当前位置:文档之家› 第5章概率与概率分布

第5章概率与概率分布

第5章概率与概率分布
第5章概率与概率分布

概率与概率分布

一.思考题

5.1、频率与概率有什么关系?

5.2、独立性与互斥性有什么关系?

5.3、根据自己的经验体会举几个服从泊松分布的随机变量的实例。

5.4、根据自己的经验体会举几个服从正态分布的随机变量的实例。

二.练习题

5.1、写出下列随机试验的样本空间:

(1)记录某班一次统汁学测试的平均分数。

(2)某人在公路上骑自行车,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。

(3)生产产品,直到有10件正品为止,记录生产产品的总件数。

5.2、某市有50%的住户订阅日报,有65%的住户订阅晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。

5.3、设A与B是两个随机事件,已知A与B至少有个发生的概率是亍,A发生且B不发生

的概率是丁求B发现的概率。

5.4、设A与B是两个随机事件,已知P{A)=P(B)= P (A I B)=求P(A I B]

3 6

5.5、有甲、乙两批种子,发芽率分别是0.8和0.7。在两批种子中%随机取一粒,试求:

(1)两粒都发芽的概率。

(2)至少有一粒发芽的概率。

(3)恰有一粒发芽的概率。

5.6、某厂产品的合格率为96%,合格品中一级品率为75%,从产品中任取一件为一级品的槪率是多少?

3 1 5.7、某种品牌的电视机用到5000小时未坏的槪率为一,用到10000小时未坏的概率为一°

4 2 现在有一台这种品牌的电视机已经用了5000小时未坏,它能用到10000小时的概率是多少?5.8、某厂职工中,小学文化程度的有10%.初中文化程度的有50%,高中及高中以上文化程度的有40%, 25岁以下青年在小学、初中、高中及高中以上文化程度^$组中的比例分別为20%, 50%, 70%.从该厂随机抽取一需职工,发现年龄不到25岁,他具有小学、初中、高中及高中以上文化程度的概率各为多少?

5.9.某厂有A, B, C, D四个车间生产同种产品,日产量分别占全厂产量的30%. 27%> 25%, 18%.已知这四个车间产品的次品率分别为0.10, 0.05. 0.20和0.15,从该厂任意抽取一件产品,发现为

次品,且这件产品是由儿B车间生产的分布。

5.10、考虑抛出两枚硬币的试验。令X表示观察到正而的个数,试求X的概率分布。

5.ir某人花2元钱买彩票,他抽中100元奖的槪率是0.1%,抽取10元奖的概率是1%,抽中1元奖的概率是20%,假设各种奖不能同时抽中,试求:

(1)此人收益的槪率分布。

(2)此人收益的期望值。

5?12、设随机变量X的概率密度为:

(1)

(2)

7

已知P(X>1)= 一,求&的值。

8

求X的期望值与方差。

543、一张考卷上有5道题目,同时每道题列出4个备选答案,其中有一个答案是正确的。某学生凭猜测能答对至少4逍题的概率是多少?

5.14设随机变量X服从参数为的泊松分布,且己知P {X=n =P {X=2},求P {X=4h

5?15、设随机变量X服从参数为/I的泊松分布:

问K取何值时P {X=k}最大(几为整数时)?

5.16、设X?N (3, 4),试求:

(1)P {1X1 >2h

(2)P {X>3}o

547、一工厂生产的电子管寿命X (以小时i|算)服从期望值=160的正态分布,若要求P {1200. 08.允许标准差0■最大为多少?

5.18. 一本书排版后一校时出现错误处数X服从正态分布N( 200, 400),试求:

(1)出现错误处数不超过230的概率。

(2)出现错误处数在190?210Z间的概率。

三.选择题

1、一项试验中所有可能结果的集合称为()o

A.事件

B.简单事件

C.样本空间

2、每次试验可能出现也可能不出现的事件称为(

A.必然事件

B.样本空间

C.随机事件

D.基本事件D.不可能事件

3、 随3枚硬币,用0表示反而,1表示正面,其样本空间Q=( )。

A. {000,001,010,100,011,101,110,111}

B. {1, 2, 3}

C. {0, 1)

D. {01. 10)

4、 随机抽取一只灯泡,观察其使用寿命t,其样本空间)。 A. {t=0}

B. {t<0}

C. {t>0}

D. (t)

5、 观察一批产品的合格率p,其样本空间为G=( )。

A. {0

B. {0}

C. {p}

D. {p}

6、 抛掷一枚硬币,观察其出现的是正而还是反而,并将事件A 左义为:事件A 二出现正面,

这一事件的概率记作P(A)o 则概率P(A)=l/2的含义是(

A. 抛掷多次硬币,恰好有一半结果正面朝上

B. 抛掷两次磯币,恰好有一次结果正而朝上

C. 抛掷多次硬币,恰好正面的次数接近一半

D. 抛掷一次硬币,出现的恰好是正而

7、 若某一事件取值的概率为1,则这一事件被称为( ).

