当前位置:文档之家› 傅立叶分析和小波分析之间的关系之通俗终极版

傅立叶分析和小波分析之间的关系之通俗终极版

傅立叶分析和小波分析之间的关系之通俗终极版
傅立叶分析和小波分析之间的关系之通俗终极版

傅立叶分析和小波分析之间的关系之通俗终极版

转载请注明出处和作者

知乎作者:咚懂咚懂咚

从傅里叶变换到小波变换,并不是一个完全抽象的东西,完全可以讲得很形象。小波变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路。

下面我就按照傅里叶-->短时傅里叶变换-->小波变换的顺序,讲一下为什么会出现小波这个东西、小波究竟是怎样的思路。(反正题主要求的是通俗形象,没说简短,希望不会太长不看。。)

一、傅里叶变换

关于傅里叶变换的基本概念在此我就不再赘述了,默认大家现在正处在理解了傅里叶但还没理解小波的道路上。(在第三节小波变换的地方我会再形象地讲一下傅里叶变换)

下面我们主要将傅里叶变换的不足。即我们知道傅里叶变化可以分析信号的频谱,那么为什么还要提出小波变换?答案就是方沁园所说的,“对非平稳过程,傅里叶变换有局限性”。看如下一个简单的信号:

做完FFT(快速傅里叶变换)后,可以在频谱上看到清晰的四条线,信号包含四个频率成分。

一切没有问题。但是,如果是非平稳信号呢?

如上图,最上边的是频率始终不变的平稳信号。而下边两个则是频率随着时间改变的非平稳信号,它们同样包含和最上信号相同频率的四个成分。

做FFT后,我们发现这三个时域上有巨大差异的信号,频谱却非常一致。尤其是下边两个非平稳信号,我们从频域上无法区分它们,因为它们包含的四个频率的信号的成分确实是一样的,只是出现的先后顺序不同。

可见,傅里叶变换处理非平稳信号有天生缺陷。它只能获取一段信号总体上包含哪些频率的成分,但是对各成分出现的时刻并无所知。因此时域相差很大的两个信号,可能频谱图一样。

然而平稳信号大多是人为制造出来的,自然界的大量信号几乎都是非平稳的,所以在比如生物医学信号分析等领域的papers中,基本看不到单纯傅里叶变换这样naive的方法。

上图所示的是一个正

常人的事件相关电位。对于这样的非平稳信号,只知道包含哪些频率成分是不够的,我们还想知道各个成分出现的时间。知道信号频率随时间变化的关系,各个时刻的瞬时频率及其幅值——这也就是时频分析。

二、短时傅里叶变换(Short-time Fourier Transform, STFT)

一个简单可行的方法就是——加窗。我又要套用方沁园同学的描述了,“把整个时域过程分解成无数个等长的小过程,每个小过程近似平稳,再傅里叶变换,就知道在哪个时间点上出现了什么频率了。”这就是短时傅里叶变换。

看图:

时域上分成一段一段做FFT,不就知道频率成分随着时间的变化情况了吗!用这样的方法,可以得到一个信号的时频图了:

图上既能看到300Hz, 200 Hz, 100 Hz, 50 Hz四个频域成分,还能看到出现的时间。两排峰是对称的,所以大家只用看一排就行了。

是不是棒棒哒?但是STFT依然有缺陷。

使用STFT存在一个问题,我们应该用多宽的窗函数?

