当前位置:文档之家› 硅微型陀螺仪零偏温度性能补控方法设计

硅微型陀螺仪零偏温度性能补控方法设计

硅微型陀螺仪零偏温度性能补控方法设计
硅微型陀螺仪零偏温度性能补控方法设计

万方数据

万方数据

万方数据

万方数据

万方数据

硅微陀螺仪零偏温度性能补控方法设计

作者:夏敦柱, 王寿荣, 周百令, Xia Dunzhu, Wang Shourong, Zhou Bailing

作者单位:东南大学微惯性仪表与先进导航技术教育部重点实验室,南京,210096

刊名:

东南大学学报(自然科学版)

英文刊名:Journal of Southeast University(Natural Science Edition)

年,卷(期):2012,42(2)

被引用次数:1次

参考文献(8条)

1.Kulygin A;Schnid U;Seidel H Characterization of a novel micromachined gyroscope under varying ambient pressure conditions[外文期刊] 2008(01)

2.Li Z;Yang Z;Xiao Z A bulk micromachined vibratory lateral gyroscope fabricated with wafer bonding and deep trench etching 2000(1/2/3)

3.Ashwin A S Integrated micromechanical resonant sensor for inertial measurement system 2002

4.Wyatt O D Mechanical analysis and design of vibratory micromachined gyroscopes 2001

5.Jason K P H Modeling and identification of the jet propulsion laboratory vibratory rate microgyroscope 2002

6.房建成;李建利;盛蔚改进的内框架驱动式硅MEMS陀螺温度误差模型[期刊论文]-北京航空航天大学学报 2006(11)

7.Shcheglov K;Evans C;Gutierrez R Temperature dependent characteristics of die JPL silicon MEMS gyroscope 2000

8.Xia Dunzhu;Cheng Shuling;Wang Shourong Temperature compensation method of silicon microgyroscope based on BP neural network[期刊论文]-Journal of Southeast University(English Edition) 2010(01)

引证文献(1条)

1.吴峰.王向军.汤其剑基于数字调节方法的MEMS陀螺零位补偿技术研究[期刊论文]-传感技术学报 2012(12)

本文链接:https://www.doczj.com/doc/df10724759.html,/Periodical_dndxxb201202019.aspx

微陀螺仪的设计与制造过程

微陀螺仪的设计与制造 学校:华中科技大学 专业:机械设计制造及其自动化 姓名:潘登 班级:1104班 学号:U201110689 指导老师: 廖广兰 来五星

中文摘要 随着科学技术的发展以及科研技术的逐渐成熟。陀螺仪也逐渐进入了各个领域。现如今陀螺仪在航海导航、航天航空、研究动力学、兵器、汽车、生物医学、环境监控等方面有了广泛的应用。而各种陀螺仪也因其原理的不同而有不同的分类,诸如哥氏加速度效应微振动陀螺、流体陀螺、固体微陀螺、悬浮转子式微陀螺、微集成光学式陀螺以及原子陀螺。而其中随着MEMS技术的不断发展,以其为基础的微陀螺因尺寸小、精度高、重量轻、易于数字化、智能化而越来越受到大家青睐。其在汽车导航、消费电子和移动应用等民用领域以及现代和可预见的未来高科技战场上拥有广阔的发展和市场前景。 文章首先对陀螺仪做了简单的原理和功能介绍,阐述了当前微陀螺仪是非常具有前景的研究防线,并简单介绍了几种常见的微陀螺仪,然后对微陀螺仪的结构进行了简单的分析并且分析了微机械陀螺仪的设计及制造过程和工艺方法并对其中的技术难点进行了分析,也对加工陀螺仪必须的MEMS工艺进行了概述,然后对微陀螺仪的前景及应用进行了进一步的探讨。 关键词: 微机械陀螺仪,MEMS工艺,制作过程,关键技术

Abstract With the development of science and technology as well as scientific research and technology matures.Gyroscope is gradually coming into the fields.Now gyroscope has broad application in marine navigation, aerospace, research dynamics, weapons, cars, bio-medicine, environmental monitoring, etc.And also because of the various gyroscope different principles and have different classifications, such as the Coriolis acceleration effect of micro-vibration gyro, gyro fluid, solid micro-gyroscope, suspended gyroscope rotor micro, micro-gyroscope integrated optical and atomic gyroscope. With the continuous development of which MEMS technology, with its micro-gyroscope-based due to the small size, high precision, light weight, easy-to-digital, intelligent and increasingly being favored. It has a broad development and market prospects in the car navigation, consumer electronics and mobile applications and other civilian areas as well as modern and high-tech battlefield for the foreseeable future. The article first gyroscope do a simple principle and function description, describes the current micro-gyroscope is a very promising line of research, and a brief introduction to some common micro-gyroscope, then the structure of the micro-gyroscope simple analysis and analysis of the micromachined gyroscope design and manufacturing process and process methods and technical difficulties which were analyzed, but also on the processing of MEMS gyroscope must be an overview of the process, then the prospects for and application of micro-gyroscopes were further discussion. Keywords: Micromechanical gyroscopes, MEMS technology, production process, key technologies

