当前位置:文档之家› 信号完整性(四):信号振铃是怎么产生的

信号完整性(四):信号振铃是怎么产生的

信号完整性(四):信号振铃是怎么产生的

信号完整性(四):信号振铃是怎么产生的信号的反射可能会引起振铃现象,一个典型的信号振铃如图1 所示。

那么信号振铃是怎么产生的呢?

前面讲过,如果信号传输过程中感受到阻抗的变化,就会发生信号的反射。这个信号可能是驱动端发出的信号,也可能是远端反射回来的反射信号。根据反射系数的公式,当信号感受到阻抗变小,就会发生负反射,反射的负电压会使信号产生下冲。信号在驱动端和远端负载之间多次反射,其结果就是信号振铃。大多数芯片的输出阻抗都很低,如果输出阻抗小于PCB 走线的特性阻抗,那么在没有源端端接的情况下,必然产生信号振铃。

信号振铃的过程可以用反弹图来直观的解释。假设驱动端的输出阻抗是10

欧姆,PCB 走线的特性阻抗为50 欧姆(可以通过改变PCB 走线宽度,PCB 走线和内层参考平面间介质厚度来调整),为了分析方便,假设远端开路,即远端阻抗无穷大。驱动端传输3.3V 电压信号。我们跟着信号在这条传输线中跑一次,看看到底发生了什么?为分析方便,忽略传输线寄生电容和寄生电感的影响,只考虑阻性负载。图2 为反射示意图。

第1 次反射:信号从芯片内部发出,经过10 欧姆输出阻抗和50 欧姆PCB 特性阻抗的分压,实际加到PCB 走线上的信号为A 点电压3.3*50/(10+50)

=2.75V。传输到远端B 点,由于B 点开路,阻抗无穷大,反射系数为1,即信号全部反射,反射信号也是2.75V。此时B 点测量电压是2.75+2.75=5.5V。

第2 次反射:2.75V 反射电压回到A 点,阻抗由50 欧姆变为10 欧姆,发生负反射,A 点反射电压为-1.83V,该电压到达B 点,再次发生反射,反射电压- 1.83V。此时B 点测量电压为5.5-1.83-1.83=1.84V。

传输线的反射干扰

一.引言 在微机系统中,接口与其它设备之间的连接要通过一定长度的电缆来实现,在计算机内部,印制电路板之间需要通过焊接线来连接。在一些其它的脉冲数字电路中也存在这类事的问题。脉冲信号包含着很多的高频成分,即使脉冲信号本身的重复频率并不十分高,但如果前沿陡峭,在经过传输通道时,将可能发生信号的畸变,严重时将形成振荡,破坏信号的正常传输和电路的正常工作。脉冲信号的频率越高,传输线的长度越长,即便问题越严重。 二.传输线的反射干扰及其造成的危害 任何信号的传输线,对一定频率的信号来说,都存在着一定的非纯电阻性的波阻抗,其数值与集成电路的输出阻抗和输入阻抗的数值各不相同,在他们相互连接时,势必存在着一些阻抗的不连续点。当信号通过这些不连续点时便发生“反射”现象,造成波形畸变,产生反射噪声。另外,较长的传输线必然存在着较大的分布电容和杂散电感,信号传输时将有一个延迟,信号频率越高,延迟越明显,造成的反射越严重,信号波形产生的畸变也就越厉害。这就是所谓的“长线传输的反射干扰”。图1是为了演示这种“长线反射”的实验电路,图2是该电路的各点输出波形。图2(a)是脉冲信号发生器的输出波形,图2(b)是“与非门1”的输出再不连接电缆时的波形,可以看到,该波形同a的输入信号一样,是没有任何畸变的1MHz反向方波。图2(c)是在接入场传输线后门1点波形,可见该波形出现了“振荡”和“台阶”;在传输线的终端,信号不仅有“振荡”,还出现了幅度高达-6V左右的“过冲”图2(d)。实验进一步证明,传输线越长,信号的畸变越严重,当传输线达到10m时,信号波形已面目全非了。 对于TTL器件来说,“过冲”超过6V时,对器件输入端的P-N结就有造成损坏的可能。同时从+3V~-6V的大幅度下降,将会对邻近的平行信号产生严重的串扰,且台阶将造成不必要的延时,给工作电路造成不良的后果。一旦形成震荡,危害就更严重,这种振荡信号将在信号的始端和终端同时直接构成信号噪声,从而形成有效的干扰。 三.信号传输线的主要特性及阻抗匹配 1.信号传输线的特征阻抗 对于计算机及数字系统来说,经常使用的信号传输线主要有单线(含接连线和印制线等)、双绞线、带状平行电缆、同轴电缆和双绞屏蔽电缆等。传输线的特性参数很多,与传输线的反射干扰有关的参数主要有延迟时间和波阻抗。一般说来,反显得信号延迟时间最短,同轴电缆较长,双绞线居中,约为6ns/m。波阻抗为单线最高,约为数百欧,双绞线的波阻抗,双绞线的波阻抗一般在100Ω-200Ω之间,且绞花越短,波阻抗越低。从抗干扰的角度讲,同轴电缆最好,双绞线次之,而带状电缆和单线最差。 2.阻抗的匹配 当传输线终端不匹配时,信号被反射,反射波达到始端时,如始端不匹配,同样产生反射,这就发生了信号在传输线上多次往返反射的情况,产生严重的反射干扰。因此要尽可能做到始端和终端的阻抗匹配,是抑制反射干扰的有效途径。为此,确定“长线”的最佳长度是至关重要的。 在实际实践中,一般以公式的经验来决定实际电路信号传输线的最大允许不匹配长度(也即“长线”界限)。其中,为电路转换边沿的平均宽度,对于常用的中速TTL电路,取15ns,为传输线

