当前位置:文档之家› 6922电子管胆前级放大电路

6922电子管胆前级放大电路

6922电子管胆前级放大电路
6922电子管胆前级放大电路

6922电子管胆前级放大电路

2018年4月2日17:58 665

6922电子管胆前级放大电路

和韵T99是欧博音响公司的五周年纪念版前级,其外形秀巧,电路简洁,音质纯静而无音染。

T99前级放大电路如图所示。从图中可见,它除了两

个电子三极管之外,几乎就没有什么元件了,所以在介绍它之前先说一说电子管及其在音频设备应用中的地位。电子管的物理特性在某些方面仍优于晶体管,如近代的6N15、6N3电子管,其电极间距离10-3m量级,在几百伏屏压下电子在真空中的速度达107m/s,渡越时间为10-10s量级,对

于10MHz的频率周期为10-8s。在这个渡越时间内,各电极的电压相位基本无变化,因此电子管可以毫无困难地工作到300~500MHz,也就是说,在音频放大中根本不必考虑

电子管的频率特性问题,任何一种电子管都至少可满足

10kHz的音频放大要求。另外在100kW以上的高频大功率

放大器中,电子管仍独步天下,晶体管则望尘莫及,因此目前在军事领域和高科技领域仍在部分使用电子管。至于普遍认为电子管高频特性不如晶体管,并不是管子本身的问题,而是由于电子管在做电压放大时其内阻与分布电容所形成

的低通电路以及在做功率放大时输出变压器的漏感等寄生

参量造成的。总之,电子管目前仍是优秀的音频放大器件,只是电路设计和变压器制作不能马虎。从听感及欣赏角度而言,晶体管和电子管应该说各有千秋,不可一概而论。电子管音色温暖、甜润、耐听,空气感及空间信息的融合性好,这在音响界已成为共识,而晶体管具有瞬态反应快、分析力高、对音像细节的镌刻更深入等优点。

电子管(三极管)是由阴极K、屏极(阳极)A、栅极G组

成的。阴极是电子管电子流的源泉,当阴极被灯丝加热到一定程度时,就会不断地向空间发射电子。在屏极与阴极间加上直流电压,使屏极电位高于阴极电位时,在屏极电场的作用下,从阴极发射的电子就会源源不断地奔向屏极,即所谓的真空管正向导通。根据电流方向与电子流方向相反的定理,电流便从屏极流向阴极,这就是所谓的屏流Ia。栅极是决定电子管放大作用的电极,位于阴极和屏极之间靠近阴极的位置。栅极的作用是抑制由阴极向屏极发射电子。当栅极加上相对于阴极为负的电压即栅负压,便在管内屏、阴之间形成两个电场:一是屏极的正电压产生的正电场,对空间电荷区的电子起吸引作用;二是栅极负压产生的负电场,对空间电荷区的电子起排斥作用,栅极电压越负,排斥作用越强,屏极电流就越小。改变栅负压即可改变屏极电流。而栅极比屏极更靠近阴极,对屏极电流的抑制作用远比屏极电压更大,约大4~100倍。栅极电压的微小变化,便能引起屏极电流

的较大变化,从而实现电子管的电流放大作用。

了解了电子管的放大原理之后,再来看T99前级放大电路。T99前级电路是一种典型的分流调整式推挽放大电路(SRPP),如附图所示。两个电子三极管(6922)V1和V2起调整式电压放大作用,R5、R6为自给偏压电阻,C3是输出耦合电容,R7为交流负载电阻,W1是音量控制电位器。SRPP是一个非常精采的电路设计。对于该电路的原理说法不一,从电路名称上看应是推挽电路,国内外无线电刊物也有称其为单端推挽电路的。

从图中看,V2栅阴电压取自R6的压降,随信号变化而变化的屏流流过R6而产生相应变化的压降,V2等效内阻随之改变,其改变幅度与V1相反,V1构成共阴放大,V2为V1的负载。

当输入信号为正半周时,V1屏流增加,R6上压降增加,V2栅压往负方向移动,V2等效阻抗增高,V1屏压降低;当输入信号为负半周时,V1屏流减小,R6上压降亦减小,V2栅压往正方向移动,V2等效阻抗降低,V1屏压升高。

换句话说,当正信号(正半周)自V1栅压输入后,信号越强,栅压越正,屏流越大,V2栅压越负,等效内阻越高,管压降越大,从V2阴极取出信号的对地电压越低;当负信号(负半周)从V1输入后,信号越强,栅压越负,屏流越小,V2栅压越正,等效内阻越低,管压降越小,从V2阴极取出

信号的对地电压越高。因此,输出信号相对于输入信号是幅度增大而相位相差180°。这种共阴放大电路的电压放大特性和晶体管共发射极放大电路的电压放大特性在原理上是一

致的。SRPP电路具有可变性负载,从而扩展了输出电压的动态范围。

与固定负载共阴放大电路相比,SRPP电路输出电压失真度小,输入阻抗高,输出阻抗低,其最大特点是失真随频率升高而降低,具有良好的高频特性。因此,SRPP电路也是近年来较常用的流行电路。在这个基本电路的应用上,设计师们对其进行了许多改进和补偿。T99的设计特点是阴极自给偏压电阻R5数值较小,仅100Ω,同时取消了旁路电容。R5小时,栅偏压亦小,在同样大小的屏压下,静态工作电流相对较高,Q点高,线性区更为均衡(当然不能高过线性区中间位置),以减小由于静态工作点过低而在大动态时出现截止失真,从而扩展了放大器的动态范围。由于R5阻值小,交流信号反馈可忽略不计,而省去旁路电容则会减少电容产生的频率失真,高低频响应更好。即使取消旁路电容,会对信号增益产生一定影响,而因6922跨导较高,仍可保证较高的信号增益。6922的音色属中性,通透又爽朗。所以,该设计正好使整体音色更为丰润醇和。

T99是一个非常简洁而经典的设计。它没有阴极跟随电路,也没有扼流圈之类的高级滤波电路,而完全在于电路

的合理设计,元器件的精心筛选,结构和线路的最佳布局和精心调整,这使得T99制作成本较低,售价低廉而音质纯正。T99采用一点接地,内部结构紧凑,主线路搭棚焊接,线路损耗小,也是T99声音纯正的原因之一。

经试听,T99具有平衡度好、分析力高、声音通透、动态适中、驱动能力强等特点。它还具有搭配特性好,即无论搭配什么后级,都表现出真实、自然的随和性。它就如同一部有增益的无源前级,除了供给后级足够的推动电压,以克服无前级时的声音清瘦、干纯之外,没有其它任何多余的东西。

