( B ) A. 1,3-二磷酸甘油酸到 3-磷酸甘油酸 B. 磷酸烯醇式丙酮酸到丙酮酸 C. 3-磷酸甘油醛到 1,3-二磷酸甘油酸 D. F-6-P到 F-1,6-P 7.氨基酸的联合脱氨过程中,并不包括哪类酶的作用: ( D ) A 转氨酶 B L –谷氨酸脱氢酶 C 腺苷酸代琥珀酸合成酶 D 谷氨酸脱羧酶 8.下列哪一种物质不是糖异生的原料: ( C ) A. 乳酸 B. 丙酮酸 C. 乙酰CoA D. 生糖氨基酸 9.目前被认为能解释氧化磷酸化机制的假说是: ( C ) A、化学偶联假说 B、构象变化偶联假说 C、化学渗透假说 D、诱导契合假说 10、1958年Meselson和Stahl利用15N标记大肠杆菌DNA的实验证明了下列哪一种机制?(D) A.DNA能被复制 B.DNA基因可转录为mRNA C.DNA基因可表达为蛋白质

生化重点

生化重点 1.蛋白质的元素组成:C、H、O、N、S 蛋白质的平均含氮量为16% 2.组成蛋白质的基本单位:氨基酸 20种基本氨基酸:缬氨酸(Val)、异亮氨酸(Ile)、亮氨酸(Leu)、苯丙氨酸(Phe)、蛋氨酸(Met)、 色氨酸(Try)、苏氨酸(Thr)、赖氨酸(Lys)(借一两本淡色书来) 谷氨酸(Glu)、谷氨酰胺(Gln)、组氨酸(His)、半胱氨酸(Cys)、天冬酰胺(Asn)、 天冬氨酸(Asp)(估租半天) 精氨酸(Arg)、丝氨酸(Ser)、脯氨酸(Pro)、甘氨酸(Gly)丙氨酸(Ala)、 酪氨酸(Tyr)(精细铺干冰咯) 除甘氨酸外,都是L-α-氨基酸 3.蛋白质中氨基酸的连接方式:肽键、肽谷胱甘肽有游离的SH基,才有保护作用4.蛋白质的分子结构: 一级结构:多肽链中氨基酸的排列顺序。主要化学键:肽键 二级结构:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。主要化学键:氢键 (1)二级结构形成的结构基础:肽单元(肽平面、酰胺平面)定义:肽键与周围原子相连处于一个平面上 (2)二级结构的种类:α-螺旋、β-折叠片、β-转角、无规卷曲 α-螺旋特点:①沿一个中心轴螺旋上升,主要是右手螺旋 ②每螺旋一圈需要3.6个氨基酸残基,螺距为0.54nm ③第一个肽平面上氮上的H和第四个肽平面上碳上的O形成氢键,稳 定α-螺旋结构 ④侧面基团R都位于螺旋外侧 β-折叠片特点:①有两条或两条以上的多肽键并列相排,方向可以相同,也可以相反 ②从侧面观察,形成锯齿状 ③相并排的肽平面形成氢键,以稳定β-折叠结构 ④侧面基团R位于结构外侧 β-转角特点:①第一个残基的C=O与第四个残基的N—H氢键结合,形成一个紧密 的环,使β-转角成为比较稳定的结构 ②允许蛋白质倒转肽链方向 三级结构:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。主要化学键:疏水键、离子键、氢键和范德华力等 (1)三级结构的结构特点:①纤维状蛋白质通常只含一种二级结构,而球蛋白通常含有多种二级结构 ②球状蛋白质具有明显的折叠层次(一级结构→二级结构→超 二级结构→结构域三级结构或亚基→四级结构) ③球蛋白是紧密的球状或椭球状实体 ④疏水残基埋藏于球体内,亲水残基暴露于球体外 ⑤表面有一空穴(裂沟,凹槽或口袋),这个空穴能结合配体,是蛋白质的活性部位

生物化学题库及答案.