信号反射与振铃产生

信号完整性:信号反射 时间:2009-04-17 21:12来源:未知作者:于博士点击: 12021次 信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB转角,接插件),信号都会发生反射。 那么有多少被反射回传输线的起点?衡量信号反射量的重要指标是反射系数,表示反射电压和原传输信号电压的比值。反射系数定义为:。 其中:为变化前的阻抗,为变化后的阻抗。假设PCB线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感 的影响,把电阻看成理想的纯电阻,那么反射系数为:,信号 有1/3被反射回源端。如果传输信号的电压是3.3V电压,反射电压就是1.1V。 纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化无非是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。 阻抗增加有限值: 反射电压上面的例子已经计算过了。这时,信号反射点处就会有两个电压成分,一部分是从源端传来的3.3V电压,另一部分是在反射电压1.1V,那么反射点处的电压为二者之和,即4.4V。 阻抗减小有限值: 仍按上面的例子,PCB线条的特性阻抗为50欧姆,如果遇到的电阻是30欧姆,则反射系数为,反射系数为负值,说明反射电压为负电 压,值为。此时反射点电压为3.3V+(-0.825V)=2.475V。 开路: 开路相当于阻抗无穷大,反射系数按公式计算为1。即反射电压3.3V。反射点处电压为6.6V。可见,在这种极端情况下,反射点处电压翻倍了。 短路: 短路时阻抗为0,电压一定为0。按公式计算反射系数为-1,说明反射电压为-3.3V,因此反射点电压为0。 计算非常简单,重要的是必须知道,由于反射现象的存在,信号传播路径中阻抗发生变化的点,其电压不再是原来传输的电压。这种反射电压会改变信号的

信号振铃的产生

Boyi?电子产品世界 千里之行,始于足下。 信号完整性之信号振铃的产生 在电源完整性设计一文中,推荐了一种基于目标阻抗(target impedance)的去耦电容设计方法。在这种方法中,从频域的角度说明了电容选择方法。把瞬态电流看成阶跃信号,因而有很宽的频谱,去耦电容必须在这个很宽的频谱内使电源系统阻抗低于目标阻抗(target impedance)。电容的选择是分频段设计的,每一种容值的电容负责一段频谱范围,超出这个范围的,由其他电容负责构成低阻抗路径。 有些人可能对这种频域方法有些困惑,本文从另外一个更直观的角度来说明去耦电容的这种特性,即电容的去耦时间。 构成电源系统的两个重要部分:稳压电源、去耦电容。首先说说稳压电源的反应时间。负载芯片的电流需求变化是极快的,尤其是一些高速处理器。内部晶体管开关速度极快,假设处理器内部有1000个晶体管同时发生状态翻转,转台转换时间是1ns,总电流需求是500mA。那么此时电源系统必须在1ns时间内迅速补充上500mA瞬态电流。遗憾的是,稳压源在这么短的时间内反应不过来,相对于电流的变化,稳压源显得很迟钝,有点像个傻子,呵呵。通常说的稳压源的频率响应范围在直流到几百k之间,什么意思?这从时域角度可能更好理解。假设稳压源的频率响应范围是直流到100kHz,100kHz对应时域的10us时间间隔。也就是稳压源最快的响应速度是10us,如果负载芯片要求在20 us 内提供所需的电流,那么稳压电源有足够的反应时间,因此可以提供负载所需要的电流。但是如果负载电流要求的时间是1ns的话,对稳压电

源来说太快了,稳压源还在那发呆呢,瞬态电流的需求已经过去了。负载可不会等着稳压源来做出反应,不能给它及时提供电流,他就把电压拉下来,想想,功率一定,电流大了,电压必然减小。哦,这就产生了轨道塌陷,噪声产生了。因此,所说的频率响应范围,在时域对应的是一个响应时间问题。 电容也同样存在响应时间。电源要10us才能反应过来,那从0到10us 之间这段时间怎么办?这就是电容要干的事。按电源完整性设计一文中,加入一个31.831uF电容,能提供100kHz到1.6MHz频段的去耦。从时域来说,这个电容的最快反应时间是1/1.6MHz=0.625us。也就是说从0.625us到10us这段时间,这个电容就可以提供所需电流。稳压电源发呆就发呆吧,别指望它了,电容先顶上,过10us后再让稳压源把活接过来。从0.625us到10us这段时间就是电容的有效去耦时间。 加一个电容后,电源系统的反应时间还是很长,625ns,还是不能满足要求,那就再加电容,放一些很小的电容,比如13个0.22uF电容,提供1.6MHz到100MHz的去耦,那么这13个小电容最快反应时间为1/100MHz=1ns。如果有电流需求,1ns后这些小电容就做出反应了。 通常这个反应时间还不够,那就在加一些更小的电容,把去耦频率提到500MHz,反应时间可以加快到200ps,一般来说足够了。不同电容产生去耦作用,都需要一定的时间,这就是去耦时间。不同的去耦时间对应不同的有效去耦频率段,这就是为什么去耦电容要分频段设计的原因。 这里给出的是一个直观的解释,目的是让你有一个感性的理解。

过冲及振铃现象实验分析

过冲及振铃实验现象分析 1.测试电路及过冲、振铃现象 测试电路如下图所示,A点为电压输出口,B点为为了接入电阻而切开的口,C点为同轴电压监测点。 B A C 在B点出用导线连接时,在C点引同轴线到示波器(示波器内阻1M),观察到上升沿有过冲及振铃现象,如下图所示。