电阻:只有4支电阻,采用金属膜为佳,国产大红炮就行了,引进生产的蓝色五色环电阻也可以.R2、R3决定胆管的工作点,实际制作时可以在100欧到510欧之间选取,太大的话屏流太小,6922这个管子屏流小的话工作在非线性区域,失真大,声音单.R1时输入缓冲电阻,还是不要太小,1K以上10K以下吧。

电位器:信号的控制器,欧博使用50K,制作时可以根据情况在47K和220K之间选用,推荐100K的ALPS蓝色或黑色电位器.国产几块钱的根本不能用.寿命太短,一段时间后就不平衡了,不能用。

电容:因为直接流经信号,又只有一个尽量使用好一点的,法国的solen,德国的wima都可以一试,想改变口味的话使

用一下油浸电容,国产品有很多,价格也便宜,即使进口的到拆机店里也容易找到。油浸电容高频弱一点,相对来说中频比较突出,这也是胆友喜欢使用的原因之一吧,电容的数值不一定按照欧博的选择,10微法以下应该都可以试试,数值大低频好,但延长充电时间,瞬态差点,建议使用油浸电容与一个小容量聚丙烯电容并联作为输出电容,比如0.1微法。胆管:可以代换俄罗斯6922的管子很多,如国产6N11、欧美的6922、6DJ8、ECC88、E88CC等都可以,因为只有两支,建议多找几种牌子比较一下音色的区别,即使是顶级的西门子金脚市场上也很好买到,,本机电路简单,基本上胆管素质可以准确的表现出来。

电源:没有给出电源电路,因为大家可以根据自身条件制作不同电源只要输出电压为170伏左右就可,并不一定非的170伏,但要注意6922之类的管子屏压低,国产的6N11只有90V,,尽量不要过高.推荐使用胆整流,对胆管寿命有保护作用,一旦您买了昂贵胆管的话,还是胆整流放心,整流管使用最常见的6Z4,扼流圈有5H就可以了,灯丝提倡交流供电,也是提高胆管寿命,而且6922是旁热式灯丝,注意制作工艺的话,交流噪声将非常小,但如果交流噪音大的话,只有使用直流,根据您的制作情况来定夺。

如何看懂放大电路图

能够把微弱的信号放大的电路叫做放大电路或放大器。例如助听器里的关键部件就是一个放大器。 放大电路的用途和组成 放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。 读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。 下面我们介绍几种常见的放大电路: 低频电压放大器 低频电压放大器是指工作频率在20 赫~20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。 (1 )共发射极放大电路 图1 (a )是共发射极放大电路。C1 是输入电容,C2 是输出电容,三极管VT 就是起放大作用的器件,RB 是基极偏置电阻,RC 是集电极负载电阻。1 、3 端是输入,2 、3 端是输出。3 端是公共点,通常是接地的,也称“地”端。静态时的直流通路见图1 (b ),动态时交流通路见图1 (c )。电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。 (2 )分压式偏置共发射极放大电路 图2 比图1 多用3 个元件。基极电压是由RB1 和RB2 分压取得的,所以称为分压

换能器前置放大电路设计

项目支持:北京市科技攻关项目,农业节水灌溉监测与控制设备研制与开发(D0706007040191)国家“十一五”科技支撑计划农产品流通过程信息化关键技术与系统研发(2006BAD10A04) 国家“十一五”科技支撑计划灌区地下水开发利用关键技术(2006BAD11B05) 微弱信号检测的前置放大电路设计 张石锐1,2,郑文刚2*,黄丹枫1,赵春江2 (1.上海交通大学农业与生物学院上海市 200240 2.国家农业信息化工程技术研究中心北京市 100097) 摘要:针对精准农业中对微弱信号检测的技术需求,论文设计了以电流电压转换器,仪表放大器和低通滤波器为主要结构的微弱信号检测前置放大电路。结合微弱信号的特点讨论了电路中噪声的抑制和隔离,提出了电路元件的选择方法与电路设计中降低噪声干扰的注意事项。本文利用集成程控增益仪表放大器PGA202设计了微弱信号检测前置放大电路,并利用微弱低频信号进行了测试,得到了理想的效果。 关键字:精准农业、微弱信号检测、仪表放大器、前置放大电路 中图分类号:TN721.5 文献标识码:A The design of preamplifier circuit based on weak signal detection ZHANG Shi-rui1,2,ZHENG Wen-gang2,HUANG Dan-feng1,ZHAO Chun-jiang2 (1. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China 2. National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China) Abstract:Combined with the demand of the detection of weak signal in precision agriculture, the article introduced the circuit principle of deigning preamplifier circuit whit I/V Conversion level, instrumentation amplifier level and low-pass filter level. At the same time the article discussed the circuit's noise suppression and isolation according to the characteristics of the weak signal, and gave the method of choosing elements and noise reduction. Finally, gave the design of the weak signal detection pre-amplifier using the program-controlled integrated instrumentation amplifier PGA202. Key words: precision agriculture ,weak signal detection, instrumentation amplifier, preamplifier 1、引言 精准农业主要是依据实时获取的农田环境和农作物信息,对农作物进行精确的灌溉、施肥、喷药,最大限度地提高水、肥和药的利用效率,减少环境污染,获得最佳的经济效益和生态效益[1]。农田环境和农作物信息的准确获取取决于可靠的生物传感技术。如常规精准灌溉主要关注空气的温度、湿度和土壤的含水量,利用这些参数的变化控制对农作物的灌溉,而作物自身产生的一些信号能够更准确的反映其自身的生理状况,通过检测这些信号控制灌溉可以使灌溉更精确。目前精准灌溉技术正朝着以环境信息和农作物生理信息相结合为控制依据的方向发展,为此各种生物传感器如植物电信号传感器、植物茎流传感器等应运而生。但一般作物自身生理状况产生的信号极其微弱,往往电流信号只能达到纳安级,电压信号也只能达到微伏级。为有效的利用这些信号,应首先对其进行调理,本文根据植物生理信号的特点设计了适合此类微弱信号检测的前置放大电路。 2、电路基本结构 生物传感器所产生的信号一般为频率较低的微弱信号,检测不同的植物生理参数,可能得到电压或电流信号。对于电流信号,应首先把电流信号转换成为电压信号,通过放大电路的放大,最后利用低通滤波器,滤除混杂在信号中的高频噪声。微弱信号检测前置放大电路的整体结构如图1。