A.随机事件

B.必然事件

8、 抛掷一枚骰子,并考察其结果。 为( 九

A. 1

B. 1/6

9、 一家计算机软件开发公司的人事部

分做了一项调査,发现在彊近两年离职的公司职员中

有40%是因为对工资不满意,有30%是因为对工作不满意,有1醃是因为他们对工资和工作 都不满意。设A 二员工离职是因为对工资不满意;B 二员工离职时因为对工作不满意。则两年 内离职的员工中,离职原因是因为对工资不满意,或者对工作不满意,或者两者皆有的概率 为( 九

A. 0.40

B. 0.30

C. 0. 15

D. 0.55

10、 一家超市所作的一项调查表明,有80炜的顾客到超市是来购买食品,60%的人是来购买

其他商品,35%的人既购买食品也购买其他商品。设A 二顾客购买食品,B 二顾客购买其他商品。 则某顾客来超市购买食品的条件下,也购买其他商品的槪率为(

)。

A. 0.80

B. 0. 60

C. 0. 4375

D. 0. 35

11、 一家电脑公司从两个供应商处购买了同一种汁算机配件,质量状况如表所示:

设曲取出的一个为正品;B 二取出的一个为供应商甲供应的配件。从这200齐配件中任取一 个进行检査,取出的一个为正品的概率为( )o

A. 0.93

B. 0. 45

C. 0. 42

D. 0. 93333

12. 一家电脑公司从两个供应商处购买了同一种汁算机配件,质量状况如下表所示:

设曲取出的一个为正品;B 二取出的一个为供应商甲供应的配件。从这200齐配件中任取一 个进行检査,取出的一个为供应商甲供应的配件的概率为(

)。

C.不可能事件

D.基本事件

其点数为1点或2点或3点或4点或5点或6点的概率

D. 1/2

C. 1/4

A. 0.93

B. 0.45

C. 0.42

D. 0.93333

13、一家报纸的发行部已知在某社区有75%的住户订阅了该报纸的日报,而且还知逍某个订

阅日报的住户订阅其晚报的概率为50%。设A二某住户订阅了日报:B二某个订阅了日报的住户订阅了晚报,则该住户既订阅日报又订阅晚报的概率为()

A. 0.75

B. 0.50

C. 0.375

D. 0.475

14、某考生回答一道四选一的考题,假设他知道正确答案的概率为1/2,而他不知道正确答案时猜对的概率应该为1/4O分别运义事件A二该考生答对了:B二该考生知道正确答案,考试结束后发现他答对了,那么他知逍正确答案的概率为()o

A. 1

B. 0.25

C. 0.5

D. 0.8

15、一部电梯在一周内发生故障的次数及相应的概率如下表所示:

3

故障次数(X=Xj)° 1 2

槪率(P,.) 6 1°0. 25 0. 35 a

表中a值为()

A. 0. 35 B? 0. 10 C. 0. 25 D. 0. 30

16、一家电脑配件供应商声称,他所提供的配件100个中拥有次品的个数X及概率如下表所

示J

3

次品数gj)° 1 2

0.05

槪率(P,.) 6 75

0. 12 0. 08

则该供应商次品数的期望值为()o

A. 0.43

B. 0. 15

C. 0. 12

D. 0. 75

17. 一家电脑配件供应商声称,他所提供的配件100个中拥有次品的个数X及概率如下表所

示J

3

次品数gj)° 1 2

0.05

槪率(P,.) 6 75

0. 12 0. 08

则该供应商次品数的标准差为()o

A. 0. 43 B? 0. 84 C. 0. 12 D. 0.71

18、指出下面关于n重贝努里试验的陈述中哪一个是错误的()。

A.一次试脸只有两个可能结果,即“成功”和“失败”

B.每次试脸成功的概率P都是相同的

C.试验是相互独立的

D.在n次试验中,“成功”的次数对应一个连续型随机变量

19、已知一批产品的次品率为4%,从中有放回地抽取5牡。则5个产品中有次品的概率为

A. 0.815

B. 0.170

C. 0.014

D. 0.999

20、指出下面的分布中哪一个不是离散型随机变量的概率分布()-

A. 0-1分布

B.二项分布

C.泊松分布

D.正态分布

21、设X是参数为n=4和p=0. 5的二项随机变量,则P (X<2)=()。

A. 0.3125

B. 0.2125

C. 0.6875

D. 0.7875

22、假立某公司职员每周的加班津贴服从均值为50元、标准差为10元的正态分布,那么全

LC 2.C 3. A 4.D 5.B 6.C 7.B & A 9.D 10. C

ILA 12. B 13. C 14. D 15. D 16. A 17. B

l&D

19. A 20. D 21. A 22. B 23. C 24. A 25. C 26. C 27. A 2&C

29. A

平均分数是范帀在0?100 Z 间的一个连续变量?

已经遇到的绿灯次数是从0开始的任意自然数,n=No

之前生产的产品中可能无次品也可能有任意多个次品,Q= {10,11. 12,13.…}。

5.2、 种报的集伶为AHB.