1.2 振铃产生的原因分析 1.2.1 振铃现象的产生 那么信号振铃是怎么产生的呢? 前面讲过,如果信号传输过程中感受到阻抗的变化,就会发生信号的反射。这个信号可能是驱动端发出的信号,也可能是远端反射回来的反射信号。根据反射系数的公式,当信号感受到阻抗变小,就会发生负反射,反射的负电压会使信号产生下冲。信号在驱动端和远端负载之间多次反射,其结果就是信号振铃。大多数芯片的输出阻抗都很低,如果输出阻抗小于PCB走线的特性阻抗,那么在没有源端端接的情况下,必然产生信号振铃。 信号振铃的过程可以用反弹图来直观的解释。假设驱动端的输出阻抗是10欧姆,PCB走线的特性阻抗为50欧姆(可以通过改变PCB走线宽度,PCB走线和内层参考平面间介质厚度来调整),为了分析方便,假设远端开路,即远端阻抗无穷大。驱动端传输3.3V电压信号。我们跟着信号在这条传输线中跑一次,看看到底发生了什么?为分析方便,忽略传输线寄生电容和寄生电感的影响,只考虑阻性负载。下图为反射示意图。 第1次反射:信号从芯片内部发出,经过10欧姆输出阻抗和50欧姆PCB 特性阻抗的分压,实际加到PCB走线上的信号为A点电压3.3*50/(10+50)=2.75V。传输到远端B点,由于B点开路,阻抗无穷大,反射系数为1,即信号全部反射,反射信号也是2.75V。此时B点测量电压是2.75+2.75=5.5V。 第2次反射:2.75V反射电压回到A点,阻抗由50欧姆变为10欧姆,发生

振铃的时钟信号分析

存在振铃的时钟信号分析 理论分析 反射现象 信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB 转角,接插件),信号都会发生反射。PCB上的走线对于高频信号而言相当于传输线,信号在传输线中传播时,如果遇到特性阻抗不连续,就会发生反射。反射可能发生在传输线的末端,拐角,过孔,元件引脚,线宽变化,T型引线等处。总之,无论什么原因引起了传输线的阻抗发生突变,就会有部分信号沿传输线反射回源端。 工程中重要的是反射量的大小。表征这一现象的最好的量化方法就是使用反射系数。反射系数是指反射信号与入射信号幅值之比,其大小为:(Z2-Z1)/(Z2+Z1)。Z1是第一个区域的特性阻抗,Z2是第二个区域的特性阻抗。当信号从第一个区域传输到第二个区域时,交界处发生阻抗突变,因而形成反射。 纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。 阻抗增加有限值: 假设PCB线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感的影响,把电阻看成理想的纯电阻,那么反射系数为:,信号有1/3被反射回源端。如果传输信号的电压是3.3V电压,反射电压就是1.1V。这时,信号反射点处就会有两个电压成分,一部分是从源端传来的3.3V电压,另一部分是在反射电压1.1V,那么反射点处的电压为二者之和,即4.4V。 阻抗减小有限值: 仍按上面的例子,PCB线条的特性阻抗为50欧姆,如果遇到的电阻是30欧姆,则反射系数为:,反射系数为负值,说明反射电压为负电压,值为。此时反射点电压为3.3V+(-0.825V)=2.475V。 开路: 开路相当于阻抗无穷大,反射系数按公式计算为1。即反射电压3.3V。反射点处电压为6.6V。可见,在这种极端情况下,反射点处电压翻倍了。 短路: 短路时阻抗为0,电压一定为0。按公式计算反射系数为-1,说明反射电压为-3.3V,因此反射点电压为0。 由于反射现象的存在,信号传播路径中阻抗发生变化的点,其电压不再是原来传输的电压。这种反射电压会改变信号的波形,从而可能会引起信号完整性问题。实际电路板上的反射可能非常复杂,反射回来的信号还会再次反射回去,方向与发射信号相同,到达阻抗突变处又再次反射回源端,从而形成多次反射,一般的资料上都用反弹图来表示。多次的反弹是导致信号振铃的根本原因,相当于在信号上叠加了一个噪声。

信号完整性研究反射现象

信号完整性研究:反射现象 前面讲过,对于数字信号的方波而言,含有丰富的高频谐波分量,边沿越陡峭,高频成分越多。而pcb上的走线对于高频信号而言相当于传输线,信号在传输线中传播时,如果遇到特性阻抗不连续,就会发生反射。反射可能发生在传输线的末端,拐角,过孔,元件引脚,线宽变化,T型引线等处。总之,无论什么原因引起了传输线的阻抗发生突变,就会有部分信号沿传输线反射回源端。 反射形成机理很复杂,这包含了很多电磁领域的复杂的知识,本文不准备深入讨论,如果你真的很想知道,可以给我留言,我专门讲解。 工程中重要的是反射量的大小。表征这一现象的最好的量化方法就是使用反射系数。反射系数是指反射信号与入射信号幅值之比,其大小为:(Z2-Z1)/ (Z2+Z1)。Z1是第一个区域的特性阻抗,Z2是第二个区域的特性阻抗。当信号从第一个区域传输到第二个区域时,交界处发生阻抗突变,因而形成反射。举个例子看看反射能有多大,假设Z1=50欧姆,Z2=75欧姆,根据公式得到反射系数为:(75-50)/(75+50)=20%。如果入射信号幅度是3.3v,反射电压达到了 3.3*20%=0.66v。对于数字信号而言,这是一个很大的值。你必须非常注意他的影响。