简单的前级多级音频放大器

如图是一个由晶体三极管VT1~VT3组成的多级音频放大器。VT1与外围阻容元件组成了典型的阻容耦合放大电路,担任前置音频电压放大;VT2、VT3组成了两级直接耦合式功率放大电路,其中:VT3接成发射极输出形式,它的输出阻抗较低,以便与8Ω低阻耳塞式耳机相匹配。 驻极体话筒B接收到声波信号后,输出相应的微弱电信号。该信号经电容器C1耦合到VT1的基极进行放大,放大后的信号由其集电极输出,再经C2耦合到VT2进行第二级放大,最后信号由VT3发射极输出,并通过插孔XS送至耳塞机放音。 电路中,C4为旁路电容器,其主要作用

是旁路掉输出信号中形成噪音的各种谐波成份,以改善耳塞机的音质。C3为滤波电容器,主要用来减小电池G的交流内阻(实际上为整机音频电流提供良好通路),可有效防止电池快报废时电路产生的自激振荡,并使耳塞机发出的声音更加清晰响亮。 元器件选择 VT1、VT2选用9014或3DG8型硅NPN 小功率、低噪声三极管,要求电流放大系数β≥100;VT3宜选用3AX31型等锗PNP小功率三极管,要求穿透电流Iceo尽可能小些,β≥30即可。 B选用CM-18W型(φ10mm×6.5mm)高灵敏度驻极体话筒,它的灵敏度划分成五个挡,分别用色点表示:红色为-66dB,小黄为-62dB,大黄为-58dB,兰色为-54dB,白色>-52dB。本制作中应选用白色点产品,以获得较高的灵敏度。B也可用蓝色点、高

灵敏度的CRZ2-113F型驻极体话筒来直接代替。 XS选用CKX2-3.5型(φ3.5mm口径)耳塞式耳机常用的两芯插孔,买来后要稍作改制方能使用。改制方法参见图2所示,用镊子夹住插孔的内簧片向下略加弯折,将内、外两簧片由原来的常闭状态改成常开状态就可以了。改制好的插孔,要求插入耳机插头后,内、外两簧片能够可靠接通,拔出插头后又能够可靠分开,以便兼作电源开关使用。耳机采用带有CSX2-3.5型(φ3.5mm)两芯插头的8Ω低阻耳塞机。 R1~R5均用RTX-1/8W型碳膜电阻器。C1~C3均用CD11-10V型电解电容器,C4用CT1型瓷介电容器。G用两节5号干电池串联而成,电压3V。

2.4G放大器电路原理图

2.4G 射频双向功放的设计与实现 在两个或多个网络互连时,无线局域网的低功率与高频率限制了其覆盖范围,为了扩大覆盖范围,可以引入蜂窝或者微蜂窝的网络结构或者通过增大发射功率扩大覆盖半径等措施来实现。前者实现成本较高,而后者则相对较便宜,且容易实现。现有的产品基本上通信距离都比较小,而且实现双向收发的比较少。本文主要研究的是距离扩展射频前端的方案与硬件的实现,通过增大发射信号功率、放大接收信号提高灵敏度以及选择增益较大的天线来实现,同时实现了双向收发,最终成果可以直接应用于与IEEE802.11b/g兼容的无线通信系统中。 双向功率放大器的设计 双向功率放大器设计指标: 工作频率:2400MHz~2483MHz 最大输出功率:+30dBm(1W) 发射增益:≥27dB 接收增益:≥14dB 接收端噪声系数:< 3.5dB 频率响应:<±1dB 输入端最小输入功率门限:

6922电子管胆前级放大电路

6922 电子管胆前级放大电路 2018 年4 月2 日17 :58 665 6922 电子管胆前级放大电路和韵T99 是欧博音响公司的五周年纪 念版前级,其外形秀巧,电路简洁,音质纯静而无音染。 T99 前级放大电路如图所示。从图中可见,它除了两个电子三极管之外,几乎就没有什么元件了,所以在介绍它之前先说一说电子管及其在音频设备应用中的地位。电子管的物理特性在某些方面仍优于晶体管,如近代的6N15 、6N3 电子管,其电极间距离10 -3m 量级,在几百伏屏压下电子在真空中的速度达107m/s ,渡越时间为10 -10s 量级,对于10MHz 的频率周期为10-8s 。在这个渡越时间内,各电极的电压相位基本无变化,因此电子管可以毫无困难地工作到300?500MHz,也就是说,在音频放大中根本不必考虑电子管的频率特性问题,任何一种电子管都至少可满足10kHz 的音频放大要求。另外在100kW 以上的高频大功率放大器中,电子管仍独步天下,晶体管则望尘莫及,因此目前在军事领域和高科技领域仍在部分使用电子管。至于普遍认为电子管高频特性不如晶体管,并不是管子本身的问题,而是由于电子管在做电压放大时其内阻与分布电容所形 成的低通电路以及在做功率放大时输出变压器的漏感等寄生 参量造成的。总之,电子管目前仍是优秀的音频放大器件,只是电路设计和变压器制作不能马虎。从听感及欣赏角度而言,晶体管和电子管应该说各有千秋,不可一概而论。电子管音色温暖、甜润、耐听,空气感及空间信息的融合性好,这在音响界已成为共识,而晶体管具有瞬态反应快、分析力高、对音像细节的镌刻更深入等优点。

电子管(三极管)是由阴极K、屏极(阳极)A、栅极G组成 的。阴极是电子管电子流的源泉,当阴极被灯丝加热到一定程度时,就会不断地向空间发射电子。在屏极与阴极间加上直流电压,使屏极电位高于阴极电位时,在屏极电场的作用下,从阴极发射的电子就会源源不断地奔向屏极,即所谓的真空管正向导通。根据电流方向与电子流方向相反的定理,电流便从屏极流向阴极,这就是所谓的屏流 la。栅极是决定 电子管放大作用的电极,位于阴极和屏极之间靠近阴极的位置。栅极的作用是抑制由阴极向屏极发射电子。当栅极加上相对于阴极为负的电压即栅负压,便在管内屏、阴之间形成两个电场:一是屏极的正电压产生的正电场,对空间电荷区的电子起吸引作用;二是栅极负压产生的负电场,对空间电荷区的电子起排斥作用,栅极电压越负,排斥作用越强,屏极电流就越小。改变栅负压即可改变屏极电流。而栅极比屏极更靠近阴极,对屏极电流的抑制作用远比屏极电压更大,约大 4?100倍。栅极电压的微小变化,便能引起屏极电流 的较大变化,从而实现电子管的电流放大作用 了解了电子管的放大原理之后,再来看T99 前级放大电路。T99 前级电路是一种典型的分流调整式推挽放大电路(SRPP) ,如附图所示。两个电子三极管(6922)V1 和V2 起调整式电压放大作用,R5 、R6 为自给偏压电阻,C3 是输出耦合电容,R7 为交流负载电阻,W1 是音量控制电位器。SRPP 是一个非常精采的电路设计。对于该电路的原理说法不一,从电路名称上看应是推挽电路,国