窗太宽太窄都有问题:

窗太窄,窗内的信号太短,会导致频率分析不够精准,频率分辨率差。窗太宽,时域上又不够精细,时间分辨率低。

(这里插一句,这个道理可以用海森堡不确定性原理来解释。类似于我们不能同时获取一个粒子的动量和位置,我们也不能同时获取信号绝对精准的时刻和频率。这也是一对不可兼得的矛盾体。我们不知道在某个瞬间哪个频率分量存在,我们知道的只能是在一个时间段内某个频带的分量存在。所以绝对意义的瞬时频率是不存在的。)

看看实例效果吧:

上图对同一个信号(4个频率成分)采用不同宽度的窗做STFT,结果如右图。用窄窗,时频图在时间轴上分辨率很高,几个峰基本成矩形,而用宽窗则变成了绵延的矮山。但是频率轴上,窄窗明显不如下边两个宽窗精确。

所以窄窗口时间分辨率高、频率分辨率低,宽窗口时间分辨率低、频率分辨率高。对于时变的非稳态信号,高频适合小窗口,低频适合大窗口。然而STFT的窗口是固定的,在一次STFT 中宽度不会变化,所以STFT还是无法满足非稳态信号变化的频率的需求。

三、小波变换

那么你可能会想到,让窗口大小变起来,多做几次STFT不就可以了吗?!没错,小波变换就有着这样的思路。

但事实上小波并不是这么做的(关于这一点,方沁园同学的表述“小波变换就是根据算法,加不等长的窗,对每一小部分进行傅里叶变换”就不准确了。小波变换并没有采用窗的思想,更没有做傅里叶变换。)

至于为什么不采用可变窗的STFT呢,我认为是因为这样做冗余会太严重,STFT做不到正交化,这也是它的一大缺陷。

于是小波变换的出发点和STFT还是不同的。STFT是给信号加窗,分段做FFT;而小波直接把傅里叶变换的基给换了——将无限长的三角函数基换成了有限长的会衰减的小波基。这样不仅能够获取频率,还可以定位到时间了~

【解释】

来我们再回顾一下傅里叶变换吧,没弄清傅里叶变换为什么能得到信号各个频率成分的同学也可以再借我的图理解一下。

傅里叶变换把无限长的三角函数作为基函数:

这个基函数会伸缩、会平移。缩得窄,对应高频;伸得宽,对应低频。然后这个基函数不断和信号做相乘。某一个尺度(宽窄)下乘出来的结果,就可以理解成信号所包含的当前尺度对应频率成分有多少。于是,基函数会在某些尺度下,与信号相乘得到一个很大的值,因为此时二者有一种重合关系。那么我们就知道信号包含多少该频率的成分。

(看,这两种尺度能乘出一个大的值,所以信号包含较多的这两个频率成分,在频谱上这两个频率会出现两个峰)

以上,就是傅里叶变换的原理。

如前边所说,小波做的改变就在于,将无限长的三角函数基换成了有限长的会衰减的小波基。

这就是为什么它叫“小波”,因为是很小的一个波嘛~

从公式可以看出,不同于傅里叶变换,变量只有频率ω,小波变换有两个变量:尺度a(scale)和平移量τ(translation)。尺度a控制小波函数的伸缩,平移量τ控制小波函数的平移。尺度就对应于频率(反比),平移量τ就对应于时间。

当伸缩、平移到这么一种重合情况时,也会相乘得到一个大的值。这时候和傅里叶变换不同的是,这不仅可以知道信号有这样频率的成分,而且知道它在时域上存在的具体位置。

而当我们在每个尺度下都平移着和信号乘过一遍后,我们就知道信号在每个位置都包含哪些频率成分。

看到了吗?有了小波,我们从此再也不害怕非稳定信号啦!从此可以做时频分析啦!

做傅里叶变换只能得到一个频谱,做小波变换却可以得到一个时频谱!