硅微型两自由度振动轮式陀螺仪原理分析

第29卷第6期1999年11月 东 南 大 学 学 报JOURNAL OF SOUTHEAST UNIVERSITY Vol 29No 6Nov.1999 收稿日期:1999-03-16. 第一作者:男,1967年生,讲师. 硅微型两自由度振动轮式陀螺仪原理分析 苏 岩 王寿荣 周百令 (东南大学仪器科学与工程系,南京210096) 摘 要 首次提出了2种两自由度振动轮式陀螺仪新结构.详细分析了陀螺仪工作原理,推导了陀螺仪动力学方程.介绍了电容信号器和力矩器的工作原理. 关键词 振动轮式陀螺仪;梳状谐振器;电容信号器 分类号 U666 123 国内外硅微型陀螺仪的研究方兴未艾.各种新的设想、新的结构、新的工艺层出不穷.目前,国内各研究单位所研究的微机械陀螺仪为单自由度陀螺仪.因此,研制、开发两自由度微机械陀螺仪是一项有意义的探索性工作. 本文提出了2种新的陀螺仪结构,这2种结构均可以实现两自由度输入敏感[1].由于环式陀螺仪的外环可以做的较大,因而动量矩较以往的陀螺仪为大,精度将得到很大提高.1 两自由度振动轮式陀螺仪的结构 双环振动轮式陀螺仪的结构如图1所示.该陀螺仪由上下两层构成.下层为引线和电容极板层,该层与仪表壳体相固连;上层为陀螺仪主体结构.陀螺仪外环通过一对挠性轴和内环相连;内环通过两对辐条和一对挠性轴与固定支架相连.外环与底板上的镀金层分别构成两对电容.这两对电容构成信号器和力矩器.用于敏感x 、y 轴的输入角速度和平衡输入力矩.内环设计成梳状谐振器,整个环等分成4部分,分别构成4个谐振器.各谐振器产生的静电力矩用于驱动内、外环绕回转轴振动.内环通过一对外挠性轴带动外环振动. 三环振动轮式陀螺仪的结构如图2所示.该陀螺仪亦由上下两层构成.下层为引线和电容极板层,该层与仪表壳体相固连;上层为陀螺仪主体结构.陀螺仪由3个圆环通过挠性轴相连.外环通过一对扁平状挠性轴与中环相连;中环通过另一对与外环挠性轴相垂直的扁平状挠性轴和内环相连;内环通过十字型挠性轴与圆柱形固定支架相连.外、中环可以分别绕各自的挠性轴扭转.同时,外、中环与底板上的镀金层分别形成两对电容.这两对电容构成信号器和力矩器.用于敏感x 、y 轴的输入角速度和平衡输入力矩.内环设计成梳状谐振器,整个内环等分成4部分,分别构成4个谐振器.各谐振器产生的静电力矩用于驱动内、中、外环振动.内环通过两对挠性轴带动中环和外环振动. 图3所示的陀螺仪结构为图2所示陀螺仪结构的另一种变型.其主要区别在于,图2所示陀螺仪的谐振器的固定叉指为外结构.中环与内环之间挠性轴的长度较长,结构设计时的难度

内框驱动式硅微型角振动陀螺仪灵敏度研究

The S en sitivity Study of an Angular Vibratory Microme chanical Gyro s cope Driven by the Inner Frame F A NY u e-m i n g1,2,M A O Pan-s o n g2 1.D e pa rt m e nt o f In fo r matio n e n g in e er in g,N an jin g U n i v er s it y of Po st s an d T e le c o m m u n ic atio n,N an jin g210003,C h ina 2.D e pa rt m e nt o f E le ctr o n ic e n gi n e e r in g,S o u th e ast U ni v e r sit y,N an ji n g210096,C h in a () Ab stra ct: T hi s pa pe r de v el o p s d y na m ic a n d s en sit i ve eq u ati o n s o f a n g ula r v i br at or y m ic r o m e ch an ic al g yr o s c o p e w ith d u-al-g i m b al dri v en b y t he i n ne r g i m bal f r a m e,a n d pr ese nt s t w o s i m p le an d f ea si ble m et h o d s t o e n ha nc e t he g yr o sc o pe’s sen s iti v it y.T he f re q ue nc y o f t he i n ne r g i m bal f ra m e an d th e nat ur al f r eq u en c y o f th e o ute r g i m bal f ra m e a re e q ual.T h e dri v en si g n al co n si sts o f t w o s in e-w a v es an d th eir fr e q ue ncies a r e s ele cted t o eq u al t o th e nat ur al f re q ue nc y o f in n e r an d o ute r f r a m e.in de si g ni n g g yr o s co pe s y ste m. Ke y w ord s: 7630m icr o m e ch an ic al g y ro sc o p e;d o u b le g i m b als;se n siti v it y EEACC: 内框驱动式硅微型角振动陀螺仪灵敏度研究① 方玉明1、2,茅盘松2 1.南京邮电学院信息工程系,南京210003; 2.东南大学电子工程系,南京210096. () 摘要:建立了内框驱动式硅微型角振动陀螺仪的运动方程,导出了灵敏度方程,提出了提高陀螺系统灵敏度的简单可行的方法,即:设计制造陀螺仪时,使内外框架固有频率相等,或驱动信号采用二个正弦波之和,二个正弦波的频率应选为框架的固有频率。 关键词:微机械陀螺仪;双框架;灵敏度 中图分类号:1?249.122文献标识码:A文章编号:1005-9490(2004)01- 众所周知,微陀螺仪技术对国防建设和国民经济建设具有极其重要的意义。它广阔的应用前景使得这方面的课题成为热门的跨世纪的研究领域之一。硅微型双框架式角振动陀螺仪首先由美国C S-D L实验室1988年研制成功。它有两个框架,一为驱动,一为检测。按驱动框是内框还是外框,可分为内框驱动式和外框驱动式。对于内框驱动,施加于内框架的驱动力矩可以被挠性杆隔离,不会引起外框架振动,从而可以提高信噪比。故本文按内框驱动式,建立了硅微型角振动陀螺仪的运动方程,导出了灵敏度方程,提出了提高陀螺系统灵敏度的简单可行的方法,即:设计制造陀螺仪时,使内外框架固有频率相等,或驱动信号采用二个正弦波之和,二个正弦波的频率应分别选为内、外框架的固有频率。 1内框驱动式硅微型角振动陀螺仪的结构组成及工作原理[1] 如图1所示,陀螺仪由内、外两个框架组成,内 第27卷第1期2004年3月 电子器件 C h in ese J o urn al o f E le ctr o n D e v ic es V o l.27,N o.1 M a r ch.2004 ①收稿日期:2003-02-24 基金项目:江苏省高校自然科学研究计划项目资助(项目编号:03K J B510089) 作者简介:方玉明(1952-),女,南京邮电学院信息工程系讲师,现在东南大学电子工程系微电子专业攻读博士学位,研究方向为微电子学及M E M S系统研究,f an g y m@nj u p t.ed https://www.doczj.com/doc/df10724759.html,.