音频前级放大器

音频前级三段均衡放大器 电路原理图 AR1_A AR1_B C9 AR1_C AR1_D 123J1IN R8 GND R9_A GND GND R2 R17 123J2OUT R1_A C10 C1 C2 R33 C3 R27 GND GND R18 R28 GND R19 R10 R3 R34 R20 R11_A C4 GND GND R21 R24 R12 C8 R9 R4 R26 R13_A R7 GND AR2_A GND AR2_B R13_B AR2_C R32 AR2_D R16 R14 R9_B R11_B GND R25 R5 R6 R22R15 R1_B GND C5 R31 C6 R23 C7 R30

元件参数表 R1 R2 R3 R4 R5 R6 50k 10k 10k 10k 10k 10k R7 R8 R9 R10 R11 R12 10k 10k 100k 电位器 10k 100k 电位器 10k R13 R14 R15 R16 R17 R18 100k 电位器 10k 10k 10k 10k 330k R19 R20 R21 R22 R23 R24 10k 330k 10k 10k 330k 10k R25 R26 R27 R28 R29 R30 330k 10k 2.2k 2.2k 2.2k 2.2k R31 R32 R33 R34 C1 C2 2.2k 2.2k 10k 33k 473涤纶电容 682涤纶电容 C3 C4 C5 C6 C7 C8 472涤纶电容 152涤纶电容 473涤纶电容 682涤纶电容 472涤纶电容 152涤纶电容 C9 C10 AR1 AR2 J1 J2 475薄膜电容 475薄膜电容 TL084 TL084 3P 2.54mm 3P 2.54mm 供电部分电路 C5 C8 GND GND 1 23 4 D1 BRIDGE T1 + C6 7812 IC1 + C3 7912 IC2+C2 + C1 C7 C4 +12 -12 ~220V 元件参数表 T1 D1 C1 C2 C3 C4 12V 10W+10W 2W10 25V2200μF 25VV2200μF 16V470μF 104纸介电容 C5 C6 C7 C8 IC1 IC2 104纸介电容 16V470μF 104纸介电容 104纸介电容 7812 7912 + - +12 -12 连接典例

5款较常用的电子管前级制作电路图

5款较常用的电子管前级制作电路图 第一款介绍为1/2 6DJ8电子管作一级共阴极放大,见图①。由於是实验关系,只求了解各线路的特性及优缺点,也为求简单易制成功,除此机外,全不设稳压线路,特别是高压,相信在一般聆听环境,区别不会太显著,当然是设稳压电路更好。零件方面,除交连电容用较佳品种如VitaminQ、Rel Cap、Wima外;电阻除了6DJ8SRPP用东京光音外,其他均用0.5元一只货色;整流管用Mur1100E;电源变压器分别高低压各用一只,每只约10到20元,效果也算好。另外,以下各比试结论均只以300B单端电子管后级及KEF IS 3/5A为配搭器材,结论当然有其局限性。本线路简单易制,不失为初学者入门之选,成功率极高,也可尝试校声乐趣,即改变输出电容数值,改变负载电阻数值或加设负反馈等。交连电容牌子方面,曾以300B后级最后交连至强放电子管的位置作试听,试用了Mitppmfx、RelCappp、Kimber及Vitamin Q,结果是Mit音质细微通透,但却欠了动态;Rel Cap声厚而有力;Kimber音色通透高贵;SpragueVita-rain Q则醇厚顺滑兼备,泛音丰富,而动态也最好,表现最全面。笔者喜用一些旧的Vitamin0,因不用煲而数值也十分准确。音效方面,此机背景聆静,音质通透,分析力高,全频表现算平均,力度及控制力一般,但却少了厚度及顺滑音色,声底偏向干及清。曾试用1.8mA及4.5mA作偏流,高偏流时声音较细致。笔者未试过加入负反馈,读者可自行尝试,听声选择合乎自己的音色。要注意反馈电阻要接到栅极而不是阴极,因一级共阴极放大输出波形是反相的,如接人阴极,便会使阴极电位下降,相对地是栅极电位提高了而形成正反馈,这区别於两极共阴极放大电路把反馈电阻接回第一级阴极。 6DJ8一级共阴极放大,输出电容并了多只Wima 电容 6SN7 SRPP线路 第二款是6SN7SRPP线路,相信不少读者试制过此线路,见图②。名为分路调节推挽线(Shunt regulated push-pull),一般人相信该线路有下列优点:失真率低、线性度优良、放大率高、过荷量宽及输出阻抗低等。原理是下级电子管为共阴极,其增益取决於屏极阻抗,大部分发生於上级电子管身上,上级电子管为一恒流源,作为下级电子管的有源负载,另外,也作为一阴极跟随器,信号由下级电子管屏极输送至上级电子管栅极。R1及R2均为同值。但上级电子管绝对不是能达到百分百的恒流目的,故后

(2013全国一等奖)射频宽带放大器..