生物化学试题库 蛋白质化学 一、填空题 1.构成蛋白质的氨基酸有种,一般可根据氨基酸侧链(R)的大小分为侧链氨基酸和侧链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有性;而后一类氨基酸侧链(或基团)共有的特征是具有性。碱性氨基酸(pH6~7时荷正电)有两种,它们分别是氨基酸和氨基酸;酸性氨基酸也有两种,分别是氨基酸和氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子中含有氨基酸、氨基酸或氨基酸。 3.丝氨酸侧链特征基团是;半胱氨酸的侧链基团是 。这三种氨基酸三字母代表符号分别是 4.氨基酸与水合印三酮反应的基团是,除脯氨酸以外反应产物的颜色是;因为脯氨酸是α—亚氨基酸,它与水合印三酮的反应则显示色。 5.蛋白质结构中主键称为键,次级键有、、 、、;次级键中属于共价键的是键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 氨酸被氨酸所替代,前一种氨基酸为性侧链氨基酸,后者为性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂是;在寡肽或多肽序列测定中,Edman反应的主要特点是。 8.蛋白质二级结构的基本类型有、、 和。其中维持前三种二级结构稳定键的次级键为 键。此外多肽链中决定这些结构的形成与存在的根本性因与、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的α-螺旋往往会。 9.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是 和。 10.蛋白质处于等电点时,所具有的主要特征是、。 11.在适当浓度的β-巯基乙醇和8M脲溶液中,RNase(牛)丧失原有活性。这主要是因为RNA酶的被破坏造成的。其中β-巯基乙醇可使RNA酶分子中的键破坏。而8M脲可使键破坏。当用透析方法去除β-巯基乙醇和脲的情况下,RNA酶又恢复原有催化功能,这种现象称为。 12.细胞色素C,血红蛋白的等电点分别为10和7.1,在pH8.5的溶液中它们分别荷的电性是、。 13.在生理pH条件下,蛋白质分子中氨酸和氨酸残基的侧链几乎完全带负电,而氨酸、氨酸或氨酸残基侧链完全荷正电(假设该蛋白质含有这些氨基酸组分)。 14.包含两个相邻肽键的主肽链原子可表示为,单个肽平面及包含的原子可表示为。 15.当氨基酸溶液的pH=pI时,氨基酸(主要)以离子形式存在;当pH>pI时,氨基酸

生化选择题

1.酶竞争性抑制作用的特点是:C.Km值增高,Vmax不变 2.合成卵磷脂时所需的活性胆碱是:D.CDP-胆碱 3.核酸中核苷酸之间的连接方式是:B.3',5'-磷酸二酯键 4.三羧酸循环中有底物水平磷酸化的反应是:B.琥珀酸COA—琥珀酸 5.稀有碱基常出现于:C.tRNA 6.血浆中能够转运胆红素和磷胺药的是:D.清蛋白 7.SAM的重要作用是:B.提供甲基 8.肌肉中氨基酸脱氢的主要方式是:D.嘌呤核苷酸循环 9.磺胺类药物能竞争性抑制二氢叶酸还原酶是因为其机构相似于:A.对氨基苯甲酸 10.合成嘌呤核苷酸过程中首先合成的是:E.TMP 11.关于酶原与酶原的激活,正确的是:D.酶原激活过程的实质是酶的活性中心形成或暴露的过程 12.蛋白质变性是由于:D.次级键断裂,天然构象解体 13.下列哪种碱基只存在于mRNA而不存在于DNA中:C.尿嘧啶 14.蛋白质对紫外线的最大吸收波长是:C.280nm 15.电子在细胞色素间传递的顺序是:B.b→C1→C→aa3→O2 16.下列核苷酸经还原能转变生成脱氧核苷酸的是;B.NDP 17.单链DNA结合蛋白的作用是:C.稳定和保护单链模板 18.下列不是操纵子组成部分的是:C.阻遏物 19.蛋白质的含氮量为:C.16% 20.与糖无氧氧化过程无关的酶是:C.磷酸烯醇式丙酮酸羧激酶 21.真核mRNA的特点不包括:C.含量多更新慢 22.初级胆汁酸不包括:E.石胆酸 23.盐析法沉淀蛋白质的原理是:A.中和电荷,破坏水化膜 24.基因工程的操作顺序可概括为:E.分、切、接、转、筛 25.含有两个氨基的氨基酸是:D.赖氨酸 26.维生素B2是下列哪种辅基的组成成分:E.FMN 27.构成最简单启动子常见功能组件是:A.TATA盒 28.肌糖原不能分解补充血糖,是因为缺乏:D.葡萄糖-6-磷酸酶 29.人体内糖的运输形式是:B.葡萄糖 30.下列哪些氨基酸是人体必需氨基酸:A.缬氨酸 31.肽键形成部位是:B.核糖体大亚基A位 32.作为G蛋白的特点,其中α亚基具有下列哪种酶的活性:A.GTP酶 33.胆色素不包括:E.细胞色素 34.下列选项中,符合tRNA结构特点的是:C.反密码子 35.糖异生最重要的生理意义是:B.饥饿时维持血糖浓度的相对恒定 36.合成糖原时,葡萄糖基德直接供体:C.UDPG 37.关于构成蛋白质的氨基酸的叙述,下列哪项是正确的:B.除GIy外均为L构型 38.下列关于原癌基因的叙述,正确的是:C.维持正常细胞生理功能 39.关于抑癌基因叙述错误的是:E.最早发现的是P53基因 40.脂肪酸COA进行β-氧化反应顺序为:C.脱氢、加水、再脱氢、硫解 41.胞液中脂肪酸合成的限速酶是:E.乙酰COA羧化酶 42.高密度脂蛋白的生理功能是:D.运输胆固醇到肝脏 43.酮体生成和胆固醇合成的共同中间产物是:D.HMGCOA 44.下列哪一化合物是营养必须脂肪酸:B.亚麻酸