↑:时域信号

↑:傅里叶变换结果

↑:小波变换结果

小波还有一些好处:

1. 我们知道对于突变信号,傅里叶变换存在吉布斯效应,我们用无限长的三角函数怎么也拟合不好突变信号:

然而衰减的小波就不一样了:

2. 小波可以实现正交化,短时傅里叶变换不能。

以上,就是小波的意义。

-----------------------------------------------------------------------------------------------------------

以上只是用形象地给大家展示了一下小波的思想,希望能对大家的入门带来一些帮助。毕竟如果对小波一无所知,直接去看那些堆砌公式、照搬论文语言的教材,一定会痛苦不堪。

在这里推荐几篇入门读物,都是以感性介绍为主,易懂但并不深入,对大家初步理解小波会很有帮助。文中有的思路和图也选自于其中:

1. THE WAVELET TUTORIAL (强烈推荐,点击链接:INDEX TO SERIES OF TUTORIALS TO WAVELET TRANSFORM BY ROBI POLIKAR)

2. WAVELETS:SEEING THE FOREST AND THE TREES

3. A Really Friendly Guide to Wavelets

4. Conceptual wavelets

但是真正理解透小波变换,这些还差得很远。比如你至少还要知道有一个“尺度函数”的存在,它是构造“小波函数”的关键,并且是它和小波函数一起才构成了小波多分辨率分析;你还要理解离散小波变换、正交小波变换、小波包……这些内容国内教材上讲得也很糟糕,大家就一点一点啃吧~有问题欢迎私信我。水平有限,但一定帮助。

第一次在知乎写这么长的回答,多数图都是用MATLAB和PPT自己画出来的,都是利用实验室搬完砖之余的时间一点点弄的,如转载还请跟我说一声哈~

小波分析考试题(附答案)

《小波分析》试题 适用范围:硕士研究生 时 间:2013年6月 一、名词解释(30分) 1、线性空间与线性子空间 解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。2、基与坐标 解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 () 。an ...a a 11,,,3、内积 解释:内积也称为点积、点乘、数量积、标量积。,()T n x x x x ,...,,21= ,令,称为x 与y 的内积。 ()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间 解释:线性 完备的内积空间称为Hilbert 空间。线性(linearity ):对任意 f , g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。内积(inner product ):,它满足:,()T n f f f f ,...,,21=时。 ()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程 解释:所以都可以用空间的一个1010,V W t V V t ?∈?∈)()(ψ?) ()和(t t ψ?1V

近代数学 小波 简答题+答案

1什么是小波函数?(或小波函数满足什么条件?) 答:设)()(2R L t ∈?,且其Fourier 变换)(ω? 满足可允许性(admissibility )条件 +∞

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

浙江大学小波变换及工程应用复习题

小波分析复习题 1、简述傅里叶变换、短时傅里叶变换和以及小波变换之间的异同。 答:三者之间的异同见表 2、小波变换堪称“数学显微镜”,为什么? 答:这主要因为小波变换具有以下特点: 1)具有多分辨率,也叫多尺度的特点,可以由粗及精地逐步观察信号; 2)也可以看成用基本频率特性为)(ωψ的带通滤波器在不同尺度a 下对信号作滤波; 如果)(t ?的傅里叶变换是)(ωψ,则)(a t ?的傅里叶变换为)(||a a ω ψ,因此这组滤波 器具有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点。a 越大相当于频率越低。 3)适当的选择基本小波,使)(t ?在时域上位有限支撑,)(ωψ在频域上也比较集中,便可以使WT 在时、频两域都具有表征信号局部特征能力,因此有利于检测信号的瞬态或奇异点。 4)如)(t x 的CWT 是),(τa WT x ,则)(λt x 的CWT 是),( λ τ λλa WT x ;0>λ 此定理表明:当信号)(t x 作某一倍数伸缩时,其小波变换将在τ,a 两轴上作同一比例的 伸缩,但是不发生失真变形。 基于上述特性,小波变换被誉为分析信号的数学显微镜。 3、在小波变换的应用过程中,小波函数的选取是其应用成功与否的关键所在,请列举一些选择原则。 答:选择原则列举如下:(也即需满足的一些条件和特性) 1)容许条件