2013年全国大学生电子设计大赛 2013年全国大学生电子设计大赛论文 【本科组】 射频宽带放大器系统设计报告 2013年9月7日

射频宽带放大器 摘要:本系统基于压控对数放大器设计,由前级放大模块,增益控制模块,(带宽预置),后级功率放大模块,键盘及显示模块组成。具有射频宽带数字程控功能。在前级放大中,用电压反馈型放大器OPA657,OPA2694和宽带压控放大器VCA820放大输入信号,输出放大一定倍数的电压,经后级OPA2694的放大电路达到大于1V的有效值输出,其中电流反馈型放大器OPA657的输入偏置电流比较小,对后级电路的调理起到简化作用,VCA820的使用方便了增益控制,可以手动和程控。经验证,本方案完成了全部基本功能和扩展功能。 关键词:压控对数放大器电压反馈放大器射频宽带放大 一、系统方案论证 1.可控增益放大器的方案论证 方案一:采用场效应管或三极管控制增益。主要利用场效应管可变电阻区(或三极管等效为压控电阻)实现增益控制,由于题目要求的频带较高。该方案采用大量分立元件,电路复杂,稳定性差。 方案二:采用多路选择器来来改变放大器跨接的电阻的值实现增益控制。该方案需求每一级放大器都要加多路选择器,不能实现连续调节,影响高频的频率特性,容易引起放大器的自激。 方案三:根据题目对放大电路增益可控的要求,考虑直接选取可调增益的运放实现(如VCA820)。其特点是以db为单位进行调节,可控增益±20dB,可以用单片机方便的预制增益。 综合比较,基于电路集成度高,条理清晰,控制方便,易于数字化单片机处理的考虑,选择方案三。 2.射频宽带放大器选择的方案论证 方案一:采用电压反馈放大器OPA846、OPA847、OPA657等电压放大器,该系列的运算放大器的增益带宽积很高,但该系列的去补偿的电压反馈放大器由于寄生电容过大会引起放大器的震荡,而手工焊接的板子不能够保证寄生电容很小,难于调试,用PCB电路板有益于电路调试。 方案二:采用电流反馈放大器OPA691,OPA2694,特别是OPA2694的电压压摆率高达4300V/us,在增益和大信号的调理中表现更好的带宽和失真度,但是输入失调电流比较高,题目要求的1db增益起伏难以实现。 综合比较,基于带宽和失真度的考虑,选择方案一中低失调电流的OPA657。 二、理论分析与计算 1.放大器带宽增益积 (1)电压反馈型(VFB)运算放大器的增益和带宽存在一定的关系:从对应的波特图上可以看出,从直流到由反馈环路的主极点决定的截止频率Fc之间,增益是恒定不变的,在该频率以上,如果频率升高一倍,增益就会减半。运算放大器的-3dB带宽就是Fc,增益越高,带宽越窄,带宽增益积BW·u A =常数,

运算放大器基本电路

一:比例运算电路定义:将输入信号按比例放大的电路,称为比例运算电路。分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分)比例放大电路是集成运算放大电路的三种主要放大形式(1)反向比例电路输入信号加入反相输入端,电路如图(1)所示:输出特性:因为:,所以:从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。反向比例电路的特点: 一:比例运算电路 定义:将输入信号按比例放大的电路,称为比例运算电路。 分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分) 比例放大电路是集成运算放大电路的三种主要放大形式 (1)反向比例电路输入信号加入反相输入端,电路如图(1)所示: 输出特性:因为:, 所以: 从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。 反向比例电路的特点: (1)反向比例电路由于存在"虚地",因此它的共模输入电压为零.即:它对集成运放的共模抑制比要求低 (2)输入电阻低:r i=R1.因此对输入信号的负载能力有一定的要求. (2)同相比例电路 输入信号加入同相输入端,电路如图(2)所示: 输出特性:因为:(虚短但不是虚地);;

所以: 改变R f/R1即可改变Uo的值,输入、输出电压的极性相同 同相比例电路的特点: (1)输入电阻高;(2)由于(电路的共模输入信号高),因此集成运放的共模抑制比要求高 (3)差动比例电路 输入信号分别加之反相输入端和同相输入端,电路图如图(3)所示: 它的输出电压为: 由此我们可以看出它实际完成的是:对输入两信号的差运算。二:和、差电路 (1)反相求和电路 它的电路图如图(1)所示:(输入端的个数可根据需要进行调整)其中电阻R'为: 它的输出电压与输入电压的关系为: 它可以模拟方程:。它的特点与反相比例电路相同。它可十

FM Acoustics FM-155前级放大器

一生一世的承诺FM Acoustics FM-155前级 瑞士FM Acoustics的老总Mr Manuel Huber便是一位完美主义者。据Manuel表示,FM所采用的零件全都以人工精密配对,所有零件的误差率不超过0.1%!反观其他著名发烧厂家,所使用的零件误差率高达5 ~ 20%!FM除了使用极高质量的金属膜电阻(故障率是一千四百万份之一)之外,每一个零件在装配之前都得经过“魔鬼”式的测试。当零件安装完毕后,每一块模件及线路板都得再次经过检验、测试与调校。在组装器材时,亦不断地重复测试与调校。在整个装配过程中,每一个部件都得经过3 ~ 7次的测试。器材完成后,再重新测试、调校、“长煲”及通过耐震测试。你可以想像,在人工极为高昂的瑞士,如此耗时费事的制作方式,是一种多么“奢侈”的行为!Manuel如此执着的目的,只为了在他百年之后,世人还记得在音响史上,曾有人为了个人的梦想、热情及信念,制作过毫不妥协的器材。 由于FM Acoustics的产量非常稀少,因此价格高昂,一般人难得一闻,全球许多发烧音响杂志甚至连测试的机会都没有,更增添了它的神秘感! 在我的发烧系统里,正是以FM Acoustics的FM 255作为监听前级。其实,在我下槌FM 255之前,曾使用FM 155长达一年之久。因此,对这两部前级可说了若指掌。 FM 155的售价为$9,500,而FM 255的售价则高达$30,000!虽然两者的价格相差三倍,但FM 255的表现不见得比FM 155好了三倍。其实,在发烧音响里,价格与表现就有如金字塔,最贵及最难取得的是最后那5 ~ 10%的表现。 据FM Acoustics的总代理表示,FM 155“只卖”$9,500其实是割肉求售的“亏本”价,目的是为了让喜爱FM器材的发烧友有一亲芳泽的机会。FM 155是FM Acoustics特地用来打江山的型号,其制作方式及零件的选择与配对完全与FM 255无异。 FM 155相当小巧,纯铝外壳加上香槟色的面板,相当精致美观。其面板上只有两只旋钮及四个按钮,非常简洁。它虽然“只卖”$9,500大元,但却身轻如燕。在连接粗硬的讯号线时,甚至会将它凌空拔起! FM 155虽然比其他同价前级袖珍得多,但其音乐气质及音响却令许多同价前级相形见拙!它的音乐背景非常宁静,细节丰富,音响和谐。以大音量听各位所熟悉的歌曲Stimela时,音色自始至终保持不变,完全没有粗糙刺耳的现象。FM 155的动态非常态凌厉,在重现“火车”音型的节奏时,动态毫无压缩地暴起暴落,极富张力!歌手在电光火石间,突如其来地对着话筒怒号、狂吹,瞬态表现之迅速,令人目瞪口呆!当你从惊怵中回过神来时,一切已成为过去,留下的是一脸的愕然。能够将突发性音响重现得如此传神的前级,少矣! 以FM 155听古典音乐又是一番不同的感受。它的音色清新纯净,没有刻意的浓妆艳抹,令人久听而不腻,是一种充满了文化气息的音响。Manuel坚持零件及模件必需精确配对、严格测试及确保所有零件在不同的频段具有划一的表现,这一片苦心得到了丰富的回报。 环顾发烧音响市场,万元前级比比皆是。但对零件的选择与配对吹毛求疵得有如FM Acoustics者,绝无仅有!在这个不在乎天长地久的时代里,一生一世的承诺对厂家及消费者已是一种传奇。如果你与Manuel一样,坚持完美,FM 155长达二十五年的保用期是你唯一的选择