实际电路板上的反射可能非常复杂,反射回来的信号还会再次反射回去,方向与发射信号相同,到达阻抗突变处又再次反射回源端,从而形成多次反射,一般的资料上都用反弹图来表示。多次的反弹是导致信号振铃的根本原因,相当于在信号上叠加了一个噪声。为了电路板能正确工作,你必须想办法控制这个噪声的大小,噪声预算是设计高性能电路板的一个非常重要的步骤。 信号完整性:信号反射 时间:2009-04-17 21:12来源:未知作者:于博士点击: 3212次 信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是

信号反射及阻抗匹配

信号完整性分析---信号反射及阻抗匹配 信号反射产生的原因,当信号从阻抗为Z0 进入阻抗为ZL 的线路时,由于阻抗不匹配的原因,有部分信号会被反射回来,也可以用“传输线上的回波来概括”。如果源端、负载端和传输线具有相同的阻抗,反射就不会发生了。 反射的影响:如果负载阻抗小于传输线阻抗,反射电压为负,反之,如果负载阻抗大于传输线阻抗,反射电压为正。实际问题中,PCB上传输线不规则的几何形状,不正确的信号匹配,经过连接器的传输及电源平面不连续等因素均会导致反射情况发生,而表现出诸如过冲/下冲以及振荡等信号失真的现象。 过冲,当信号的第一个波峰超过原来设定的最大值,信号的第一个波谷超过原来设定的最大值时,为过冲,也就是冲过头了。下冲,当信号的第二个波峰波谷超过设定值时,称为下冲。过大的过冲会导致元件保护二极管损坏,而下冲严重时会产生假时钟,导致系统误读写操作。 如果过冲过大我们可以采用阻抗匹配的方式消除过冲,方法很简单 如下所示: 效果如下:

震荡:信号的反射也会引起信号震荡,而震荡的本质跟过冲/下冲是一样的,在一个周期内,信号反复的过冲下冲我们称之为信号震荡。震荡是消除电路多余能量的一种方式。通过震荡的信号,可以将反射而产生的多余能量给消耗掉。欠阻尼(振铃)是指终端的阻尼小,过阻尼(环绕)是指终端的阻尼大了。(PS:不只是分布式电路才会产生振荡,集总电路由于LC振荡也会产生振荡,其振荡的大小和电路的品质因素Q有关,Q值代表了电路中信号的衰减速度,Q值越高衰减越慢。可以通过单位时间电路储存的能量与丢失的能量比值来衡量) Q<1/2的时候就不存在过冲或者振荡。 Q值的计算方法为: L是导线的平均电感,C是接收端的负载电容,Rs 是驱动端的输出电阻。 阻抗匹配,由于源端与负载端的阻抗不匹配才引起信号的反射,因此要进行阻抗匹配,从而降低反射系数,可以在源端串接阻抗,或者负载端并行接阻抗。反射系数公式:P=(Z1-Z0)/(Z1+Z0) 阻抗匹配端接技术汇总 单电阻端接 经总结:串联电阻匹配一般适用于单个负载的情况。 一串行端接串行匹配:(不太适用太高的高速) 二并行端接并行匹配:(更适用于高速) 1单电阻并行端接

【很好】信号完整性基础之反射

信号完整性基础之反射 反射是引起SI的一个最基本因素,信号在传输线传播过程中,一旦它所感受到的传输线瞬时阻抗发生变化,那么就必将有发射发生。 反射是由于传输线瞬时阻抗变化而引起的 下面就从理论角度来分析一下反射的机理、反射系数和传输系数的计算 配个简易图来加以说明 图中褐色的为电路板上的大面积铺铜层(GND或者PWR),它是信号的返回路径。绿色和红色是传输线,S1比较宽,S2较窄,很明显在S1和S2的交接处出现了阻抗不连续,根据阻抗计算公式应该是Rs1

在分界面的右边一点点S2中有:Rs2=V2/I2 (2) 其中的V1、V2分别为分界面两侧的电压,I1和I2为分界面两侧的电压 由上面的电压和电流连续性得知:V1=V2,I1=I2 (3) 分析上面的三组方程,如果没有反射,他们是不可能同时成立的 因为Rs1和Rs2是不相等的 所以可以判定在分界面必定存在反射回源端的信号 反射电压设为Vf,反射电流为If 进入S2的电压为Vt,电流为It(称他们为传输电压和传输电流) 信号电压为Vi,电流为Ii(称之为输入电压,从分界面看) 电压关系有:Vi+Vf=Vt 电流关系有:Ii-If=It 这又是很关键的两个关系式 因为Vi/Ii=Rs1 Vf/If=Rs1 Vt/It=Rs2 把这三个关系式代入到上面的两个电压和电流关系方程中可以得到 Vi/Rs1-Vf/Rs1=Vt/Rs2=(Vi+Vf)/Rs2 (Vi-Vf)/Rs1=(Vi+Vf)/Rs2反射系数X定义为反射电压和输入电压的比值,即Vf/Vi 可求的X=(Rs2-Rs1)/(Rs1+Rs2) 传输系数Y定义为传输电压和输入电压的比值,即Vt/Vi 经过X式小变形即可求得 可求的Y=2Rs2/(Rs1+Rs2)