当?∞ +∞-∞<=ωω ωψ?d c 2 ) (时才能由小波变换),(τa WT x 反演原函数)(t x ,?c 便是对 )(t ?提出的容许条件,若∞→?c ,)(t x 不存在,由容许条件可以推论出:能用作基本小 波)(t ?的函数至少必须满足0)(0==ωωψ,也就是说)(ωψ必须具有带通性质,且基本小波 )(t ?必须是正负交替的振荡波形,使得其平均值为零。 2)能量的比例性 小波变换幅度平方的积分和信号的能量成正比。 3)正规性条件 为了在频域上有较好局域性,要求),(τa WT x 随a 的减小而迅速减小。这就要求)(t ?的 前n 阶原点矩为0,且n 值越大越好。也就是要求? =0)(dt t t p ?,n p ~1:,且n 值越大越好, 此要求的相应频域表示是:)(ωψ在0=ω处有高阶零点,且阶次越高越好(一阶零点就是容许条件),即)()(01 ωψω ωψ+=n ,0)(00≠=ωωψ,n 越大越好。 4)重建核和重建核方程 重建核方程说明小波变换的冗余性,即在τ-a 半平面上各点小波变换的值是相关的。 重建核方程:τττττ?? ?∞ +∞ ∞-=0 00200),,,(),(),(a a K a WT a da a WT x x ; 重建核:><== ?)(),(1)()(1),,,(0000* 00t t c dt t t c a a K a a a a ττ? ττ??????ττ 4、连续小波变换的计算机快速算法较常用的有基于调频Z 变换和基于梅林变换两种,请用 框图分别简述之,并说明分别适合于什么情况下应用。 答: 1)基于调频Z 变换 ),(2a j a n j e A e W ππ--== 运算说明: a .原始数据及初始化:原始数据是)(k ?(1~0-=N k )和a 值,初始化计算包括 a j e A π-=和a n j e W π2-=。 --- 1)(2N k r )2(am N π 12~2--N N 对应于:1~0-=N r

小波分析基础及应用期末习题

题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤

11()3.k k h k p -=为高通分解滤波器,写出个双倍平移正交关系等式 题6:列出二维可分离小波的4个变换基。 题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。 (1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件: (2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式: (3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整: 222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0 ,1 2h h h h h h h h n ?+++=???+==??? 规范性低通双平移正交阶消失矩

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

用MATLAB中的小波函数和小波工具箱

研究生课程考试答题纸 研究生学院 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降

噪的理论依据。(25分) 四、平时成绩。(30分) 一、论述 1. 连续小波变换 将任意2 ()L R 空间中函数(t)f 在小波基下展开,称这种展开为函数(t)f 的连续小波变换(CWT), 其表达式为,T (,)(),()()()f a R t W a f t t f t dt a τττψψ-=<>=?,其中a 为尺度因子,表示与频率相关的伸缩,b 为时间平移因子。其中,()(),0,a t t a R a ττψτ-= >∈为窗口函数也是小波母函数。 任意函数在某一尺度a 、平移点τ上的小波变换系数,实质上表征的是在τ位置处,时 间段a t ?上包含在中心频率为 0a ω、带宽为a ω?频窗内的频率分量大小。随着尺度a 的变化,对应窗口中心频率0a ω及带宽为a ω?也发生变化。小波变换是一种便分辨率的时频联合分析方法,当分析低频信号时,其时间窗很大,而分析高频信号时,其时间窗减小。这恰恰符合实际问题中高频信号的持续时间短、低频信号持续时间长的自然规律。 尺度伸缩,对波形的尺度伸缩就是在时间轴上对信号进行压缩和伸展。在不同尺度下,