MOSFET单端前级放大器制作

MOSFET单端前级放大器制作 先前装过几次真空管前级,对于花费以及音色来说相当不尽人意,在真空管电路上处理也较繁琐。毕竟我用的是OCL后级,只要前级输出有少许直流电压,后级都会有大动作的!!虽然管前大部分都用电容输出,但多多少少输出还是有些直流电压存在,一点风吹草动,后级就鸡飞狗跳了!!之后也就没在使用前级了,额外接一个VR来做音量控制而已,后来也就在这样的情况下听了一段时间...... 在一次修好DYNACO OTL的后级,意外发现这种教科书上的传统电路也能发出那么甜美的声音!!说也惭愧,我一向不喜欢那种有输入电容又有输出电容的单电源结构电路,更何况还是后级使用OTL架构。我都会认为声音很糟糕,不过事实证明东西还是得亲自听过才能断定!! 心动了,手养了,干脆兜一个电晶体单端前级来玩看看~ 不过又想要有些管味,那就用MOSFET吧!!大致上要先有个方向: 1.单端,一个声道只准用一个主动元件 2.线路简单 3.材料取得方便以下是电路图,所有元件都是拿以前装套件后搁置的材料!! 途中修改过几次工作点也换过不少东西~以下的电路图是目

前规划并且装置好的!!主放大元件采用IRF630相当容易取 得的东西!! 这是个相当简洁的架构,大致上来看R2跟SVR 会构成一个相当不错的直流回授效果,可以稳定直流工作点~再来R1跟R4构成一个本级回授,SVR用来调整工作点让MOSFET的汲极设定在电源的一半,也可以更换不同编号的NMOS来动作!! 只要调整SVR到最佳工作点即可~增益相当于4.4倍,不过会因为负载效应影响可能降至4倍以下甚至更低。R1要用大功率的电阻,这部分温度较高装好后的样子~相当的简洁!! SVR我用日制的音量控制器方便调整作业,一切从俭~ 两颗50V/10000u的电容做CRC滤波~嘿,这里是个关键点!!说搭棚简单~其实也有点难,还要想很久零件该摆哪......以下是吓死人的波形...24KHz方波,几乎无向位移,有稍稍钝化 因为仪器的关系~下面的输入灵敏度数字大十倍,请把它扣 除一个0来看!! 实际上输出是反向的,不过示波器有反向功能,因此我在给它反向回去以方便量看1K方波的样子50Hz几乎没有歪斜,相当漂亮!很棒的频宽!!比我之前做的单端管前好太多太多了... 至于音色表现方面相当不错,声音清甜,细节变多,人声表现相当出色,目前对我而言只有好没有坏!!重要的是如此简 单的架构声音表现一点也不含糊!!

低噪声前置放大器电路设计步骤

低噪声前置放大器电路设计步骤及相关注意事项 时间:2009-10-14 来源:作者:点击:281 低噪声前置放大器电路设计步骤及相关注意事项 前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。前置放大器是专为接收来自信源的微弱电压信号而设计的,已接收的信号先以较小的增益放大,有时甚至在传送到功率放大器级之前便先行加以调节或修正,如音频前置放大器可先将信号加以均衡及进行音调控制。无论为家庭音响系统还是PDA设计前置放大器,都要面对一个十分头疼的问题,即究竟应该采用哪些元件才恰当? 元件选择原则 由于运算放大器集成电路体积小巧、性能卓越,因此目前许多前置放大器都采用这类运算放大器芯片。我们为音响系统设计前置放大器电路时,必须清楚知道如何为运算放大器选定适当的技术规格。在设计过程中,系统设计工程师经常会面临以下问题。 是否有必要采用高精度的运算放大器? 输入信号电平振幅可能会超过运算放大器的错误容限,这并非运算放大器所能接受。若输入信号或共模电压太微弱,设计师应该采用补偿电压(Vos)极低而共模抑制比(CMRR)极高的高精度运算放大器。是否采用高精度运算放大器取决于系统设计需要达到多少倍的放大增益,增益越大,便越需要采用较高准确度的运算放大器。 运算放大器需要什么样的供电电压? 这个问题要看输入信号的动态电压范围、系统整体供电电压大小以及输出要求才可决定,但不同电源的不同电源抑制比(PSRR)会影响运算放大器的准确性,其中以采用电池供电的系统所受影响最大。此外,功耗大小也与内部电路的静态电流及供电电压有直接的关系。 输出电压是否需要满摆幅? 低供电电压设计通常都需要满摆幅的输出,以便充分利用整个动态电压范围,以扩大输出信号摆幅。至于满摆幅输入的问题,运算放大器电路的配置会有自己的解决办法。由于前置放大器一般都采用反相或非反相放大器配置,因此输入无需满摆幅,原因是共模电压(Vcm)永远小于输出范围或等于零(只有极少例外,例如设有浮动接地的单供电电压运算放大器)。 增益带宽的问题是否更令人忧虑? 是的,尤其是对于音频前置放大器来说,这是一个非常令人忧虑的问题。由于人类听觉只能察觉大约由20Hz至20kHz频率范围的声音,因此部分工程师设计音频系统时会忽略或轻视这个“范围较窄”的带宽。事实上,体现音频器件性能的重要技术参数如低总谐波失真(THD)、快速转换率(slew rate)以及低噪声等都是高增益带宽放大器所必须具备的条件。