微机械陀螺仪的国内外发展概述

微机械陀螺仪的国内外发展概述 学号:07060441x28 姓名: 摘要:陀螺仪是一种用于测量旋转速度或旋转角的仪器。它在运输系统,例如:导航、刹车调节控制和加速度测量等方面有很多的应用。微机械陀螺仪主要有振动式微机械陀螺仪、转子式微机械陀螺仪、微机械加速度计陀螺仪三种,现在工业控制、航空航天、军用技术都不可能离开惯性传感器:汽车、消费品和娱乐市场也开始依赖这些设备。许多市场调查一致认为微机械传感器市场将以每年15%-25%的年增长率增长。微机械陀螺仪的性能指标在很短的十几年内得到了迅速提高,目前正由速率级向战术级精度迈进。根据随机游走系数定义陀螺仪的性能指标,体微机械和表面微机械陀螺仪的性能在每2年便以10倍的速度得到提高,表面微机械陀螺仪和体微机械陀螺仪的性能的差距也越来越小。也正是由于微机械陀螺仪的广泛应用,使得世界各国都致力于对陀螺仪的研究和发展。 正文: 一、微机械陀螺仪的分类简介及用途。 陀螺是首先在火箭上得到应用的,开始于二战期间德国的V2火箭。从此,陀螺仪和加速度计成为一门惯性技术而快速发展起来,冷战时期精度上快速提高,功能上有很大扩展。不仅在海、陆、空、天的军事领域普遍应用,而且在大地测量、空中摄影、隧道开凿和石油钻井等等许多民用部门也用它起到定向和稳定作用。在军事应用的牵引下,惯性仪表精度大幅提高的同时,相关的制造工艺越来越复杂,生产周期长,成本很高,价格昂贵,令民用部门望而却步。即使在军用方面,由于陀螺仪转子的高速旋转和惯性测量系统的复杂性,在可靠性、安全性、兼容性、寿命以及体积重量等方面也暴露出某些固有的弱点。凡此种种,促使科技人员去思考和探索新的测量工具和测量方式,以替代传统的机械转子式的陀螺仪。因而,各种各样的新型陀螺仪和加速度计相继研制出来并成功地获得应用。微机械陀螺仪主要有振动式微机械陀螺仪、转子式微机械陀螺仪、微机械加速度计陀螺仪三种: (1)振动式微机械陀螺仪。 振动式微机械陀螺仪利用单晶硅或多晶硅制成的振动质量,在被基座带动旋转时的哥氏效应感测角速度。多采用平面电极或是梳状电极静电驱动,并采用平板电容器进行检测。其分类如下:

带你看看高精度陀螺仪有哪些

带你看看高精度陀螺仪有哪些 对于陀螺仪,可能大家没怎么听过这样概念,但是你早已接触过陀螺仪带来的功能。就是在不锁定手机的情况下,进行手机的翻转,界面也跟着翻转;在玩精灵宝可梦的时候,你通过手机的偏转,画面进行的偏转,从而抓到你的皮卡丘。 陀螺仪的另一种叫法又称角速度传感器,从定义上来看陀螺仪是测量载体角运动或者角速度的传感器从应用的角度上来看,陀螺仪多用于导航、定位等系统常用实例如手机GPS 定位导航、卫星三轴陀螺仪定位,其陀螺仪的精度在整个过程中起到了至关重要的作用,也就是高精度的陀螺仪直接决定了惯性导航系统的精度以及制导和自动控制系统的性能品质。 现在随着陀螺仪的发展,技术越来越成熟,陀螺仪的结构和原理都有着很大的变化。由于设备对偏转度的要求越来越精准,已经出现了高精度陀螺仪这一概念,完全不局限在传统的机械陀螺仪当中,下面就来介绍一下,近年来成功开发的高精度陀螺仪。 1.静电陀螺仪 虽然传统的机械陀螺仪已经满足不了用户、或是场景变换上的精度需求了,但并不意味着包含转子结构的陀螺仪已经完全退出了高精度陀螺仪队伍当中。其身为机械陀螺仪的升级版本,静电陀螺仪利用电场克服了转子旋转的摩擦力,大大提高了陀螺仪的精度。可惜生产难度较大,限制了其大规模的应用。 2.压电陀螺仪 对于经常接触传感器的人都会知道,在需要完成测压力这一任务的时候,我们基本会采用压电传感器。但对压电陀螺仪并不清楚,压电陀螺仪是一种振动陀螺,依靠压电材料的压电效应,当角速度不同时,贴在不同方向上的压电薄片的电压也出现偏差,依此测量角速度。作为高精度陀螺仪,压电陀螺仪的抗干扰能力也十分强大,甚至经受的动态核爆实验也没有损坏,因此多用在军工方面。 3.光纤陀螺仪 光纤陀螺仪可谓顺应着时代的陀螺仪潮流而诞生,其具有精度高,体积小等特点,而且在

陀螺仪温度控制系统设计

基于Fuzzy-PID的陀螺仪温度控制系统设计 Temperature Control System of Gyroscope Based on Fuzzy-PID 摘要:陀螺仪是舰船上的重要组成部件,其性能的稳定对于舰船的控制至关重要。将Fuzzy-PID算法应用于陀螺仪温度控制系统,以MCS-51单片机作为温度控制系统的核心部件,采用模糊PID算法以及其他的软硬件设计,实现了一套温度采集和控制的设计方案。 关键词:温度控制;Fuzzy-PID;陀螺仪 引言 ---在舰船中,陀螺仪是关键的部件,陀螺球体与陀螺壳体之间的空间内充满悬浮液体。陀螺球体质量和悬浮液体比重的选择,应确保在悬浮液体加热到工作温度以后,陀螺球体可以拥有中性浮力。所以温度控制系统的设计应保证加热和保持充入陀螺部件的液体的常值工作温度为70±0.2℃,因为在这个温度上陀螺球体具有中性浮力。 ---传统控制方法(包括经典控制和现代控制)在处理具有非线形或不精确特性的被控 对象时十分困难。而温度系统为大滞后系统,较大的纯滞后可引起系统不稳定。大量的应用实践表明,采用传统的PID控制稳态响应特性较好,但难以得到满意的动态响应特性。模糊控制的优点是能够得到较好的动态响应特性,并且无需知道被控对象的数学模型,适应性强,上升时间快,鲁棒性好。但模糊控制也存在固有的缺点,容易受模糊规则有限等级的限制而引起误差。本设计中采用AT89C52作为控制内核,并采用了Fuzzy-PID复合控制。弥补了单纯采用PID算法的不足。对PID参数的模糊自适应整定进一步完善了PID控制的自适应性能,在实际应用中取得了很好的效果。 温度控制系统的工作原理 ---陀螺仪温度控制系统主要由温度传感器、AT89C52单片机、A/D信号采集模块、可控硅输出控制及其他一些外围电路组成。系统的被控对象是陀螺部件内的液体温度,执行机构是可控硅触发电路。工作温度借助电桥测量。电桥的三个臂是配置在控制系统内的电阻,第四个臂是陀螺部件加热温度传感器的电阻。来自电桥的信号值通过高精度集成运放OP07进行差动放大、滤波,然后再送给A/D采样。根据测量的电流端和电压端原理,电桥电压信号的采集采用三线制接法,如图1所示。这是一种最实用又能较精确测温的方式,R4、R5和R6为连线和接触电阻。由于采用上述三线制接法,调整R1即可使包括R5在内的电桥平衡,而R4可通过R6抵消,因此工业上常用这种接法进行精密温度测量。控制部分采用Fuz zy-PID的复合控制使单片机输出PWM脉冲,进而控制执行机构输出到陀螺加热器的电流量,实现陀螺加热器的温度自动调节控制。由于采用了模糊自适应PID控制算法,系统就可以在

MEMS陀螺仪原理

mems陀螺仪 mems陀螺仪即硅微机电陀螺仪,绝大多数的MEMS陀螺仪依赖于相互正交的振动和转动引起的交变科里奥利力。MEMS (Micro-Electro-Mechanical Systems)是指集机械元素、微型传感器、微型执行器以及信号处理和控制电路、接口电路、通信和电源于一体的完整微型机电系统。 目录 ?mems陀螺仪的原理 ?mems陀螺仪的特点 ?mems陀螺仪的构成 ?mems陀螺仪的选用 ?mems陀螺仪的安装 mems陀螺仪的原理 ?MEMS 陀螺仪(gyroscope)的工作原理传统的陀螺仪主要是利用角动量守恒原理, 因此它主要是一个不停转动的物体, 它的转轴指向不随承载它的支架的旋转而变化. 但是MEMS 陀螺仪(gyroscope)的工作原理不是这样的,因为要用微机械技术在硅片衬底上加工出一个可转动的结构可不是一件容易的事.MEMS 陀螺仪利用科里奥利力——旋转物体在有径向运动时所受到的切向力. 下面是导出科里奥利力的方法. 有力学知识的读者应该不难理解. 在空间设立动态坐标系(图一).用以下方程计算加速度可以得到三项,分别来自径向加速,科里奥利加速度和向心加速度. 如果物体在圆盘上没有径向运动,科里奥利力就不会产生.因此,在MEMS 陀螺仪的设计上,这个物体被驱动,不停地来回做径向运动或者震荡,与此对应的科里奥利力就是不停地在横向来回变化,并有可能使物体在横向作微小震荡,相位正好与驱动力差90 度.