第6章 气象上常用小波及其应用

第6章 气象上常用小波及其应用实例(1) 前面五章讲述了小波分析方法的由来和原理,这些基本知识为气象上实际应用奠定了基础。本章将介绍气象上常用的几种小波,特别是Haar 小波和墨西哥帽(Mexihat )小波,以及小波分析的应用实例。 6.1 二进小波 二进小波的产生基于第4章的“二分法”。它的基本思路是把连续型函数)(t f 及其连续小波变换),(b a W f 离散化,以便于实际应用。作为一种方便和常用的形式,是对小波参数中的放(伸)缩因子a 进行二进制离散。若小波函数系的表达式 {} Z m,n n t a m ∈-- ),(ψ (?? ) 中的放缩因子)(2Z j a j ∈=,则称)(t ψ为二进小波。把经过这种离散化后的二进小波的变换, 称为二进小波变换。 强调说明:在应用时所用的小波函数系(式(??))与前面第4章第3节的式(?)有所不同。比照这两式: ),()(),2(2 )(,2 /,b at a t k t t b a j j k j -= -=ψψψψ 或 (?) ),()(,n t a t m n m -=-ψψ (?? ) 可以看出,二者主要的不同点是t 的系数a 指数正负号恰好相反。所以,用式(?)的小波作变换时,随着a (或者j )的增大,W 曲线变窄;而用式(??)的小波作变换时,随着a (或者j )的增大,W 曲线变宽。 定义6.1 函数)()(2R L t ∈ψ被称为二进小波,若存在两个常数∞<≤

博士复试题目+答案

1、小波变换在图像处理中有着广泛的应用,请简述其在图像压缩中的应用原理? 答:一幅图像经过一次小波变换之后,概貌信息大多集中在低频部分,而其余部分只有微弱的细节信息。为此,如果只保留占总数数量1/4的低频部分,对其余三个部分的系数不存储或传输,在解压时,这三个子块的系数以0来代替,则就可以省略图像部分细节信息,而画面的效果跟原始图像差别不是很大。这样,就可以得到图像压缩的目的。 2、给出GPEG数据压缩的特点。 答:(1)一种有损基本编码系统,这个系统是以DCT为基础的并且足够应付大多数压缩方向应用。 (2)一种扩展的编码系统,这种系统面向的是更大规模的压缩,更高精确性或逐渐递增的重构应用系统。 (3)一种面向可逆压缩的无损独立编码系统。 3、设计雪花检测系统 答:1)获得彩色雪花图像。2)灰度雪花图像。3)图像的灰度拉伸,以增强对比度。4)阈值判断法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对雪花区域的定位。8)利用hough变换截下雪花区域的图片。 9)雪花图片几何位置调整。 4、用图像处理的原理设计系统,分析木材的年轮结构。 答:1)获得彩色木材年轮图像。2)灰度木材年轮图像。3)灰度拉伸以增加对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对木材年轮圈进行定位。8)图片二值化。9)利用边界描述子对木材的年轮结构进行识别。 5、给出生猪的尺寸和形貌检测系统。 答:1)获得彩色生猪图像。2)灰度生猪图像。3)图像的灰度拉伸,以增强对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以除去噪声。 7)用梯度算子对生猪区域的定位。8)利用hough变换截下生猪区域的图片。9)生猪图片几何位置调整。10)生猪图片二值化。11)利用边界描述子对生猪尺寸和形貌的识别。 第二种答案:(类似牌照检测系统) 1)第一步定位牌照 由图像采集部件采集生猪的外形图像并将图像存储在存储器中,其特征在于:数字处理器由存储器中读入并运行于生猪外形尺寸检测的动态检测软件、从存储器中依次读入两幅车辆外形图像数据、经过对生猪外形图像分析可得到生猪的高度,宽度和长度数据即生猪的外形尺寸。通过高通滤波,得到所有的边对边缘细化(但要保持连通关系),找出所有封闭的边缘,对封闭边缘求多边形逼近,在逼近后的所有四边形中,找出尺寸与牌照大小相同的四边形。生猪形貌被定位。 2)第二步识别 区域中的细化后的图形对象,计算傅里叶描述子,用预先定义好的决策函数,对描述子进行计算,判断到底是数字几。 6、常用的数字图像处理开发工具有哪些?各有什么特点? 答:目前图像处理系统开发的主流工具为Visual C++(面向对象可视化集成工具)和MATLAB的图像处理工具箱(lmage processing tool box)。两种开发工具各有所长且有相互间的软件接口。 微软公司的VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