P ( A n 3) =P (A) +P (B) -P (4 U 8)=0. 50+0. 65-0. 85=0. 30

I

I

2

5.3、P(AUB) = -,P(AnB) =-,P(B)=

B) = -

3

9

9

5.4、P(AB)=P(B)P(A I B)= - x - = —

3 6 18

公司中每周的加班津贴会超过70元的职员比例为( )o

A. 0.9772

B, 0.0228 C. 0.6826 D. 0.3174

23、假建某公司职员每周的加班津贴服从均值为50元、标准差为10元的正态分布,那么全 公

司中毎周的加班津贴在40元?60元之间的职员比例为( )o

C. 0.6826

D. 0.3174 (0

C. 0.1844 (-0. 48

C. 0.1844 (Z>1.33)=(

C. 0.0918

A. 0? 9772

B. 0. 0228

24、 设Z 服从标准正态分布,则P A. 0. 3849

B. 0. 4319

25、 设Z 服从标准正态分布,则P A. 0. 3849

B ? 0. 4319

26、 设Z 服从标准正态分布,则P A. 0. 3849

B. 0. 4319

D. 0.4147

D. 0.4147 D. 0.4147 27、 若投掷一枚骰子,考虑两个事件:A:骰子的点数为奇数:B:骰子的点数大于等于4,则 条件

概率P(A B)= ( )o

A. 1/3

B. 1/6

C. 1/2

28、 推销员向客户推销某种产品成功的概率为0.3。 则成功谈成客户数不超过2人的概率为(

)

A. 0.1681

B. 0.3602

C. 0.8369

D. 1/4

他在一天中共向5洛客户进行了推销,

D. 0.3087

29、 一种电梯的最大承载重量为1000公斤,假设该电梯一次进入15人,如果每个人的体

重(公斤)服从N (60,佇),则超重的概率为(

)。

A. 0. 0426

B. 0. 0528

C. 0. 0785

D. 0.0142

五.教材练习题详细解答

5. 1、 (1) (2) (3)

n= [0,100] 设订日报的集合为儿 订晚报的集合为B,至少订一种报的集合为AUB ,同时订两

概率论中几种具有可加性的分布及其关系

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1几种常见的具有可加性的分布 (1) 二项分布 (2) 泊松分布(Possion分布) (3) 正态分布 (4) 伽玛分布 (6) 柯西分布 (7) 卡方分布 (7) 2具有可加性的概率分布间的关系 (8) 二项分布的泊松近似 (8) 二项分布的正态近似 (9) 正态分布与泊松分布间的关系 (10) 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3小结 (12) 参考文献 (12) 致谢 (13)

概率论中几种具有可加性的分布及其关系 摘要概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词概率分布可加性相互独立特征函数 SeveralKindsofProbabilityDstributionanditsRelationshipwithAdd itive 'scentrallimittheorem,andsoon,hascarriedonthedifferentlevelsofdiscussion. KeyWords probabilitydistributionadditivitypropertymutualindependencecharacteristicfunction 引言概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]: ①离散场合的卷积公式设离散型随机变量ξζ,彼此独立,且它们的分布列分别是 n k a k P k ,1,0,)(???===ζ和.,,1,0,)(n k b k P k ???===ξ则ξζ?+=的概率分布列可表示为 ②连续场合的卷积公式设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是 )(),(y f x f ξζ,则它们的和ξζ?+=的密度函数如下 其证明如下: ξζ?+=的分布函数是dxdy y f x f z f z F z y x )()()()(ξζ?ξζ??≤+= ≤+= 其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζ?+=的密度函数:

第五章 概率与概率分布(ok)

第五章概率与概率分布 5.1写出下列随机试验的样本空间: (1)记录某班一次统计学测验的平均分数。 (2)某人骑自行车在公路上行驶,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。 (3)生产产品,直到有10件正品为止,记录生产产品的总件数。 解:(1)测验的平均分数为0至100分,故样本空间为 Ω=≤≤ {|0100} x x (2)遇到第一个红灯停下来以前遇到的绿灯次数为0至∞,故样本空间为 Ω=∞ {0,1,,} (3)与(2)类似,到有10件正品为止,生产产品的总件数的样本空间为 Ω=∞ {10,11,,} 5.2某市有50%的住户订日报,有65%的住户订晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。 解:设A = {订日报},B = {订晚报},C = {同时订两种报纸} 则P(C) = P(A∩B) = P(A) + P(B) – P(A∪B) 由题意可知: P(A) = 0.5,P(B) = 0.65,P(A∪B) = 0.85 于是P(C) = 0.5+0.65 – 0.85 = 0.3 即同时订两种报纸的住户百分比为30%。 5.3设A与B是两个随机事件,已知A与B至少有一个发生的概率是1/3,A发生且B不发生的概率是1/9,求B发生的概率。 解:由题意可知,P(A∪B) = 1/3,()1/9 P A B=。 因为()()()() P A B P A P B P A B =+-,而()()() =-,故有 P A B P A P A B