信号完整性:信号振铃是怎么产生的

信号完整性:信号振铃是怎么产生的 时间:2009-04-21 17:22来源:未知作者:于博士 信号的反射可能会引起振铃现象,一个典型的信号振铃如图1所示。 图1 那么信号振铃是怎么产生的呢? 前面讲过,如果信号传输过程中感受到阻抗的变化,就会发生信号的反射。这个信号可能是驱动端发出的信号,也可能是远端反射回来的反射信号。根据反射系数的公式,当信号感受到阻抗变小,就会发生负反射,反射的负电压会使信号产生下冲。信号在驱动端和远端负载之间多次反射,其结果就是信号振铃。大多数芯片的输出阻抗都很低,如果输出阻抗小于PCB走线的特性阻抗,那么在没有源端端接的情况下,必然产生信号振铃。 信号振铃的过程可以用反弹图来直观的解释。假设驱动端的输出阻抗是10欧姆,PCB走线的特性阻抗为50欧姆(可以通过改变PCB走线宽度,PCB走线和内层参考平面间介质厚度来调整),为了分析方便,假设远端开路,即远端阻抗无穷大。驱动端传输3.3V电压信号。我们跟着信号在这条传输线中跑一次,看看到底发生了什么?为分析方便,忽略传输线寄生电容和寄生电感的影响,只考虑阻性负载。图2为反射示意图。 第1次反射:信号从芯片内部发出,经过10欧姆输出阻抗和50欧姆PCB 特性阻抗的分压,实际加到PCB走线上的信号为A点电压 3.3*50/(10+50)=2.75V。传输到远端B点,由于B点开路,阻抗无穷大,反射系数为1,即信号全部反射,反射信号也是2.75V。此时B点测量电压是 2.75+2.75=5.5V。 第2次反射:2.75V反射电压回到A点,阻抗由50欧姆变为10欧姆,发生负反射,A点反射电压为-1.83V,该电压到达B点,再次发生反射,反射电压-1.83V。此时B点测量电压为5.5-1.83-1.83=1.84V。 第3次反射:从B点反射回的-1.83V电压到达A点,再次发生负反射,

振铃产生的原因

信号完整性信号完整性::信号振铃是怎么产生的 时间:2009-04-21 17:22来源:未知作者:于博士点击: 10597次 信号的反射可能会引起振铃现象,一个典型的信号振铃如图1 所示。 图1 那么信号振铃是怎么产生的呢? 前面讲过,如果信号传输过程中感受到阻抗的变化,就会发生信号的反射。这个信号可能是驱动端发出的信号,也可能是远端反射回来的反射信号。根据反射系数的公式,当信号感受到阻抗变小,就会发生负反射,反射的负电压会使信号产生下冲。信号在驱动端和远端负载之间多次反射,其结果就是信号振铃。大多数芯片的输出阻抗都很低,如果输出阻抗小于PCB 走线的特性阻抗,那么在没有源端端接的情况下,必然产生信号振铃。 信号振铃的过程可以用反弹图来直观的解释。假设驱动端的输出阻抗是10欧姆,PCB 走线的特性阻抗为50欧姆(可以通过改变PCB 走线宽度,PCB 走线和内层参考平面间介质厚度来调整),为了分析方便,假设远端开路,即远端阻抗无穷大。驱动端传输3.3V 电压信号。我们跟着信号在这条传输线中跑一次,看看到底发生了什么?为分析方便,忽略传输线寄生电容和寄生电感的影响,只考虑阻性负载。图2为反射示意图。 第1次反射:信号从芯片内部发出,经过10欧姆输出阻抗和50欧姆PCB 特性阻抗的分压,实际加到PCB 走线上的信号为A 点电压3.3*50/(10+50)=2.75V 。传输到远端B 点,由于B 点开路,阻抗无穷大,反射系数为1,即信号全部反射,反射信号也是2.75V 。此时B 点测量电压是2.75+2.75=5.5V 。第2次反射:2.75V 反射电压回到A 点,阻抗由50欧姆变为10欧姆,发生负反射,A 点反射电压为-1.83V ,该电压到达B 点,再次发生反射,反射电压-1.83V 。此时B 点测量电压为5.5-1.83-1.83= 1.84V 。 第3次反射:从B 点反射回的-1.83V 电压到达A 点,再次发生负反射,反射电压为1.22V 。该电压到达B 点再次发生正反射,反射电压1.22V 。此时B 点测量电压为1.84+1.22+1.22=4.28V 。 第4次反射:。。。。。。。。。第5次反射:。。。。。。。。。 如此循环,反射电压在A 点和B 点之间来回反弹,而引起B 点电压不稳定。观察B 点电压: 5.5V->1.84V->4.28V->……,可见B 点电压会有上下波动,这就是信号振铃。 振铃的产生原因 2011年8月11日 23:23 分区信号完整性的第1 页

反射理论

反射理论 一、传输线 1.1、传输线模型 在高速电路的世界里,因操作频率的升高,波长相对变短。当波长与线路的长度接近到相近的数量级时,必须把信号当电磁波来看。当高速信号沿着信号线 传输时,会存在电阻、分布电容和分 布电感(如图A )。分布电感和分布电容的存在,为反射的产生提供了先决 条件。 1.2、信号沿传输线传输的过程 在低速信号传输时,我们认为发送的信号与接收的信号是同时到达 的,且信号的形状完全一样,然而在高速电路下,情况将不是这样,可通过一个例子来说明: 在图B 中,电源+E 经开关S1与传输线的始端相连,传输线的终端接负载R ,假设传输线本身的电阻很小,可忽略不计。那么,当开关合上时,传输线两端的电压和电流将出现什么变化? 许多人会说,“开关合上后,传输线各点的电压由0V 变为+E ,电流等于E/Z0。” 这个回答对于达到稳定的情况是正确的,然而在开关合上的瞬间,情况不是这样的。从上述模型中可以看到,每一根传输线都具有一定的电感和电容。假设传输线分成许多长度为ΔXi 的小段,设每一小段具有电感L i 和电容C i (i 设为段号)。我们知道由于电感的存在将阻碍电压的突变,由此出发我们来看一下信号传输的瞬态过程。 开关合上的瞬时(t =0),传输线始端电压V 0由0变为+E ,这时C 1尚未充电, 因此全部的电 压变化加到L 1上,由于电感中反电动势的 作用,使得电 感中电流的变 化迟后于加在它上面的电压变化,此后,随着电感L 1上电流i 1的增加,将流过C 1使电 容充电,而电容上电压的变化又要滞后于它的充电电流的变化,因此电压U 1的变化相对于U 0的变化又滞后一段时间Δt ,由于ΔL和ΔC数值很小,因此引起的延迟时间也是很小的。 当U1开始上升时,由于L2的存在,又阻碍着电流立即进入第二小段,当经Δt时间,C1上的电压已充到V1=+E时,L1两端的电压差等于0,它的电流达到某一个值(设为I),暂时保持不变,这时这个电流进入第二小段,成为C2 的充电电流i X Y 图C、传输线上电压波和电流波 图A 、R :Resistance per Unit Length L: Inductance per Unit Length C: Capacitance per Length G: Conductance per Unit Length