第六章 小波变换的几个典型应用

第六章 小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 ???????≤≤++-≤≤++-=1000501)()3.0sin(500 10005001)()3.0sin(500 1 )(t t b t t t t b t t t s 应用db5小波对该信号进行7层分解。xiaobo0601.m 100 200 300 400500600 700 800 900 1000 -4-3-2-1012345 6样本序号 n 幅值 A 图6-1含躁的三角波与正弦波混合信号波形 分析: (1) 在图6-2中,逼近信号a7是一个三角波。 (2) 在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4) 与正弦信号相关。

01002003004005006007008009001000 -101a 7 01002003004005006007008009001000 -202a 6 01002003004005006007008009001000 -202a 5 01002003004005006007008009001000 -202a 4 01002003004005006007008009001000 -505a 3 01002003004005006007008009001000 -505a 2 010******* 4005006007008009001000 -5 05a 1 样本序号 n 图6-2 小波分解后各层逼近信号 01002003004005006007008009001000 -101d 7 01002003004005006007008009001000 -101d 6 01002003004005006007008009001000 -101d 5 01002003004005006007008009001000 -202d 4 01002003004005006007008009001000 -202d 3 01002003004005006007008009001000 -202d 2 010******* 4005006007008009001000 -5 05d 1 样本序号 n 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用

数字图像处理复习题(选择题及相应答案)解析

第一章 1.1.1可以用f(x,y)来表示:(ABD) A、一幅2-D数字图像 B、一个在3-D空间中的客观景物的投影; C 2-D空间XY中的一个坐标的点的位置; D、在坐标点(X,Y)的某种性质F的数值。 提示:注意3个符号各自的意义 1.1.2、一幅数字图像是:(B) A、一个观测系统; B、一个有许多像素排列而成的实体; C、一个2-D数组中的元素 D、一个3-D空间的场景。 提示:考虑图像和数字图像的定义 1.2.2、已知如图1.2.2中的2个像素P和Q,下面说法正确的是:(C) A、2个像素P和Q直接的De距离比他们之间的D4距离和D8距离都短: B、2个像素p和q之间的D4距离为5; C、2个像素p和q之间的D8距离为5; D、2个像素p和q之间的De距离为5。 1.4.2、半调输出技术可以:(B) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用抖动技术实现; D、消除虚假轮廓现象。 提示:半调输出技术牺牲空间分辨率以提高幅度分辨率 1.4.3、抖动技术可以(D) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用半输出技术实现; D、消除虚假轮廓现象。 提示:抖动技术通过加入随即噪声,增加了图像的幅度输出值的个数 1.5.1、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:(A) A、256K B、512K C、1M C、2M 提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。1.5.2、图像中虚假轮廓的出现就其本质而言是由于:(A)(平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃) A、图像的灰度级数不够多造成的; B、图像的空间分辨率不够高造成; C、图像的灰度级数过多造成的 D、图像的空间分辨率过高造成。 提示:图像中的虚假轮廓最易在平滑区域内产生。 1.5.3、数字图像木刻画效果的出现是由于下列原因所产生的:(A) A、图像的幅度分辨率过小; B、图像的幅度分辨率过大; C、图像的空间分辨率过小; D、图像的空间分辨率过大;

第五章 小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑ ∑∑∑+∞ -∞=+∞-∞ =+∞ -∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