()()[()()] ()()112399 P B P A B P A P A B P A B P A B =--=-=-= 5.4 设A 与B 是两个随机事件,已知P(A) = P(B) = 1/3,P(A|B) = 1/6,求 ()P A B 。 解:首先,我们有P(AB) = P(B)P(A|B)=(1/3)*(1/6)=1/18, 其次, ()()1() (|)1()()() 1()()()1()11/31/31/1811/3712 P A B P A B P A B P A B P B P B P B P A P B P AB P B -= == ---+= ---+= -= 5.5 有甲、乙两批种子,发芽率分别是0.8和0.7。在两批种子中各随机抽取一粒,求: (1)两粒都发芽的概率。 (2)至少有一粒发芽的概率。 (3)恰有一粒发芽的概率。 解:设A = {甲种子发芽},B = {甲种子发芽}。 由题意可知,P(A) = 0.8,P(B) = 0.7。 (1)记C={两粒种子都发芽},因A 与B 独立, 故P(C) = P(A)P(B) = 0.8*0.7 = 0.56 (2)记D= {至少有一粒发芽} P(D) = P(A) + P(B) – P(AB) = 0.8+0.7-0.56 = 0.84 (3)记E = {恰有一粒发芽} 则P(E) = P(D) – P(C) = 0.84 – 0.56 = 0.28

概率与概率分布

第六章概率与概率分布 本章是推断统计的基础。 主要内容包括:基础概率,概率的数学性质,概率分布、期望值与变异数推断统计研究如何依据样本资料对总体性质作出推断,这是以概率论为基础的。 第一节基础概率 概率论起源于17世纪,当时在人口统计、人寿保险等工作中,要整理和研究大量的随机数据资料,这就需要一种专门研究大量随机现象的规律性的数学。 参赌者就想:如果同时掷两颗骰子,则点数之和为9 和点数之和为10 ,哪种情况出现的可能性较大? 例如17世纪中叶,贵族德·梅尔发现:将一枚骰子连掷四次,出现一个6 点的机会比较多,而同时将两枚掷24次,出现一次双6 的机会却很少。 概率论的创始人是法国的帕斯卡(1623—1662)和费尔马(1601—1665),他们在以通信的方式讨论赌博的机率问题时,发表了《骰子赌博理论》一书。棣莫弗(1667—1754)发现了正态方程式。同一时期瑞士的伯努利(1654一1705)提出了二项分布理论。1814年,法国的拉普拉斯(1749—1827)发表了《概率分析论》,该书奠定了古典概率理论的基础,并将概率理论应用于自然和社会的研究。此后,法国的泊松(1781—1840)提出了泊松分布,德国的高斯(1777—1855)提出了最小平方法。 1、随机现象和随机事件 概率是与随机现象相联系的一个概念。所谓随机现象,是指事先不能精确预言其结果的现象,如即将出生的婴儿是男还是女?一枚硬币落地后其正面是朝上还是朝下?等等。所有这些现象都有一个共同的特点,那就是在给定的条件下,观察所得的结果不止一个。随机现象具有非确定性,但内中也有一定的规律性。例如,事先我们虽不能准确预言一个婴儿出生后的性别,但大量观察,我们会发现妇女生男生女的可能性几乎一样大,都是0.5,这就是概率。

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

几种常见的概率分布

几种常见的概率分布 一、 离散型概率分布 1. 二项分布 n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数:(Y)np X E μ== 方差与标准差:2(1)X np P σ=- ;X σ=特例:(0-1)分布 若随机变量X 的分布律为 1(x k)p (1p)k k p -==-k=0,1;0

复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票 二、 连续型概率分布 1. 均匀分布 若随机变量X 具有概率密度函数 (x)f = 则称X 在区间(a ,b )上服从均匀分布,记为X ~U(a ,b) 在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为 0F(x),1 x a x a a x b b a b x ?是常数, 则称X 服从以λ为参数的指数分布,记作~()X E λ,X 的分布函数为 1,0(x)0,0 x e x F x λ-?-≥=?

常用概率分布(习题与答案)