信号完整性分析实验报告_西电李玉山,路建民老师

实验一反弹图像的仿真 一、实验原理 1.信号振铃 如果信号传输过程中感受到阻抗的变化,就会发生信号的反射。这个信号可能是驱动端发出的信号,也可能是远端反射回来的反射信号。根据反射系数的公式,当信号感受到阻抗变小,就会发生负反射,反射的负电压会使信号产生下冲。信号在驱动端和远端负载之间多次反射,其结果就是信号振铃。大多数驱动源的输出阻抗都很低,如果输出阻抗小于PCB走线的特性阻抗,那么在没有源端端接的情况下,必然产生信号振铃。 信号振铃的过程可以用反弹图来直观的解释。假设驱动端的输出阻抗是10欧姆,PCB走线的传输延时为1ns,且特性阻抗为50欧姆(可以通过改变PCB走线宽度,PCB走线和内层参考平面间介质厚度来调整),为了分析方便,假设远端开路,即远端阻抗无穷大。驱动端传输1V电压信号。反弹图见图一所示。 图一利用反弹图分析分析多次反射和远端接收器的时变电压 第1次反射:信号从驱动源内部发出,经过10欧姆输出阻抗和50欧姆PCB特性阻抗的分压,实际加到PCB走线上的信号电压为1*50/(10+50)=0.84V。传输到线末端,由于线末端开路,阻抗无穷大,反射系数为1,即信号全部反射,反射信号也是0.84V。此时线末端测量电压是0.84+0.84=1.68V。 第2次反射:0.84V反射电压回到源端,阻抗由50欧姆变为10欧姆,反射系数为-0.67,发生负反射,源端反射电压为084×(-0.67)=-0.56V,该电压到达线末端,再次发生反射,反射电压-0.56V。此时线末端测量电压为2×0.84+2×(-0.56)

=0.56V。 第3次反射:从线末端反射回的-0.56V电压到达源端,再次发生负反射,反射电压为0.38V。该电压到达线末端再次发生正反射,反射电压0.38V。此时线末端测量电压为0.56+0.38+0.38=1.32V。 同样会发生第四次反射,第五次反射……如此循环,反射电压在源端和远端之间来回反弹,而引起线末端电压不稳定。观察线末端电压:1.68V,0.56V,1.32V……,可见线末端电压会有上下波动,这就是信号振铃,如图二所示。 图二传输线远端的电压波形 2.信号振铃的消除 振铃是由源端和远端的阻抗突变,两端之间不断往复的多次反射引起的,所以如果能至少在一段消除反射,就可以减小振铃噪声。控制传输线一端或两端的阻抗从而减小反射的方法称为传输线的端接。典型的方法是在重要位置上放置一个或多个电阻,例如端接匹配负载电阻的方法,可以有效去除信号振铃,能使信号的结果波形非常平滑从而避免的信号完整性问题的出现。 二、实验目的 本实验的目的是针对课本8.5节和8.10节讲述的信号振铃现象如何产生以及如何防止振铃现象作实验验证,同时加深对信号振铃现象如何产生以及预防的理解,以期对信号振铃有一个更加直观深刻的认识。同时更进一步的熟悉仿真环境的使用。 三、实验设置 点击File > New LineSim Schematic>Cell-Based 1. 信号发送端和接收端选择 在输入输出上点击右键,再点击Select IC Model:

信号完整性SI学习笔记_chapter8

信号完整性分析 chapter.8 传输线与反射 信号沿互连线传播时所受到的瞬态阻抗发生变化,一部分信号将被反射,另一部分发生失真并继续传播下去。这是单一网络中多数 SI 问题的主要原因。 反射与失真使信号质量下降,看起来像振铃。 只要有瞬态阻抗突变就会发生反射,线端或者互连线拓扑结构发生改变的地方,如拐角,过孔,T型结构,插接件和封装处。因此设计互连线的目的在于尽可能保持信号受到的阻抗恒定。 阻抗变化出的反射: 将瞬态阻抗发生突变的地方称为阻抗突变,或简称突变。 反射的信号量由瞬态阻抗的变化量决定,若第一区域瞬态阻抗为Z1,第二个区域为Z2,反射信号与入射信号的幅值之比: 其中 两区域阻抗差异越大,反射信号量越大。最关心的就是反射系数ρ,信号沿传播线传播时,遇到阻抗突变,将产生另一个波,两波叠加,但方向是向源端。