近代数学小波计算题答案

2.计算下列分形维数: (1)康托尔集合(the Cantor set) l o g l o g2 0.631 l o g l o g3 s m D c =-=≈ (2)科赫曲线(Koch) log4 1.262 log3 s D=-≈ (3)谢尔平斯基(Sierpinski)地毯、垫片、海绵 地毯: log log8 1.893 log log3 f D β κ ==≈ 垫片: log log3 1.585 log log2 f D β κ ==≈ 海绵: log log20 2.763 log log3 f D β κ ==≈ (4)阿波罗尼斯垫圆: 解:不在此圆内部的点形成一个面积为零的集合,可以说它多于一条线但少于一个面,因此它的分形维数 (5)皮亚诺曲线: log ln9 2 1ln3 log() s N D β === 1.求按下列各图所示方法生成的分形图的分维 初始元: 生成元: (a)(b)(c) (a) log ln8 1.5 1ln4 log() s N D β ==≈ (b) log ln5 1.465 1ln3 log() s N D β ==≈ (c) log ln5 1.465 1ln3 log() s N D β ==≈

2、计算康托尔三分集相似维、Hausdorff 维 解:相似维:log ln 2 0.63111log()ln 3s N D β= =≈ Hausdorff 维:log log 20.631log log 3 f D βκ= =≈ 3、计算不规则分形盒维数(只计算右下端) ε=1/10 ()N ε=N(1/10) ()ln ln 54ln 54 1.732 1ln ln10ln 10B N D εε=- =-=≈

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

小波分析的基本理论

东北大学 研究生考试试卷 考试科目:状态监测与故障诊断 课程编号: 阅卷人: 考试日期:2013.12 姓名:王培军 学号:1300483 注意事项 1.考前研究生将上述项目填写清楚 2.字迹要清楚,保持卷面清洁 3.交卷时请将本试卷和题签一起上交 东北大学研究生院

小波分析的基本理论 小波分析是当前应用数学和工程学科中一个迅速发展的新领域,是分析和处理非平稳信号的一种有力工具。经过大量学者不断探索研究,它是以局部化函数所形成的小波基作为基底而展开的。小波分析在保留傅里叶分析优点的基础上,具有许多特殊的性能和优点。而小波分析则是一种更合理的时频表示和子带多分辨分析方法。所以理论基础渐已扎实,理论体系逐步完善,在工程领域已得到广泛应用。 1 小波变换理论 1.1 连续小波变换 定义1.1 小波函数的定义:设ψ(x )为一平方可积函数,也即ψ(x )∈ L 2 (R ),若其傅里叶变换ψ(ω)满足条件: C ψ= |ψ (ω)| |ω| d ω<+∞+∞?∞ 1-1 则称ψ(x )是一个基本小波或小波母函数(Mother Wavelet ),并称上式为小 波函数的容许性条件。 由定义1.1可知,小波函数具有两个特点: (1)小:它们在时域都具有紧支集或近似紧支集。由定义的条件知道任何满足可容许性条件的L 2(R )空间的函数都可以作为小波母函数(包括实数函数或复数函数、紧支集或非紧支集函数等)。但是在一般的情况下,常常选取紧支集或近似紧支集的同时具有时域和频域的局部性实数或复数函数作为小波母函,让小波母函数在时域和频域都具有较好的局部特性,这样可以更好的完成实验。 (2)波动性:若设ψ (ω)在点ω=0连续,则由容许性条件得: ψ x dx =ψ 0 =0+∞ ?∞ 1-2 也即直流分量为零,同时也就说明ψ(x )必是具有正负交替的波动性,这也是其 称为小波的原因。 定义1.2 连续小波基函数的定义:将小波母函数ψ(x )进行伸缩和平移,设其收缩因子(即尺度因子)为a,平移因子为b,使其平移伸缩后的函数为ψa,b (x ),则有: ψa ,b x =|a |? 12 ψ x ?b a ,a >0,b ∈R 1-3 称ψa,b (x )为依赖于参数a,b 的小波基函数。由于伸缩因子a,平移因子b 都是取连续变化的值,因此又称ψa,b (x )为连续小波基函数。它们是一组函数系列,这组函数系列是由同一母函数ψ(x )经伸缩和平移后得到的。 定义1.3 若f (x )∈ L 2(R ),函数f(x)在小波基下进行展开,则f(x)的连续小波变换(CWT)定义为: W ψf a ,b = f x ,ψa ,b x = a f x ψ x ?b a dx +∞?∞ 1-4 由定义1.3可知,小波基具有收缩因子a 和平移因子b,若将函数在小波基下展开,就是把一个时间函数投影到二维的时间-尺度相平面上,把一个一维函数变换为一个二维函数,即连续小波变换W ψf (a,b )是f (x )在函数ψa,b (x )上的“投影”。