高频功率放大器电路图

高频功率放大器电路图 发布: 2011-9-8 | 作者: —— | 来源:zhouhuajun| 查看: 507次| 用户关注: 利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。电流导通角θ愈小,放大器的效率η愈高。如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ<90o,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。丙类功率放大器通常作为末级功放以获得较大的 利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发 射机中的重要组成部分。根据放大器电流导通角θ的范围可分为甲类、乙类、丙类 及丁类等不同类型的功率放大器。电流导通角θ愈小,放大器的效率η愈高。如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90o,效率η可达 到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。丙类 功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。 图3-1 高频功率放大器 图3-1 为由两级功率放大器组成的高频功率放大器电路,其中VT1组成甲类功 率放大器,晶体管VT2 组成丙类谐振功率放大器,这两种功率放大器的应用十分广 泛,下面介绍它们的工作原理及基本关系式。 1、甲类功率放大器 1)静态工作点 如图3-1 所示,晶体管VT1 组成甲类功率放大器,工作在线性放大状态。其中 RB1、RB2为基极偏置电阻;RE1 为直流负反馈电阻,以稳定电路的静态工作点。RF1 为交流负反馈电阻,可以提高放大器的输入阻抗,稳定增益。电路的静态工作点由

前置放大器的设计与应用

前置放大器的设计与应用 一、 实验目的 1.理解前置放大器的相关概念,理解差模信号与共模信号,了解当前最新的一些前置放大器IC 的类别及主要指标和特性,学习前置放大器的设计技巧。 2.实际进行差分信号产生、测试;用单运放构成仪表放大器,并进行性能测试; 3.利用前置放大器IC 进行设计、测试与应用。 4.了解阻抗匹配、偏置电路设计及共模信号抑制的常用方法。 二、 实验仪器及器件 1.实验所需设备 2 基础实验部分所需器件 扩展实验部分所需器件 三、 预习要求 1.根据提供的附件材料理解与前置放大器相关的一些概念,复习函数信号发生器、数字示波器等仪器的使用方法。理解文氏电桥振荡电路原理。 2.学会阅读IC 的英文数据手册,理解运放各主要指标特性的含义。 3.复习运放进行线性放大的相关理论知识,能对输入电阻、输出电阻、共模抑制比CMRR 及增益进行计算。主要相关概念及公式如下: 差模信号是两个输入电压之差:υid=υi1-υi2 共模信号是两个输入电压的算术平均值:υic=(υi1+υi2)/2 差模电压增益:A VD=υod/υid =υod/(υi1-υi2) 共模电压增益:A Vc=υoc/υic =2*υoc/(υi1+υi2) 根据线性放大电路叠加原理求出总的输出电压:υo= A VD υid+ A Vc υic 共模抑制比:K CMR=| A VD / A Vc | 共模抑制比用分贝数(dB )表示:K CMR=20lg| A VD / A Vc | dB

四、实验原理 通过传感器输入的信号,一般信号幅度很小(毫伏甚至微伏量级),且常常伴随有较大的噪声。对于这样的信号,第一步通常是采用仪表放大器先将小信号放大。这个放大的最主要目的不是增益,而是提高电路的信噪比,将需要的信号从噪声中分离出来;同时仪表放大器电路能够分辨的输入信号越小越好,动态范围越宽越好。仪表放大器电路性能的优劣直接影响到智能仪表仪器能够检测的输入信号范围。 图1 典型三运放仪表放大器电路 仪表放大器电路的典型结构如图1所示。它主要由两级差分放大器电路构成。其中,运放A1、A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。这样在以运放A3为核心部件组成的差分放大电路中,在CMRR要求不变情况下,可明显降低对电阻R1和R3,R2和R4的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R5=R6,R1=R3,R2=R4的条件下,图1电路的增益为:G=(1+2R5/Rg)(R2/R1)。由公式可见,电路增益的调节可以通过改变Rg阻值实现。 运放作为模拟电路的主要器件之一,能处理双极性或单极性信号:双极性就是信号在变化的过程中要经过“零”点,单极性不过“零”点,只在一边变化。在供电方式上有单电源和双电源两种,双电源供电运放的输入可以是在正负电源之间的双极性信号,而单电源供电的运放的输入信号只能是0~供电电压之内的单极性信号,其输出亦然。双电源供电的运放电路,可以有较大的动态范围;单电源供电的运放,可以节约一路电源。单电源供电的运放的输出是不能达到0V的,对接近0V的信号放大时误差很大,且容易引入干扰;而双电源供电的稳定性比单电源的要好。单电源供电对运放的指标要求要高一些,般需要用轨对轨(R-R),运放的价格一般会贵点。单电源用V+,GND,一般还需生成一个与GND不同的模拟地AGND,因此放大电路的构成形式上有所不同,往往用单电源的电路较用双电源的要稍复杂一些,以达到同样的目的。随着器件水平的提高,有越来越多的用单电源供电代替双电源供电的应用,这是一个趋势。 差分信号就是幅度相同、相位相差180°的两信号。运放处理的是这对信号的差值,它们的共模信号则被抑制掉。这信号的共模电压可以处于运放输入信号范围内的任何电压。差分信号会具有两倍单端信号的摆幅。伪差分信号与差分信号类似,伪差分信号也是一对信号,但它的参考端或负端是一个直流电平,用来去除正端信号中的直流成分。伪差分信号与差分信号在减小地环流和噪声方面是非常相似的,不同的是差分输入模式下,负端输入是随时间变化的,而在伪差分模式下,负端输入是一个不变的直流参考。差分信号的主要好处是:能够很容易地识别小信号;一个干扰源几乎相同程度地影响差分信号对的每一端,而有用的只

音频放大电路的组成及原理

第二章高保真电路的组成及基本原理 2.1电路整体方案的确定 音频功率放大器的基本功能是把前级送来的声频信号不失真地加以放大,输出足够的功率去驱动负载(扬声器)发出优美的声音。放大器一般包括前置放大和功率放大两部分,前者以放大信号振幅为目的,因而又称电压放大器;后者的任务是放大信号功率,使其足以推动扬声器系统。 功率放大电路是一种能量转换电路,要求在失真许可的范围内,高效地为负载提供尽可能大的功率,功放管的工作电流、电压的变化范围很大,那么三极管常常是工作在大信号状态下或接近极限运用状态,有甲类、乙类、甲乙类等各种工作方式。为了提高效率,将放大电路做成推挽式电路,功放管的工作状态设置为甲乙类,以减小交越失真。常见的音频功放电路在连接形式上主要有双电源互补推挽功率放大器OCL(无输出电容)、单电源互补推挽功率放大器OTL(无输出变压器)、平衡(桥式)无变压器功率放大器BTL等。由于功放管承受大电流、高电压,因此功放管的保护问题和散热问题也必须要重视。 OCL电路由于性能比较好,所以广泛地应用在高保真扩音设备中。本课题输出级选用OCL功率放大器,偏置电路选用甲乙类功放电路。为了使电路简单,信号失真小,本电路选用反馈型音调控制电路。为了不影响音调控制电路,要求前置输入阻抗比较高,输出阻抗低,本级电路选用场效应管共源放大器和源级跟随器组成。 高保真音频放大器组成框图 2.2 OCL功率放大器的原理 OCL功率放大器电路通常可分成:功率输出级、推动级和输入级三部分。根据给定技术指标,选择下图所示电路 功率输出级是由四个三极管组成的复合管准互补对称电路,可以得到较大的输出功率。再用一些电阻来减小复合管的穿透电流,增加电路的稳定性。前置电路用NPN型三极管组成恒压电路,保证功率输出管有合适的初始电流,以克服交越失真。 推动级采用普通共射放大电路。 输入级部分由三极管组成差动放大电路,减小电路直流漂移。 2.3音调控制电路的原理 常用的音调控制电路有三种:一种是衰减式RC音调控制电路,其调节范围