第五章 常用概率分布习题(附答案) 一、选择题 1. 估计正常成年女性红细胞计数的95%医学参考值范围时,应用( A. )。 A.)96.1,96.1(s x s x +- B.)96.1,96.1(x x s x s x +- C.)645.1(lg lg x x s x +> D.)645.1(s x +< E.)645.1(lg lg x x s x +< 2. 估计正常成年男性尿汞含量的95%医学参考值范围时,应用(E )。 A.)96.1,96.1(s x s x +- B.)96.1,96.1(x x s x s x +- C.)645.1(lg lg x x s x +> D.)645.1(s x +< E.)645.1(lg lg x x s x +< 3.若某人群某疾病发生的阳性数X 服从二项分布,则从该人群随机抽出n 个人, 阳性数X 不少于k 人的概率为( A )。 A. )()1()(n P k P k P ++++ B. )()2()1(n P k P k P +++++ C. )()1()0(k P P P +++ D. )1()1()0(-+++k P P P E. )()2()1(k P P P +++ 4.Piosson 分布的标准差σ和均数λ的关系是( C )。 A. σλ> B. σλ< C. λ=2σ D. λ=σ E. λ与σ无固定关系 5.用计数器测得某放射性物质5分钟内发出的脉冲数为330个,据此可估计该放射性物质平均每分钟脉冲计数的95%可信区间为( E )。 A. 33096.1330± B. 33058.2330± C. 3396.133± D. 3358.233± E. 5/)33096.1330(± 6.Piosson 分布的方差和均数分别记为2 σ和λ,当满足条件( E )时,Piosson 分布近似正态分布。 A. π接近0或1 B. 2σ较小 C. λ较小 D. π接近0.5 E. 202≥σ 7.二项分布的图形取决于( C )的大小。 A. π B. n C.n 与π D. σ E. μ 8.在参数未知的正态总体中随机抽样,≥-μX ( E )的概率为5%。 A. 1.96σ B. 1.96 C. 2.58 D. S t ν,2/05.0 E. X S t ν,2/05.0 9.某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的均数为74g/L ,标准差

第5、6章习题常用的概率分布

常用的概率分布 一、正态分布 概率密度函数:22 2)(21)(σμπσ--=x e x f 正态分布曲线的特点:在μ=x 处最高,两个参数(σμ,),曲线下面积等于1。 正态分布的应用:确定正常值范围 二、二项分布 概念:服从伯努力试验序列的试验,在n 次实验中发生阳性结果的次数为x 次的概率为二项分布,x n x x n c x P --=) 1()(ππ。 二项分布的特点:图形的形态取决于n 和?。 阳性率:n x p =, 标准差 :n p ) 1(ππσ-= 二项分布的应用:计算二项分布中出现阳性次数最多为k 次或者是至少为k 次的概率。 三.Poisson 分布 概念:Poisson 分布看作二项分布的特例,单位空间、单位面积或单位时间内某稀有事件发生次数的概率分布. μμ-=e x x P x !)( Poisson 分布的特点:图形的形态取决于 ? , 总体均数

等于方差, 具有可加性。 注意: 凡个体间有传染性、聚集性,均不能视为二项分布或Poisson 分布。 应用:计算Poisson 分布中某稀有事件出现次数最多为k 次或者是至少为k 次的概率。 ∑ ∑-+----=-+-222)2()2)(1(2)1())2()1((μμμμμμy y x x y x 案例分析: (一)观察某地100名12岁男孩身高,均数为138.00cm ,标准差为 4.12cm ,12 .400.13800.128-=u ,则9925.0)(1=-u φ,结论正确是_____________。 A .理论上身高低于138.00cm 的12岁男孩占%。 B .理论上身高高于138.00cm 的12岁男孩占% C .理论上身高在128.00cm 和138.00cm 之间的12岁男孩占%。 D .理论上身高高于128.00cm 的12岁男孩占% (二)研究人员为了解该地居民发汞(?mol/kg )的基础水平,为汞污染的环境监测积累资料,调查了居住该市1年以上,无明显肝、肾疾病,无汞作业接触史的居民230人,数据如下:

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

统计学习题 第六章 概率与概率分布

第六章 概率与概率分布 第一节 概率论 随机现象与随机事件·事件之间的关系(事件和、事件积、事件的包含与相等、互斥事件、对立事件、互相独立事件)·先验概率与古典法·经验概率与频率法 第二节 概率的数学性质 概率的数学性质(非负性、加法规则、乘法规则)·排列与样本点的计数·运用概率方法进行统计推断的前提 第三节 概率分布、期望值与变异数 概率分布的定义·离散型随机变量及其概率分布·连续型随机变量及其概率分布·分布函数·数学期望与变异数 一、填空 1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设( 机会均等 )。 2.分布函数)(x F 和)(x P 或 )(x 的关系,就像向上累计频数和频率的关系一样。所不同的是,)(x F 累计的是( 概率 )。 3.如果A 和B ( 互斥 ),总合有P(A/B)=P 〔B/A 〕=0。 4.( 大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。 5.抽样推断中,判断一个样本估计量是否优良的标准是( 无偏性 )、( 一致性 )、( 有效性 )。 6.抽样设计的主要标准有( 最小抽样误差原则 )和( 最少经济费用原则 )。 7.在抽样中,遵守( 随机原则 )是计算抽样误差的先决条件。 8.抽样平均误差和总体标志变动的大小成( 正比 ),与样本容量的平方根成( 反比 )。如果其他条件不变,抽样平均误差要减小到原来的1/4,则样本容量应( 增大到16倍 )。 9.若事件A 和事件B 不能同时发生,则称A 和B 是( 互斥 )事件。 10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是( 1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。 二、单项选择 1.古典概率的特点应为(A ) A 、基本事件是有限个,并且是等可能的; B 、基本事件是无限个,并且是等可能的; C 、基本事件是有限个,但可以是具有不同的可能性;