反射形成机理 由上一特性,在设计高速板时,要运用以下设计要素: 1.使用可控阻抗互连线 2.传输线末端至少有一个终端匹配 3.使用能使多分支产生影响最小的布线拓扑结构 4.最小化几何结构的不连续性 产生反射:区域1,2交界面两侧电压,电流应该相等,否则两侧不等会产生无限大电场与磁场。 V1=V2,I1=I2,而,I=V / R,当区域阻抗不同时,关系式绝不会同时成立。为平衡系统,交界处区域1侧产生反射回源端的电压,唯一目的就是吸收入射信号和传输信号之间不匹配的电压与电流。 满足的条件: 且 两区域应满足: 代换

即 最终,得到反射系数ρ 同样,可以推导出传输系数t 没有确切的原因知道怎么产生反射电压,但知道反射电压会遵循上述关系,电压电流要保持连续 阻性负载的反射 假定传输线特性阻抗为50Ω,传输线的终端匹配有三种情况: 5.传输线的终端开路,末端未连接。末端瞬态阻抗为无穷大。反射系数ρ为1。 例: 6.传输线末端与返回路径短路,即末端阻抗为0。此时反射系数ρ为- 1,短路突变处测的电压为(入射电压与反射电压之和)0V。 7.特殊情况,终端阻抗等于传输线的特性阻抗,即匹配。反射系数此时为0,即 无反射。 8.当传输线末端为一般性阻抗时,对其作出关系图

PCB设计中高速数字电路中反射问题解决

PCB设计中高速数字电路中反射问题解决 PCB设计https://www.doczj.com/doc/e017244245.html, 通常所说的高速数字电路是指电路的频率达到或超过一定数值,而且工作在这个频率之上的电路已经占到整个电子系统一定的份量。实际上,判定一个电路是否为高速电路并不能只从信号的频率去考虑,当信号的传输延迟大于信号上升时间的2O%时,电路板上的信号导线就会呈现出传输线效应,整个系统为分布式系统,此时这种电路即为高速电路。当前,电子系统与电路全面进入高速、高频设计领域。随着IC工艺的不断提高,驱动器的上升沿和下降沿由原来的十几ns减小到几ns,有的甚至达到ps量级。这时必须要考虑由传输线效应引起的信号完整性反射噪声问题,这已经成为高速数字电路设计中的一个主要问题。 1, 信号完整性概述 从广义上讲,信号完整性指的是在高速数字电路中由互连线引起的所有问题。它主要研究互连线与数字信号的电压,电流波形相互作用时,电气特性参数如何影响产品的性能。信号完整性问题主要包括以下四类问题:单一网络的信号反射;多网络间的串扰;电源和地分配中的轨道塌陷;电磁干扰和辐射。在这里主要讨论单一网络的信号反射噪声问题。 2, 信号反射噪声的形成 在高速数字电路中,信号在PCB板上沿传输线传输,遇到阻抗不连续时,就会有部分能量从阻抗不连续点沿传输线返回,从而产生反射。其大小与阻抗失配的程度有关,阻抗失配越大,反射就越大。 3, 反射系数p = Vreflected /Vincident =(Zt-Zo)/(Zt+Zo),其中Zt表示负载阻抗,Zo表示传输线阻抗。 从公式中可以看出,当Zt = Zo时反射系数为0,没有反射产生;当Zt ≠ Zo时,将产生反射现象。反射是造成上冲、下冲和振铃的直接原因,是高速数字电路中最常见的信号完整性问题。 为了减小由反射造成的信号完整性问题,在所有的高速电路板中必须运用以下3个重要的设计因素: (1)使用可控阻抗的互连线; (2)使用合理的布线拓扑结构; (3)对传输线进行阻抗匹配。

信号完整性分析--信号反射..

信号完整性:信号反射 信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB 转角,接插件),信号都会发生反射。 那么有多少被反射回传输线的起点?衡量信号反射量的重要指标是反射系数,表示反射 电压和原传输信号电压的比值。反射系数定义为:ρ= 1 212Z Z Z Z +-。其中:Z 1为变化前的阻 抗,Z 2为变化后的阻抗。假设PCB 线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感的影响,把电阻看成理想的纯电阻,那么反射系 数为:ρ=3 150********=+-,信号有1/3被反射回源端。如果传输信号的电压是3.3V 电压,反射电压就是1.1V 。 纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化无非是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。 阻抗增加有限值: 反射电压上面的例子已经计算过了。这时,信号反射点处就会有两个电压成分,一部分是从源端传来的3.3V 电压,另一部分是在反射电压1.1V ,那么反射点处的电压为二者之和,即4.4V 。 阻抗减小有限值: 仍按上面的例子,PCB 线条的特性阻抗为50欧姆,如果遇到的电阻是30欧姆,则反射 系数为 ρ=50 305030+-=-0.25,反射电压为 3.3*(-0.25)V= -0.825V 。此时反射点电压为3.3V+(-0.825V )=2.475V 。 开路: 开路相当于阻抗无穷大,反射系数按公式计算为1。即反射电压3.3V 。反射点处电压为 6.6V 。可见,在这种极端情况下,反射点处电压翻倍了。 短路: 短路时阻抗为0,电压一定为0。按公式计算反射系数为-1,说明反射电压为-3.3V ,因此反射点电压为0。 由于反射现象的存在,信号传播路径中阻抗发生变化的点,其电压不再是原来传输的电压。这种反射电压会改变信号的波形,从而可能会引起信号完整性问题。