信号处理与数据分析复习要点总结

2013年《信号处理与数据分析》课程要点 第I部分信号与系统的基本原理 第1章信号与线性时不变系统 ●信号与系统的概念 ●连续时间信号与离散时间信号的表示 ●几个重要信号,掌握其主要特点与应用 ?连续时间复指数信号 ?连续时间正弦信号 ?离散时间复指数信号 ?离散时间正弦信号 ●谐波的概念,含连续时间谐波和离散时间谐波,各自的特点 ●单位冲激(脉冲)信号与单位阶跃信号的定义、特点与主要应用 ●连续时间系统与离散时间系统的概念与特点 ●系统的基本特性,主要包括: ?记忆性与无记忆性 ?可逆性与可逆系统 ?因果性与稳定性 ?线性与时不变性 ●连续时间与离散时间线性时不变系统的概念 ●连续时间与离散时间卷积的概念与计算 ●线性时不变系统的性质:记忆性、可逆性、因果性、稳定性 第2章傅里叶级数与傅里叶变换 ●连续时间周期信号傅里叶级数的概念与计算 ●离散时间周期信号傅里叶级数的概念与计算 ●两种傅里叶级数的特点与性质 ●连续时间信号傅里叶变换的概念与计算 ●离散时间信号傅里叶变换的概念与计算 ●两种傅里叶变换的特点与性质 第3章信号与系统的频域分析 ●信号频谱的概念与频域分析的用途 ●系统微分方程和差分方程的概念与傅里叶变换求解 ●滤波器与理想滤波器的概念 ●一阶系统与二阶系统的波特图 第4章信号的采样与插值拟合 ●冲激序列采样的基本原理与过程分析 ●频谱混叠的概念与避免的方法 ●采样定理 ●信号的插值与拟合的概念与基本方法 ●最小二乘拟合的基本概念

第5章拉普拉斯变换与z变换 ●拉普拉斯变换的定义与基本计算 ●拉普拉斯变换的性质与应用 ●z变换的定义与基本计算 ●z变换的性质与应用 ●两种变换收敛域的概念与特点 ●系统的方框图表示 第II部分信号的误差分析与预处理 第6章测量不确定度的表示与估计 ●测量不确定度的概念和原因; ●A类标准不确定度、B类标准不确定度以及合成标准不确定度的基本概念; ●静态测量与动态测量的基本概念 第7章粗大误差和野点的判断与处理 ●粗大误差的基本概念以及消除措施; ●趋势项的概念和产生原因; ●趋势项的消除方法; ●异常值的识别方法; 第III部分数字信号处理部分 第8章离散傅里叶变换与快速傅里叶变换 ●离散傅里叶变换(DFT)的定义 ●离散傅里叶变换的性质 ●与DFT相关的几个问题 ?频率分辨率及DFT参数的选择 ?信号补0问题 ?信号的时宽与频宽问题 ?频谱泄漏问题 ?栅栏效应 ?频率混叠问题 ●按时间抽选的基2FFT算法 第9章数字滤波器与数字滤波器设计 ●数字滤波器的概念和特点 ●无限冲激响应(IIR)数字滤波器 ●有限冲激响应(FIR)数字滤波器 ?概念与特点 ?FIR滤波器的直接型结构 ?FIR滤波器的级联型结构 ?线性相位FIR滤波器结构 ●IIR数字滤波器的设计 ?IIR滤波器设计的冲激响应不变法 ?IIR滤波器设计的双线性变换法

相关主题
文本预览
相关文档 最新文档