收音机前级放大电路的设计(03版)

收音机前级放大电路的设计 小组成员: 指导老师: 收音机前级放大电路的设计 摘要:本文主要研究收音机前级放大电路,分为阻容耦合、直接耦合、变压器耦合三种放大电路进行研究,综合分析各元器件在电路中的作用,比较三种不同

放大电路的优劣性,并用multisim进行仿真。 关键词:放大电路,阻容耦合,直接耦合,变压器耦合 一前言 1、直放式收音机 该收音机将空间接收到的电磁波经选台后送检波器进行解调处理,然后再送喇叭还原为声音。要使喇叭发出的声音足够大声,接收到的电磁波强度也要足够大,所以这种收音机模型只能在实验室中实验或在广播电台发射天线附近使用。这样的收音机是没有实用价值的。为了使收音机能商品化,人们很自然地会想到将接收到的微弱电磁波信号先进行放大,使已调幅的载波幅度足够大,然后进行检波,检波后得到的音频信号再进行音频放大,最后推动喇叭。这样即使远离电台,收音机喇叭也能发出足够大的声音。图1是这种收音机的原理方框图和各方框对应输出信号的波形图。图中可见,从天线接收到的高频信号在收音机中经输入回路选台后直接进行放大~检波~放大。因此,我们称这种收音机为直接放大式晶体管收音机。但是,因为一些元件对不同频率的信号表现出的特性不同,例如三极管的β值随着放大信号频率的增高是降低的,所以该收音机对不同频率的电台信号放大量有所差别,频率较高的时候这种不均匀性就更突出。这会导致收音机当考虑高频率信号接收效果时,较低频率信号会因收音机放大量太大而产生自激;当考虑较低频率信号的接收效果时,高频率信号会因收音机对高频率信号放大能力差而几乎从喇叭中听不到声音(通常称这种现象为灵敏度不均匀)。同时,这类收音机对于同一个电台信号离电台近时(电磁波强),收音机输出音量大,离电台远时(电磁波弱)收音机输出音量小,这就是说收音机接收强弱不同的外来信号时,喇叭输出的音量将出现很大的变化。由于直接放大式收音机有上述缺点,所以它刚一诞生很快就被下述的外差式收音机所代替。 图1 直接放大式收音机的方框简图 2、超外差收音机 直接放大式收音机的最大缺点是在接收的频率范围内灵敏度不均匀,选择性差。为了克服这些缺点,可将接收到的外来信号频率统一地变换成一个固定的信号频率,然后对这固定的频率信号进行放大。在收音机中将外来信号统一变换成一个固定信号频率的过程称为变频,这固定的信号频率称为中频,我国规定收音机中的中频频率为465kHz。因此,通过变

高保真单端纯直流甲类前级放大电路的制作及调试

高保真单端纯直流甲类前级放大电路的制作及调试 类别:网文精粹阅读:2309 图为单端甲类前级放大电路,电路板实物图如下图所示(图中仅画一个声道,另一个声道相同)。 电路特点如下: ①采用发烧管K246,A970,C2240,Al145、C2705等,信号从输人级到输出级均设计为纯甲类状态,从而避免了交越失真,音色及听感特别好,动态好,解析力强。

②输人级采用场效应管做单端差分电路,以得到悦耳的音色,输人级采用场效应管对信噪比有好处,输人阻抗高,有利于微弱信号的拾取,其传输特性和电子管相似,可以表现出类似胆机的音色。 ③为了适应不同的音源及发烧角度,需要电路由NE5532等组成的音调电路,并且设置有直通开关,当聆听音乐时,按一下自锁开关K即可跳过音调进人纯Hi-Fi状态。 ④电源部分采用分立元器件稳压电源,具有极低的输出内阻,稳压精度高,反应速度快。对电源纹波有良好的吸收特性,从而保证了本前级音色的纯净度。 电路原理如下:IC1及其外围元器件是音调电路;K1是直通/4调开关;T1,T2是由场效应管组成的单端差分电路;T7, T8是恒流源;R1、R2是T1、T2的负载,该级没有采用镜像恒流源做负载,可提高整体电路的转换速度并确保保真度。实践证明,镜像恒流源做负载时,电路失真程度较电阻做负载时程度大。这也就是Hi-Fi为什么越简洁失真越小的道理。该级设置静态电流均为3 mA(每管),使该级工作在甲类状态,因而没有开关失真和交越失真,并提高了动态范围。单端甲类线路本身可抵消奇次谐波失真,而偶次谐波比较丰富,对音色起到一定的润泽作用,听感优美,音色温暖柔润,具有更佳的耐听性,深受发烧友的喜爱。 T1,T2将输人信号转变为电流变化,再由T3, T4将电流变化转变为电压输出,T9, T10是T3,T 4的镜像恒流源,可确保该级的稳定性。电压放大级采用共基极电路。这种电路多用于宽频带放大电路,具有极高的高频特性。T5 , T6是输出级,Tll及VR1、R3是其静态偏置电路,通过调节VR1使输出级静态电流在10-20 mA即可。此时,T5,T6工作在甲类状态,从而获真度和动态特性。 图下是该前级的电源电路。为了提高滤波特性,正负电压均采用了3只1000 μF的电容进行并联,以减小电容的内阻、获得更高的滤波特性。本稳压电路是根据洼田式稳压电源进行改版而设计的分立元器件稳压电源。调整管由T12,T13,T14,T15组成达林顿结构,增加反应速度,并且在其基极增设了一个332电容滤去高频杂波。VR2, VR3负电源相等,可获得最佳的效果。 元器件的选择: ①所有电解电容均采用日本ELNA原装电解;

相关主题
文本预览
相关文档 最新文档