MEMS 陀螺仪通常有两个方向的可移动电容板.径向的电容板加震荡电压迫使物体作径向运动(有点象加速度计中的自测试模式) ,横向的电容板测量由于横向科里奥利运动带来的电容变化(就象加速度计测量加速度) .因为科里奥利力正比于角速度,所以由电容的变化可以计算出角速度. mems陀螺仪的特点 ?MEMS陀螺仪是利用coriolis 定理,将旋转物体的角速度转换成与角速度成正比的直流电压信号,其核心部件通过掺杂技术、光刻技术、腐蚀技术、LIGA技术、封装技术等批量生产的,它主要特点是 1. 体积小、重量轻,其边长都小于1mm,器件核心的重量仅为1.2mg。 2. 成本低 3. 可靠性好,工作寿命超过10 万小时,能承受1000g 的冲击。 4. 测量范围大,目前我公司生产的MEMS 陀螺仪测量范围可扩展到7560?/s。 mems陀螺仪的构成 ?MEMS 陀螺仪(gyroscope)的设计和工作原理可能各种各样,但是公开的MEMS 陀螺仪均采用振动物体传感角速度的概念. 利用振动来诱导和探测科里奥利力而设计的 MEMS 陀螺仪没有旋转部件, 不需要轴承, 已被证明可以用微机械加工技术大批量生产. 绝大多数MEMS 陀螺仪依赖于由相互正交的振动和转动引起的交变科里奥利力. 振动物体被柔软的弹性结构悬挂在基底之上. 整体动力学系统是二维弹性阻尼系统, 在这个系统中振动和转动诱导的科里奥利力把正比于角速度的能量转移到传感模式. 通过改进设计和静电调试使得驱动和传感的共振频率一致, 以实现最大可能的能量转移, 从而获得最大灵敏度.大多数MEMS 陀螺仪驱动和传感模式完全匹配或接近匹配,它对系统的振动参数变化极其敏感, 而这些系统参数会改变振动的固有频率, 因此需要一个好的控制架构来做修正.如果需要高的品质因子(Q) ,驱动和感应的频宽必须很窄.增加1%的频宽可能降低20%的信号输出.还有阻尼大小也会影响信号输出. 一般的MEMS 陀螺仪由梳子结构的驱动部分和电容板形状的传感部分组成. 有的设计还带有去驱动和传感耦合的结构. mems陀螺仪的选用 ?陀螺仪在选用时,必须注意被测参数的物理环境和必要的性能指标。具体要求分列如下: 1.性能要求 ⑴ .随机漂移、随机游走系数、输出噪声 不同结构形式、不同原理的陀螺仪的对漂移率定义和要求不同,机械式陀螺仪精度使用的是随机漂移,光纤陀螺仪使用的随机游走系数。 随机漂移——指由随机的或不确定的有害力矩引起的漂移率。 随机游走系数——由白噪声产生的随时间累计的陀螺仪输出误差系数。 单位: ?/h1/2、?/s1/2。 输出噪声的单位:?/h/Hz1/2、?/s /Hz1/2 。

硅微型陀螺仪

硅微型梳状线振动驱动式陀螺仪 硅微型振动陀螺仪在工作时,用微幅振动代替高速旋转 硅微型梳状线振动驱动式陀螺仪的工作原理: 结构图如图所示: 机械部分由基座,提供驱动力的定齿,动齿,活动质量和连接活动质量的弹簧,固定弹簧的固定端组成。固定端和定齿都固定在基座上,活动质量由弹簧连接在固定端上。动齿固定在活动质量上。该陀螺仪采用静电驱动技术,给固定在基座上的定齿梳状电极上加载带直流偏执的交流电压,活动质量上的动齿接地。这样动、静齿间便产生大小和方向周期性变化的静电吸引力,使整个活动质量和动齿一起在两定齿之间来回振动,此时若基座在惯性空间中作转动,由于哥氏力的作用,活动质量将在垂直于基座的方向上振动,这样就可敏感基座相对于惯性空间转动的角速度。 建坐标系:取将动作标系固连在硅微型梳状线振动驱动式陀螺仪的基座上,取动作标系的原点为活动质量质心的平衡位置,x轴为静电驱动力的方向,z轴为与基座垂直的方向,y轴由右手规则确定。 (1)只做x轴方向的转动时的结论: 1.该方向上的角速度不能测量; 2.随着静电引力的振动频率的增大,活动质量的振动的振幅会大大减小,该陀螺仪的灵敏度会降低。 3.x轴方向的角速度不能大于根号内K/m,否则陀螺仪将被损坏。陀螺仪损坏的临界值随尺寸的降低而迅速增加。 (2)只做z轴方向的转动时的结论:不能测量该方向上的角速度。 (3)陀螺仪的基座在y轴方向的转动角速度近似地与活动质量在z轴方向的这一振动频率为ω的振动的振幅成正比。比例系数为2δ/(mω3) 小结:该陀螺仪对y轴方向的角速度最敏感,即应当它作为输入量,把y轴作为输入轴。而对其影响最强烈的是活动质量在z轴方向频率为ω的振动的振幅,它可以作为输出量。而静