考研数学概率论重要知识点梳理

2017考研数学:概率论重要知识点梳理 来源:文都图书 概率论在历年考研数学真题中特点比较明显。概率论与数理统计对计算技巧的要求低一些,一些题目,尤其是文字叙述题要求考生有比较强的分析问题的能力。所以考生应在这门中尽量做到那全分,这样才能保证数学的分数,下面我们整理了一些概率论的重要知识点: 第一部分:随机事件和概率 (1)样本空间与随机事件 (2)概率的定义与性质(含古典概型、几何概型、加法公式) (3)条件概率与概率的乘法公式 (4)事件之间的关系与运算(含事件的独立性) (5)全概公式与贝叶斯公式 (6)伯努利概型 其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,考生务必引起重视, 第二部分:随机变量及其概率分布 (1)随机变量的概念及分类 (2)离散型随机变量概率分布及其性质 (3)连续型随机变量概率密度及其性质 (4)随机变量分布函数及其性质 (5)常见分布 (6)随机变量函数的分布 其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。 第三部分:二维随机变量及其概率分布 (1)多维随机变量的概念及分类 (2)二维离散型随机变量联合概率分布及其性质 (3)二维连续型随机变量联合概率密度及其性质

(4)二维随机变量联合分布函数及其性质 (5)二维随机变量的边缘分布和条件分布 (6)随机变量的独立性 (7)两个随机变量的简单函数的分布 其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视! 第四部分:随机变量的数字特征 (1)随机变量的数字期望的概念与性质 (2)随机变量的方差的概念与性质 (3)常见分布的数字期望与方差 (4)随机变量矩、协方差和相关系数 其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算 第五部分:大数定律和中心极限定理 (1)切比雪夫不等式 (2)大数定律 (3)中心极限定理 其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。 第六部分:数理统计的基本概念 (1)总体与样本 (2)样本函数与统计量 (3)样本分布函数和样本矩 其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下 第七部分:参数估计 (1)点估计 (2)估计量的优良性 (3)区间估计

第5章概率与概率分布

第5章 概率与概率分布 一、思考题 、频率与概率有什么关系 、独立性与互斥性有什么关系 、根据自己的经验体会举几个服从泊松分布的随机变量的实例。 、根据自己的经验体会举几个服从正态分布的随机变量的实例。 二、练习题 、写出下列随机试验的样本空间: (1)记录某班一次统计学测试的平均分数。 (2)某人在公路上骑自行车,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。 (3)生产产品,直到有10件正品为止,记录生产产品的总件数。 、某市有50%的住户订阅日报,有65%的住户订阅晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。 、设A 与B 是两个随机事件,已知A 与B 至少有个发生的概率是3 1 ,A 发生且B 不发生的概率是 9 1 ,求B 发现的概率。 、设A 与B 是两个随机事件,已知P(A)=P(B)= 31,P(A |B)= 6 1 ,求P(A |B ) 、有甲、乙两批种子,发芽率分别是和。在两批种子中各随机取一粒,试求: (1)两粒都发芽的概率。 (2)至少有一粒发芽的概率。 (3)恰有一粒发芽的概率。 、某厂产品的合格率为96%,合格品中一级品率为75%,从产品中任取一件为一级品的概率是多少 、某种品牌的电视机用到5000小时未坏的概率为 43,用到10000小时未坏的概率为2 1。现在有一台这种品牌的电视机已经用了5000小时未坏,它能用到10000小时的概率是多少

、某厂职工中,小学文化程度的有10%,初中文化程度的有50%,高中及高中以上文化程度的有40%,25岁以下青年在小学、初中、高中及高中以上文化程度各组中的比例分别为20%,50%,70%。从该厂随机抽取一名职工,发现年龄不到25岁,他具有小学、初中、高中及高中以上文化程度的概率各为多少 、某厂有A ,B ,C ,D 四个车间生产同种产品,日产量分别占全厂产量的30%,27%,25%,18%。已知这四个车间产品的次品率分别为,,和,从该厂任意抽取一件产品,发现为次品,且这件产品是由A ,B 车间生产的分布。 、考虑抛出两枚硬币的试验。令X 表示观察到正面的个数,试求X 的概率分布。 、某人花2元钱买彩票,他抽中100元奖的概率是%,抽取10元奖的概率是1%,抽中1元奖的概率是20%,假设各种奖不能同时抽中,试求: (1)此人收益的概率分布。 (2)此人收益的期望值。 、设随机变量X 的概率密度为: F(x)= 3 2 3θ X ,01)= 8 7 ,求θ的值。 (2) 求X 的期望值与方差。 、一张考卷上有5道题目,同时每道题列出4个备选答案,其中有一个答案是正确的。某学生凭猜测能答对至少4道题的概率是多少 设随机变量X 服从参数为的泊松分布,且已知P {X=1}= P {X=2},求P {X=4}。 、设随机变量X 服从参数为λ的泊松分布:

第五章 概率与概率分布基础

第五章概率与概率分布基础 第一节什么是概率 第二节概率分布 第三节常用离散型随机变量分布举例 第四节常用连续型随机变量分布举例 为什么学习概率? 概率是公共和非盈利性事业管理中最有用的数量分析方法之一.利用概率及相关知识,公共和非盈利事业的管理者可以判断和解决各种各样的问题. 比如,维修机构的负责人可以运用概率来决定公共设施发生故障的频率,并依此部署维护力量.公共交通部门可以用概率来分析某一站点某一时段内可能候车人数,从而决定公共交通的车次间隔. 本章内容包括一些基本的概率法则和假定. 最常用的适于作定量研究的方法--抽样调查就是通过概率的理论使我们掌握一种媒介,它可以做我们推断和分析的平台. 第一节什么是概率 一、随机事件与概率 (一)随机试验与随机事件 随机现象的特点是:在条件不变的情况下,一系列的试验或观测会得到不同的结果,并且在试验或观测前不能预见何种结果将出现。对随机现象的试验或观测称为随机试验,它必须满足以下的性质: (1)每次试验的可能结果不是唯一的; (2)每次试验之前不能确定何种结果会出现; (3)试验可在相同条件下重复进行。 比如:标准大气压下,水沸腾的温度是100度. 必然事件 扔100次硬币,正面朝上的次数.随机事件. 历史上曾有人做过试验,试图证明抛掷匀质硬币时,出现正反面的机会均等。 实验者n nH fn(H) De Morgan 2048 1061 0.5181 Buffon 4040 2048 0.5069 K. Pearson 12000 6019 0.5016 K. Pearson 24000 12012 0.5005 在经济与社会领域,随机命题是常见的,而必然命题是十分少见的. 任何一种社会现象,社会行为其产生的原因都是复杂的,事物单个出现的时候难免有偶然性和非确定性,但是对于大量事物的研究,由于平衡与排除了单个孤立事件所具有的偶然性,从而可以发现其内部的规律性. 在随机试验中(对随机现象的观察)可能出现也可能不出现,而在大量重复试验中却具有某种规律性的事件,称之为随机事件。 试验的结果可能是一个简单事件,也可能是一个复杂事件。简单事件就是不可以再分解的事件,又称为基本事件。复杂事件是由简单事件组合而成的事件。基本事件 还可称为样本点,设试验有n个基本事件,分别记为(i=1,2,…,n)。集合Ω={ω1 ,ω2 , …,ωn}称为样本空间,Ω中的元素就是样本点。

概率与概率分布(一)

第六章 概率与概率分布(一) 第一节 概率论 随机现象与随机事件·事件之间的关系(事件和、事件积、事件的包含与相等、互斥事件、对立事件、互相独立事件)·先验概率与古典法·经验概率与频率法 第二节 概率的数学性质 概率的数学性质(非负性、加法规则、乘法规则)·排列与样本点的计数·运用概率方法进行统计推断的前提 第三节 概率分布、期望值与变异数 概率分布的定义·离散型随机变量及其概率分布·连续型随机变量及其概率分布·分布函数·数学期望与变异数 一、填空 1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设( 机会均等 )。 2.分布函数)(x F 和)(x P 或 )(x 的关系,就像向上累计频数和频率的关系一样。所 不同的是,)(x F 累计的是( 概率 )。 3.如果A 和B ( 互斥 ),总合有P(A/B)=P 〔B/A 〕=0。 4.( 大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。 5.抽样推断中,判断一个样本估计量是否优良的标准是( 无偏性 )、( 一致性 )、( 有效性 )。 6.抽样设计的主要标准有( 最小抽样误差原则 )和( 最少经济费用原则 )。 7.在抽样中,遵守( 随机原则 )是计算抽样误差的先决条件。 8.抽样平均误差和总体标志变动的大小成( 正比 ),与样本容量的平方根成( 反比 )。如果其他条件不变,抽样平均误差要减小到原来的1/4,则样本容量应( 增大到16倍 )。 9.若事件A 和事件B 不能同时发生,则称A 和B 是( 互斥 )事件。 10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是( 1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。 二、单项选择 1.古典概率的特点应为(A ) A 、基本事件是有限个,并且是等可能的; B 、基本事件是无限个,并且是等可能的; C 、基本事件是有限个,但可以是具有不同的可能性;

考研资料_厦门大学卫生综合_卫生统计厦大内部习题集_第五章 常用概率分布

第五章常用概率分布习题 一、是非题 1.在确定某个指标的医学参考值范围时,必须选取足够多的健康人来进行计算。2.对于服从正态分布的资料,变量取值位于-1.96到1.96之间的可能性为0.95。3.Poisson分布有两个参数:n和μ。 4.在μ足够大时,Poisson分布就是正态分布。 5.设X服从Poisson分布,则Y=2X也服从Poisson分布。 6.用X表示某个放射性物体的每分钟脉冲数,其平均每分钟脉冲数为5次(可以认为服从Poisson分布),用Y表示连续观察20分钟的脉冲数,则可以认为近似服从正态分布,但不能认为X近似服从正态分布。 二、选择题 1.关于二项分布,错误的是( )。 A.服从二项分布随机变量为离散型随机变量 B.当n很大,π接近0.5时,二项分布图形接近正态分布 C.当π接近0.5时,二项分布图形接近对称分布 D.服从二项分布随机变量,取值的概率之和为1 E.当nπ>5时,二项分布接近正态分布 2.关于泊松分布,错误的是( )。 A.当二项分布的n很大而π很小时,可用泊松分布近似二项分布 B.泊松分布由均数λ唯一确定 C.泊松分布的均数越大,越接近正态分布