生化重点名词解释

生化重点名解 1.Peptide unit(肽单元):参与肽键的6个原子Cα1、C、O、N、H和C α2位于同一平面,Cα1和Cα2在平面上的位置反式构型,此同一平面上的6个原子构成了肽单元。 2.motif(模体):在许多蛋白质分子中,两个或三个具有二级结构的肽段在空间上相互接近,形成一个特殊的空间构象,一个模体有其特征性的氨基酸序列并发挥特殊的功能,如锌指结构。 3.domain(结构域):分子量大的蛋白质,三级结构常可分割成一个和数个球状或纤维状区域,折叠的较为紧密,具有独立的生物学功能,称为结构域。 4.denaturation of protein(蛋白质变性):某些物理和化学因素作用下,蛋白质的特定空间结构被破坏,从而导致其理化性质的改变和生物活性的丧失,称为蛋白质变性。 5.isoelectic point of protein(蛋白质等电点):在某一pH溶液中,蛋白质解离成正负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH值称为该蛋白质的等电点。 6.active site/active center of enzyme(酶的活性中心):酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物,这一区域称为酶的活性中心。 7.allosteric enzymes and allosteric regulation of enzymes(变构酶与酶的变构调节):体内一些代谢物对其代谢途径中前1~2个关键酶起反馈调节作用。这些代谢物与关键酶分子活性中心外的某个部位可逆结合,使酶发生变构而改变其催化活性。酶分子中的这些结合部位称为变构部位或调节部位。对酶催化活性的这种调节方式称为变构调节。受变构调节的酶称作变构酶或别构酶。

生化各章节重点及复习题

蛋白质结构与功能 单选题 1细胞内含量最多的有机成分为 A 蛋白质 B 核酸 C 糖 D 脂类 E 酶 2以下属于营养必需氨基酸的是 A 天冬酰胺 B 谷氨酰胺 C 酪氨酸 D 赖氨酸 E 丝氨酸 3镰刀型红细胞性贫血是哪种蛋白质结构的改变与异常 A 乳酸脱氢酶 B 淀粉酶 C 胰岛素 D 肌红蛋白 E 血红蛋白 4组成蛋白质的氨基酸之间分子结构的不同在于其 A Cα B Cα-H C Cα-COOH D Cα-R E Cα-NH2 5氨基酸排列顺序属于蛋白质的几级结构 A 一级 B 二级 C 三级 D 四级 E 五级 6维持蛋白质α-螺旋的化学键主要是 A 肽键 B 二硫键 C 盐键 D 氢键 E 疏水键 7一般蛋白质分子中二硫键断裂,生物活性发生的变化是 A 升高 B 降低 C 不变 D 丧失 E 略有改变 8肌红蛋白分子中比较多的二级结构是 A α-螺旋 B β-折叠 C β-转角 D 无规卷曲 E 以上均不是 9蛋白质的紫外吸收峰OD280测定的基础主要是由于含有以下什么氨基酸? A 色氨酸 B 谷氨酸 C 苯丙氨酸 D 天冬氨酸 E 组氨酸 10蛋白质的变构效应常发生在具有几级结构的蛋白质分子上? A 一级 B 二级 C 三级 D 超二级 E四级