陀螺仪主要性能指标(优.选)

常见的陀螺仪性能指标与解释 零偏 零偏,又称为零位漂移或零位偏移或零偏稳定性,也可简称零漂或漂移率,英文中称为drift或bias drift。零偏应理解为陀螺仪的输出信号围绕其均值的起伏或波动,习惯上用标准差(σ)或均方根(RMS)表示,一般折算为等效输入角速率(°/ h)。在角速度输入为零时,陀螺仪的输出是一条复合白噪声信号缓慢变化的曲线,曲线的峰-峰值就是零偏值(drift),如图2-6所示。在整个性能指标集中,零偏是评价陀螺仪性能优劣的最重要指标。 分辨率 陀螺仪中的分辨率是用白噪声定义的,如图2-6 中所示,可以用角随机游走来表示,可以简化为一定带宽下测得的零偏稳定性与监测带宽的平方根之比,其单位为,或简化为。角度随机游走表征了长时间累积的角

度误差。角随机游动系数反映了陀螺在此处键入公式。的研制水平,也反映了陀螺可检测的最小角速率能力,并间接反映了与光子、电子的散粒噪声效应所限定的检测极限的距离。据此可推算出采用现有方案和元器件构成的陀螺是否还有提高性能的潜力。 标度因子 标度因子是陀螺仪输出量与输入角速率变化的比值,通常用某一特定的直线斜率表示,该斜率是根据整个正(或负)输入角速率范围内测得的输入/输出数据,通过最小二乘法拟合求出的直线斜率。对应于正输入和负输入有不同的刻度因子称为刻度因子不对称,其表明输入输出之间的斜率关系在零输入点不连续。一般用刻度因子稳定性来衡量刻度因子存在的误差特性,它是指陀螺在不同输入角速率情况下能够通过标称刻度因子获得精确输出的能力。非线性往往与刻度因子相关,是指由实际输入输出关系确定的实际刻度因子与标称刻度因子相比存在的非线性特征,有时还会采用线性度,其指陀螺输入输出曲线与标称直线的偏离程度,通常以满量程输出的百分比表示。 动态范围 陀螺在正、反方向能检测到的输入角速率的最大值表示了陀螺的测量范围。该最大值除以阀值即为陀螺的动态范围,该值越大表示陀螺敏感速率的能力越强。

陀螺仪基本原理

陀螺仪介绍2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

2013-1-28 1850年法国的物理学家莱昂·傅科(J.Foucault )为了研究地球自转,首先发现高速转动中的转子 (rotor ),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro (旋转)和skopein (看)两字合为gyro scopei 一字来命名这种仪表。

?最初的陀螺仪主要用于航海,起稳定船体的作用,此时主要是二维陀螺仪; ?后在航空、航天领域开始广泛的应用。用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示 陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。在这些应用中都是三维陀螺仪; ?另外,在军事领域,陀螺仪也发挥着重要作用,例如炮弹的旋转、导弹的惯性导航系统,以提高击中-杀伤比 ?最开始用于航海、航空、航天的陀螺仪都是机械式的,到了现代,主要可以分为压电陀螺仪、微机械陀螺仪、光纤陀螺仪、激 光陀螺仪,现代陀螺仪在结构上已不具备“陀螺”,只是在功能上 与传统的机械陀螺仪同样罢了 2013-1-28

2013-1-28 现在广泛使用的MEMS (微机械)陀螺可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。并且MEMS 陀螺相比传统的陀螺有明显的优势: 1、体积小、重量轻,适合于对安装空间和重量要求苛刻的场合,例如弹载测量等; 2、低成本; 3、更高可靠性,内部无转动部件,全固