D.泊松分布的均数与标准差相等 E.如果X1和X2分别服从均数为λl和λ2的泊松分布,且相互独立。则X1+X2服从均数为λl+λ2泊松分布 3.正态曲线下、横轴上,从μ到μ+2.58σ的面积占曲线下总面积的( ) A.99%B.95%C.47.5%D.49.5%E.90% 4.标准正态曲线下,中间95%的面积所对应的横轴范围是( )。 A.-∞到+1.96 B.-1.96到+1.96 C.-∞到+2.58 D.-2.58到+2.58 E.-1.64到+1.64 5.服从二项分布的随机变量的总体均数为( )。 A.n(1-π) B.(n-1)π(1-π) C.nπ(1-π) D.nπE. 6.服从二项分布的随机变量的总体标准为( )。 A B.(n-1)π(1-π) C.nπ(1-π) D E 7.以下方法中,确定医学参考值范围的最好方法是( ) A.百分位数法B.正态分布法C.对数正态分布法D.标准化法E.结合原始数据分布类型选择相应的方法 8.下列叙述中.错误的是( )。 A.二项分布中两个可能结果出现的概率之和为1 B.泊松分布只有1个参数λ C.正态曲线下的面积之和为1 D.服从泊松分布的随机变量,其取值为0到n的概率之和为1 E.标准正态分布的标准差为1 三、筒答题

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

概率论知识点的总结

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为 随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全 体样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。

3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A ∪ā= S,且Aā=Φ。 运算律: 设A,B,C为事件,则有 (1)交换律:A∪B=B∪A,AB=BA (2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC (3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC (4)德摩根律:B A = A B = A B A B

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布 摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。 关键词:二项分布;Poisson 分布;正态分布;定义;性质 一、二项分布 二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生 这种分布的重要现实源泉是所谓的伯努利试验。 (一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布) 1.泊努利试验 在许多实际问题中,我们感兴趣的是某事件A 是否发生。例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。 为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = () q p A P =-=1。 2.泊努利分布 定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数, 则??? ? ??ξp q 10 ~,称ξ服从参数为)10(<

概率论中几种常用的重要的分布

伯努利试验、泊松过程、独立同分布生成 的重要分布 敖登 (内蒙古大学数学科学学院2010级数理基地,01008104) 摘要 本文是一篇读书报告。主要研究了伯努利试验与二项分布的关系,泊松过程生成泊松分布的过程和在泊松条件下的埃尔朗分布,正态分布的生成用到的独立同分布以及均匀分布生成任意分布的重要性质。 关键词:伯努利试验泊松分布独立同分布均匀分布的生成性

Important in theory of probability distribution of exploration Author:Ao Deng Tutor: Luo Cheng (School of Mathematical sciences ,Huhhot Inner Mongolia 01008104 ) Abstract This article mainly discusses the theory of several common distribution (0-1) distribution, binomial distribution, poisson distribution and uniform distribution, exponential distribution, normal distribution and normal distribution out three kinds of important distribution, distribution, distribution and the distribution of the source and the relationship among them and their application in actual. Key words: random variable; The discrete distribution ;Continuous distribution

统计学课后答案(第3版)第5章概率与概率分布基础习题答案

第五章 概率与概率分布基础习题答案 一、单选 1.A ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C ; 7.A ; 8.D ; 9.B ;10.C 二、多选 1.ABCE ; 2.ABCE ; 3.ABD ; 4.ACE ; 5.ABCE 6.ABD ; 7.ABCD ; 8.ABCDE ; 9.ABCDE ;10.ACD 三、计算分析题 1、(1)C B A ;C B A ;C B A (2)C AB (3) C B A C B A C B A (4) C B A C B A 或 2、6.0)(1=A P ;4.0)(2=A P ;95.0)(1=A B P ;90.0)(2=A B P (2)16.0889.001.0101.05001.010)(=÷+?+?+?=x E (元) 说明2元彩票平均中奖额为0.16元。 4、包含对6道、7道、8道、9道和10道题的五种情况的概率为: 4661037710288109910101010)43()41()43()41()43()41()43()41()41 (C C C C C ++++ %202.098.01)4 3()41()43()41()43()41()43()41()43)(41()43(15551064410733108221091100010==-=+++++-=C C C C C C 5、!2)2()1(2λ λλλ--=====e X P e X P ,则λ=2 22432!42)4(e e X P ===- 6、(1)化为标准正态分布有: )22 3()2123()2()2()2(-<-+->-=-<+>=>x P x P x P x P x P

相关主题
文本预览
相关文档 最新文档