名词解释 1酸性氨基酸 2中性氨基酸 3肽键 4寡肽 5二硫键 6构象 7亚基 8α-螺旋 9β-折叠 10变性 问答题 1大分子蛋白质的分子组成,分子结构特点是什么? 2试描述蛋白质分子各种空间结构的定义与特点。 3蛋白质分子中二硫键的存在与作用是什么? 4试小结蛋白质分子中α-螺旋的结构要点。 5β-折叠与β-转角有何不同? 6概述二硫键在蛋白质分子中的分布与重要性 7蛋白质一级结构与功能的关系是什么? 8蛋白质空间结构与功能的关系是什么? 9什么是蛋白质的变性和复性?试叙述其分子机制。 10蛋白质变构效应有什么生理意义? 核酸结构与功能 单选题 1.核酸分子中储存,传递遗传信息的关键部分是: A.磷酸戊糖B.核苷 C.碱基顺序D.戊糖磷酸骨架 E.磷酸 2.关于核苷酸生理功能的错误叙述是: A.作为生物体的直接供能物质B.作为辅酶(基)的成分C.作为生理、生化调节剂D.作为核酸的基本结构成分E.以上都不对 3.关于ChargaffDNA组成规律不包括: A.同种生物的DNA碱基组成相同 B.异种生物的DNA碱基组成不同 C.碱基成分随年龄的不同而不同 D.嘌呤含量等于嘧啶含量 E.碱基有互补对应关系

生物化学试题及答案 (1)

121.胆固醇在体内的主要代谢去路是( C ) A.转变成胆固醇酯 B.转变为维生素D3 C.合成胆汁酸 D.合成类固醇激素 E.转变为二氢胆固醇 125.肝细胞内脂肪合成后的主要去向是( C ) A.被肝细胞氧化分解而使肝细胞获得能量 B.在肝细胞内水解 C.在肝细胞内合成VLDL并分泌入血 D.在肝内储存 E.转变为其它物质127.乳糜微粒中含量最多的组分是( C ) A.脂肪酸 B.甘油三酯 C.磷脂酰胆碱 D.蛋白质 E.胆固醇129.载脂蛋白不具备的下列哪种功能( C ) A.稳定脂蛋白结构 B.激活肝外脂蛋白脂肪酶 C.激活激素敏感性脂肪酶 D.激活卵磷脂胆固醇脂酰转移酶 E.激活肝脂肪酶 131.血浆脂蛋白中转运外源性脂肪的是( A ) (内源) 136.高密度脂蛋白的主要功能是( D ) A.转运外源性脂肪 B.转运内源性脂肪 C.转运胆固醇 D.逆转胆固醇 E.转运游离脂肪酸 138.家族性高胆固醇血症纯合子的原发性代谢障碍是( C ) A.缺乏载脂蛋白B B.由VLDL生成LDL增加 C.细胞膜LDL受体功能缺陷 D.肝脏HMG-CoA还原酶活性增加 E.脂酰胆固醇脂酰转移酶(ACAT)活性降低 139.下列哪种磷脂含有胆碱( B ) A.脑磷脂 B.卵磷脂 C.心磷脂 D.磷脂酸 E.脑苷脂