硅微机械谐振陀螺仪的非线性分析

第14卷第6期中国惯性技术学报V ol.14No.6 2006年12月 Journal of Chinese Inertial Technology Dec. 2006 文章编号:1005-6734(2006)06-0060-03 硅微机械谐振陀螺仪的非线性分析 盛平,王寿荣,吉训生,许宜申 (东南大学 仪器科学与工程系,南京 210096) 摘要:给出了硅微机械谐振陀螺仪的结构,介绍了硅微机械谐振陀螺仪的工作原理,详细推导并给出了陀螺仪的输出频率和标度因数非线性的计算公式;基于影响谐振陀螺仪标度因数的参数,分析了由谐振器的振幅和 梳齿静电驱动力引起的硅微机械谐振陀螺仪的非线性特性,给出了振动幅度与谐振频率关系的表达式。实验结果表明,陀螺仪的整体性能主要取决于谐振器振动幅度的稳定性。 关键词:陀螺;谐振频率;非线性;双端音叉谐振器 中图分类号:U666.1 文献标识码:A Nonlinear analysis on silicon micromachined resonant gyroscope SHENG Ping, WANG Shou-rong, JI Xun-sheng, XU Yi-shen (Department of Instrument Science and Engineering, Southeast University, Nanjing 210096, China ) Abstract: The operating principle of a silicon micro-machined resonant gyroscope was introduced and its structure was given. The output frequency of the gyroscope and the calculation expressions of scale factor nonlinearity were deduced. Based on the parameters that may influence the scale factor of the resonant gyroscope, the nonlinearity characteristic, which was caused by the resonator amplitude and electrostatic comb-finger driving-force, was analyzed. Finally, the relationship between the resonance frequency and vibration amplitude was presented. The results indicated that the performance of the silicon micromachined resonant gyroscope was determined by the stabilization of the vibration amplitude of resonator. Key words: gyroscope; resonance frequency; nonlinearity; double-ended tuning fork resonator(DETF) 0 引 言 谐振传感器输出的频率信号稳定性好,不易受噪声干扰,在传输和处理过程中也不易出现误差。近年来,基于谐振原理,利用表面微机械加工技术和体硅微机械加工技术研制的谐振器件已有报道,但关于硅微机械谐振陀螺仪的鲜有报 道。当硅微机械谐振陀螺仪具有较高的Q值时,陀螺仪非线性将导致谐振频率 点的漂移。因此,研究硅微机械谐振陀螺仪非线性特性,对提高陀螺仪的性能 很有必要[1]。 1 硅微机械谐振陀螺仪工作原理 硅微机械谐振陀螺仪的结构示意图如图1所示,主要由三部分构成:陀 螺仪敏感质量块部分、杠杆传递部分、双端音叉谐振器(DETF)部分。其中, 陀螺仪敏感质量块部分用于敏感输入角速度,杠杆传递部分用来放大哥氏(Coriolis)力,谐振器部分主要是将陀螺质量块输出给它的轴向哥氏力转化 成相应的频率输出[2]。 基金项目:国家863资助项目(编号:2002AA812038) 收稿日期:2006-08-19;修回日期:2006-09-26 作者简介:盛平(1977—),男,博士研究生,研究方向为微型仪表及微系统技术。电子邮箱:pshengcn@https://www.doczj.com/doc/df10724759.html, 梳齿质量块 锚驱动方向 杠杆

陀螺仪工作原理与应用

陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:3235 为了求得测量的基准方位和日照时间的方位,必须使用磁针罗盘仪进行天体观测。然而,磁针罗盘仪的精度有限,在天体观测中还要受到确保通视、天气、场所和时间等观测条件的影响。为了解决这些问题,可采用利用了力学原理求得真北的陀螺经纬仪。陀螺经纬仪在隧道测量以及由于不能和已知点通视而无法确定方位、方向角的情况下都能发挥很大的作用。 (图1:陀螺工作站) 1、陀螺工作站的原理 高速旋转的物体的旋转轴,对于改变其方向的外力作用有趋向于铅直方向的倾向。而且,旋转物体在横向倾斜时,重力会向增加倾斜的方向作用,而轴则向垂直方向运动,就产生了摇头的

运动(岁差运动)。当陀螺经纬仪的陀螺旋转轴以水平轴旋转时,由于地球的旋转而受到铅直方向旋转力,陀螺的旋转体向水平面内的子午线方向产生岁差运动。当轴平行于子午线而静止 时可加以应用。 2、陀螺工作站的构造 (图4:陀螺经纬仪的构造 0点调整螺丝,吊线,照明灯,陀螺转子、指针、供电用馈线、反 射镜、陀螺马达、刻度线、目镜)。

陀螺经纬仪的陀螺装置由陀螺部分和电源部分组成。此陀螺装置与全站仪结合而成。陀螺本体在装置内用丝线吊起使旋转轴处于水平。当陀螺旋转时,由于地球的自转,旋转轴在水平面内以真北为中心产生缓慢的岁差运动。旋转轴的方向由装置外的目镜可以进行观测,陀螺指针的振动中心方向指向真北。利用陀螺经纬仪的真北测定方法有“追尾测定”和“时间测定”等。 追尾测定[反转法] 利用全站仪的水平微动螺丝对陀螺经纬仪显示岁差运动的刻度盘进行追尾。在震动方向反转的点上(此时运动停止)读取水平角。如此继续测定之,求得其平均震动的中心角。用此方法进行20分钟的观测可以求得+/-0。5分的真北方向。 时间测定[通过法] 用追尾测定观测真北方向后,陀螺经纬仪指向了真北方向,其指针由于岁差运动而左右摆动。用全站仪的水平微动螺丝对指针的摆动进行追尾,当指针通过0点时反复记录水平角,可以提高时间测定的精度,并以+/-20秒的精度求得真北方向。 (图2:摇头运动) (图3:向子午线的岁差运动)

MEMS陀螺仪的简要介绍(性能参数和使用)

MEMS陀螺仪的简要介绍(性能参数和使用) MEMS传感器市场浪潮可以从最早的汽车电子到近些年来的消费电子,和即将来到的物联网时代。如今单一的传感器已不能满足人们对功能、智能的需要,像包括MEMS惯性传感器、MEMS环境传感器、MEMS光学传感器、甚至生物传感器等多种传感器数据融合将成为新时代传感器应用的趋势。 工欲善其事,必先利其器,这里就先以MEMS陀螺仪开始,简要介绍一下MEMS陀螺仪、主要性能参数和使用。 传统机械陀螺仪主要利用角动量守恒原理,即:对旋转的物体,它的转轴指向不会随着承载它的支架的旋转而变化。MEMS陀螺仪主要利用科里奥利力(旋转物体在有径向运动时所受到的切向力)原理,公开的微机械陀螺仪均采用振动物体传感角速度的概念,利用振动来诱导和探测科里奥利力。 MEMS陀螺仪的核心是一个微加工机械单元,在设计上按照一个音叉机制共振运动,通过科里奥利力原理把角速率转换成一个特定感测结构的位移。以一个单轴偏移(偏航,YAW)陀螺仪为例,通过图利探讨最简单的工作原理。 两个相同的质量块以方向相反的做水平震荡,如水平方向箭头所示。当外部施加一个角速率,就会出现一个科氏力,力的方向垂直于质量运动方向,如垂直方向箭头所示。产生的科氏力使感测质量发生位移,位移大小与所施加的角速率大小成正比。因为感测器感测部分的动电极(转子)位于固定电极(定子)的侧边,上面的位移将会在定子和转子之间引起电容变化,因此,在陀螺仪输入部分施加的角速率被转化成一个专用电路可以检测的电子参数---电容量。 下图是一种MEMS陀螺仪的系统架构,,陀螺仪的讯号调节电路可以分为马达驱动和加速度计感测电路两个部分。其中,马达驱动部分是透过静电引动方法,使驱动电路前后振动,为机械元件提供激励;而感测部分透过测量电容变化来测量科氏力在感测质量上产生的位移。

电子陀螺仪原理与构造

MEM陀螺仪传感器产业探究 目录: 一、MEM陀螺仪市场现状................................................. 2. 第一节、MEM主要厂家产品资料汇总 (2) 第二节、MEM在我国的产业现状 (2) 二、MEM陀螺仪介绍.................................................... 3. 第一节、什么是微机械(MEM)? (3) 第二节、微机械陀螺仪(MEMS gyroscope的工作原理 (3) 第三节、微机械陀螺仪的结构......................................... 4. 三、MEM技术的加工工艺................................................. 6. 第一节、体加工工艺.................................................. 6. 第二节、硅表面微机械加工技术....................................... 7. 第三节、结合技术................................................... 7. 第四节、逐次加工.................................................... 8. 第五节、LIGA工艺................................................... 8. 第六节、THEMLA:艺流程........................................... 9. 四、基于DSP的MEM陀螺仪信号处理平台设计 (9) 第一节、MEM陀螺仪信号处理平台的硬件结构 (9) 第二节、MEM陀螺仪信号处理平台系统任务分析....................... 1 0第三节、MEM信号处理平台软件设计方案.. (11) 五、基于GPS的汽车导航系统的设计与实现 (12) 第一节、主体控制方案.............................................. 1.2第二节、GPS定位系统设计 .. (13) 第三节、车体部分MCU主控模块设计................................ 1.4第四节、系统软件设计.............................................. 1.4

硅微型陀螺仪零偏温度性能补控方法设计

万方数据

万方数据

万方数据

万方数据

万方数据

硅微陀螺仪零偏温度性能补控方法设计 作者:夏敦柱, 王寿荣, 周百令, Xia Dunzhu, Wang Shourong, Zhou Bailing 作者单位:东南大学微惯性仪表与先进导航技术教育部重点实验室,南京,210096 刊名: 东南大学学报(自然科学版) 英文刊名:Journal of Southeast University(Natural Science Edition) 年,卷(期):2012,42(2) 被引用次数:1次 参考文献(8条) 1.Kulygin A;Schnid U;Seidel H Characterization of a novel micromachined gyroscope under varying ambient pressure conditions[外文期刊] 2008(01) 2.Li Z;Yang Z;Xiao Z A bulk micromachined vibratory lateral gyroscope fabricated with wafer bonding and deep trench etching 2000(1/2/3) 3.Ashwin A S Integrated micromechanical resonant sensor for inertial measurement system 2002 4.Wyatt O D Mechanical analysis and design of vibratory micromachined gyroscopes 2001 5.Jason K P H Modeling and identification of the jet propulsion laboratory vibratory rate microgyroscope 2002 6.房建成;李建利;盛蔚改进的内框架驱动式硅MEMS陀螺温度误差模型[期刊论文]-北京航空航天大学学报 2006(11) 7.Shcheglov K;Evans C;Gutierrez R Temperature dependent characteristics of die JPL silicon MEMS gyroscope 2000 8.Xia Dunzhu;Cheng Shuling;Wang Shourong Temperature compensation method of silicon microgyroscope based on BP neural network[期刊论文]-Journal of Southeast University(English Edition) 2010(01) 引证文献(1条) 1.吴峰.王向军.汤其剑基于数字调节方法的MEMS陀螺零位补偿技术研究[期刊论文]-传感技术学报 2012(12) 本文链接:https://www.doczj.com/doc/df10724759.html,/Periodical_dndxxb201202019.aspx

相关主题
文本预览
相关文档 最新文档