二、多项选择题 203.下列物质中与脂肪消化吸收有关的是( A D E ) A.胰脂酶 B.脂蛋白脂肪酶 C.激素敏感性脂肪酶 D.辅脂酶 E.胆酸 204.脂解激素是( A B D E ) A.肾上腺素 B.胰高血糖素 C.胰岛素 D.促甲状腺素 E.甲状腺素 206.必需脂肪酸包括( C D E ) A.油酸 B.软油酸 C.亚油酸 D.亚麻酸 E.花生四烯酸208.脂肪酸氧化产生乙酰CoA,不参与下列哪些代谢( A E ) A.合成葡萄糖 B.再合成脂肪酸 C.合成酮体 D.合成胆固醇 E.参与鸟氨酸循环 216.直接参与胆固醇合成的物质是( A C E ) A.乙酰CoA B.丙二酰CoA 217.胆固醇在体内可以转变为( B D E ) A.维生素D2 B.睾酮 C.胆红素 D.醛固酮 E.鹅胆酸220.合成甘油磷脂共同需要的原料( A B E ) A.甘油 B.脂肪酸 C.胆碱 D.乙醇胺 E.磷酸盐222.脂蛋白的结构是( A B C D E ) A.脂蛋白呈球状颗粒 B.脂蛋白具有亲水表面和疏水核心 C.载脂蛋白位于表面、VLDL主要以甘油三酯为核心、HDL主要的胆固醇酯为核心

生化B型题选择填空题

第一章蛋白质的结构与功能 A.赖氨酸 B.半胱氨酸 C.谷氨酸 D.脯氨酸 E.亮氨酸 1.碱性氨基酸是: 2.含巯基的氨基酸是: 3.酸性氨基酸是: 4.亚氨基酸是: 5.含非极性侧链氨基酸的是: A. 一级结构 B.二级结构 C.超二级结构 D.三级结构 E.四级结构 6.是多肽链中氨基酸的排列顺序: 7.是整条肽链中全部氨基酸残基的相对空间位置: 8.是蛋白质分子中各个亚基的空间排布和相互作用: 9.是主链原子的局部空间排布: A.蛋白质的等电点 B.蛋白质沉淀 C.蛋白质的结构域 D.蛋白质的四级结 E.蛋白质变性 10.蛋白质分子所带电荷相等时的溶液pH值是: 11.蛋白质的空间结构被破坏,理化性质改变,并失去其生物活性称为: 12.蛋白质肽链中某些局部的二级结构汇集在一起,形成发挥生物学功能的特定区域称为: A.亚基 B. B -转角 C. a -螺旋 D.三股螺旋 E. B -折叠 13.只存在于具有四级结构的蛋白质中的是: 14.a -角蛋白中含量很多的是: 15.天然蚕丝中蛋白含量很多的是: 16.在脯氨酸残基处结构被破坏的是: 17.氢键与长轴接近垂直的是: 18.氢键与长轴接近平行的是: A.四级结构形成 B.四级结构破坏 C. 一级结构破坏 D. 一级结构形成 E.二、三级结构破坏 19.亚基聚合时出现: 20.亚基解聚时出现: 21.蛋白质变性时岀现: 22.蛋白质水解时出现: 23.人工合成多肽时出现: A. 0.9%NaCI B.常温乙醇 C.稀酸加热 D.加热煮沸 E.高浓度硫酸铵 24.蛋白质既变性又沉淀: 25.蛋白质既不变性又不沉淀: 26.蛋白质沉淀但不变性: 27.蛋白质变性但不沉淀: 28.蛋白质凝固: A.氧化还原作用 B.表面电荷与水化膜 C. 一级结构和空间结构 D.紫红色 E.紫蓝色 29.还原型谷胱甘肽具有的功能是:

生物化学重点名词解释

生物化学重点名词解释 —重点章节 1.生物氧化(biological oxidation) 2.呼吸链(respiratory chain) 3.氧化磷酸化(oxidative phosphorylation) 4.磷氧比(P/O) 5.底物水平磷酸化(substrate level phosphorylation) 6.能荷(energy charge) 7.诱导酶(Inducible enzyme) 8.标兵酶(Pacemaker enzyme) 9.操纵子(Operon) 10.衰减子(Attenuator) 11.阻遏物(Repressor) 12.辅阻遏物(Corepressor) 13.降解物基因活化蛋白(Catabolic gene activator protein) 14.腺苷酸环化酶(Adenylate cyclase) 15.共价修饰(Covalent modification) 16.级联系统(Cascade system) 17.反馈抑制(Feedback inhibition) 18.交叉调节(Cross regulation) 19.前馈激活(Feedforward activation) 20.钙调蛋白(Calmodulin) 21.糖异生(glycogenolysis) 22.Q酶(Q-enzyme) 23.乳酸循环(lactate cycle) 24.发酵(fermentation) 25.变构调节(allosteric regulation) 26.糖酵解途径(glycolytic pathway) 27.糖的有氧氧化(aerobic oxidation) 28.肝糖原分解(glycogenolysis) 29.磷酸戊糖途径(pentose phosphate pathway) 30.D-酶(D-enzyme) 31.糖核苷酸(sugar-nucleotide) 1.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化 2.呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。电子在逐步的传递过程中释放出能量被用于合成A TP,以作为生物体的能量来源。

生物化学试题及答案 (3)

一、名词解释 二、选择题(每题1分,共20分) 1、蛋白质多肽链形成α-螺旋时,主要靠哪种次级键维持() A:疏水键;B:肽键: C:氢键;D:二硫键。 2、在蛋白质三级结构中基团分布为()。 A B C: D: 3、 A: C: 4、 A B C D 5 A B C D 6、非竟争性抑制剂对酶促反应动力学的影响是()。 A:Km增大,Vm变小; B:Km减小,Vm变小; C:Km不变,Vm变小; D:Km与Vm无变化。 7、电子经FADH2呼吸链交给氧生成水时释放的能量,偶联产生的ATP数为()A:1;B:2;C:3;D:4。 8、不属于呼吸链组分的是()A:Cytb;B:CoQ;C:Cytaa3;D:CO2。 9、催化直链淀粉转化为支链淀粉的是() A:R酶;B:D酶; C:Q酶;D:α—1,6糖苷酶10、三羧酸循环过程叙述不正确的 1 。C:脱氨基作用;D:水解作 用。 15、合成嘌呤环的氨基酸是()。A:甘氨酸、天冬氨酸、谷氨酸;B:甘氨酸、天冬氨酸、谷氨酰胺;C:甘氨酸、天冬酰胺、谷氨酰胺;D:蛋氨酸、天冬酰胺、谷氨酸。 16、植物体的嘌呤降解物是以() -来源网络,仅供个人学习参考

形式输送到细嫩组织的。 A:尿酸;B:尿囊酸; C:乙醛酸;D:尿素。 17、DNA复制方式为()。 A:全保留复制; B:半保留复制; C:混合型复制; D:随机复制。 18、DNA复制时不需要下列那种A: B C: D: 19 A: 20、 A B C D 三、 1 ( 2 ( 3、生物氧化是()在细胞中(),同时产生()的过程。 4、麦芽糖是()水解的中间产物。它是由两分子的()通过()键连接起来的双糖。 5、磷酸戊糖途径是在()中进行的,其底物是(),产物是()和()。 6、核糖核酸的合成有()和()。 7、蛋白质合成步骤为()、()、()。 四、是非判断题(每题1分,共10分) 1、蛋白质分子中的肽键是单键,因此能够自由旋转。() 2、复性后DNA分子中的两条链依然符合碱基配对原则。() ) 。 蛋白质的空间结构遭到破坏,性质发性改变,生物活性丧失的现象。 2、减色效应:指DNA分子复性时其紫外吸收减少的现象。 3、活性中心:酶分子上直接与底物结合并进行催化的部位。 4、电子传递体系:代谢物上的氢原子经脱氢酶激活脱落后,经过一系列的传递体传递给最终受体氧形成二氧化碳和水的全部过程。 5、必需脂肪酸:是指人体不能合成,必需由食物提供的脂肪酸。 6、遗传密码:mRNA中的核苷酸和肽链中氨基酸的对应方式。 7、生糖氨基酸:分解产物可以进入糖异生作用生成糖的氨基酸。 8、逆转录:是指以RNA为模板指导DNA生物合成的过 -来源网络,仅供个人学习参考

相关主题
文本预览
相关文档 最新文档