消除信号反射的匹配方式介绍

消除信号反射的匹配方式介绍 在高速PCB设计中,信号的反射将给PCB的设计质量带来很大的负面影响,而要减轻反射信号的负面影响,有三种方式: 1),降低系统频率从而加大信号的上升与下降时间,使信号在加到传输线上前,前一个信号的反射达到稳定; 2),缩短PCB走线长度使反射在最短时间内达到稳定; 3),采用阻抗匹配方案消除反射; 在高速系统设计中,第1种是不可能的,而第2种也是不实际的,通常要缩短PCB布线长度,可能需要增加布线层数、增加过孔数,从而得不偿失,那么第3种是最好的方法,常用的阻匹配方式有以下几种: 1.源端串联匹配 源端串联匹配就是在输出BUFFER上串接一个电阻,使BUFFER的输出阻抗与传输线阻抗一致;此电阻在PCB设计时应尽量靠近输出BUFFER放置,常用的值为:33殴姆。 对于TTL或CMOS驱动,信号在逻辑高及低状态时均具有不同的输出阻抗,而一些负载器件可能具有不同的输入输出阻抗,不能简单的得知,所以在使用串联端接匹配时,在具有输入输出阻抗不一致的条件下,可能不是最佳的选择;在布线终端上存在集总线型负载或单一元件时,串联匹配是最佳的选择; 串联电阻的大小由下式决定: R=ZO-R0 ZO--传输线阻抗 R0--BUFFER输出阻抗

串联匹配的优点:提供较慢的上升时间,减少反系量,产生更小的EMI,从而降低过冲,增加信号的传输质量; 串联匹配的缺点:当TTL/CMOS出现在同一网络上时,在驱动分布负载时,通常不能使用串联匹配方式。 2.终端并联匹配 由在走线路径上的某一端连接单个电阻构成,这个电阻的阻值必须等于传输线所要求的电阻值,电阻的另一端接电源或地;简单的并联匹配很少用于CMOS与TTL设计中; 并联匹配的优点:可用于分布负载,并能够全部吸收传输波以消除反射; 并联匹配的缺点:需额外增加电路的功耗,会降低噪声容限。 3.戴维南匹配 Vref=R2/(R1+R2)·V Vref--输入负载所要求的电压 V--电压源 R1---上拉电阻 R2--下拉电阻 当R1=R2时,对高低逻辑的驱动要求均是相同的,对有些逻辑系列可能不能接受; 当R1>R2时,逻辑低对电流的要求比逻辑高大,这种情况对TTL与COMS器件是不能工作的; 当R1

存储器与FPGA接口互连的信号完整性设计

《工业控制计算机》2019年第32卷第2期 ?国家自然科学基金项目(61674100);国家自然科学基金项目(61774101) 随着工业智能化的发展,FPGA 芯片凭借优良的可编程特性,在电气工程、自动化控制、人工智能、数据处理等领域应用更加广泛。大容量的数据处理使得系统工作频率越来越高。目前主流的FPGA 应用中,Xilinx 系列应用最为广泛,尤其是在工业上Spartan-6+DDR2/DDR3的形式为主流应用。Spartan-6对DDR2/DDR3支持度好,其MCB (memory control block )能够极大简化了内存的使用,时钟频率最高支持400MHz 。在应用中,在400MHz 频率,信号出现较为严重的信号失真误码问题,如图1。如何在不变更器件的前提下,通过优化设计的方式是非常有意义同时也非常必要的。 (纵轴间隔100mV ,横轴间隔2ns ) 图1 400MHz DDR2数据线示波器测量波形 本文通过文献眼1演对信号反射理论进行详细的阐述,分析了传输线中阻抗变化对信号反射的影响。文献眼2演对信号的串扰的产生做了详尽的阐述。通过上述文献的分析,对FPGA 与DDR 之间接口的极限频率下的信号线进行阻抗匹配与优化,并提出一套可以复用的解决方案。为更好地解决高频情况下的仿真问题,本文采用了Cadence Sigrity 对设计方案进行前仿真与后仿真验证并修改设计方案。 1高性能电路中的信号完整性问题 从图1可以看到,信号中存在明显过冲,振荡以及干扰噪声。1.1信号反射与振铃 信号在传输线中传播时,由于加工工艺以及设计上的折中,传输线会出现 阻抗不连续,在阻抗不同处,会导致信号传输能量发生改变。 假设在负载端Z L 入射电压波:V i (z )=V 0i e -az e -j βz (1)反射电压波:V O (z )=V 0r e -az e -j βz (2) 反射系数:Γ=V 0r V 0i =Z L -Z 0 Z L +Z 0 =Γe j ?r (3)传输系数:τ≡ V L V 0i =1+Γ=2Z L Z 0+Z L =τe j ?r (4) 从反射系数方程可以看到,当Z 0=Z L 时,反射系数为Γ=0[3],此时信号无反射,这种情况是最理想的阻抗匹配状态。阻抗的反射会与新输入的信号发生叠加,产生信号过冲。多次反射会造成信号振荡[4]。阻抗不匹配导致信号过冲与振铃主要解决方式是采用合理叠层设计,合理的阻抗匹配方式与拓扑结构。1.2信号串扰 在印制板中,传输线之间都存在或多或少的信号串扰噪声。串扰造成的噪声信号通常包含两种:容性耦合与感性耦合[4]。高频情况下,传输线均为有损传输线,传输线包含容抗、感抗、阻抗。容性分量造成容性耦合,感性分量形成感性耦合。侵害线中信号波动会对多根受害线中的信号产生影响。 常见的串扰噪声抑制方式有: 1)控制线长。内存的布线,走线长度应该尽量短。无论对数据线还是地址线,传输线的长度都不应该超过3000mil ,以减少信号的干扰与辐射; 2)高速信号多层布线应尽量保证传输线的上下层的交叉布线,减少信号串扰[5]; 3)合理设计叠层,传输线尽量需要靠近电源平面。2高速存储器信号完整性设计仿真2.1仿真硬件系统搭建 本文FPGA 芯片采用了Xilinx XC6LS16,封装采用了BGA CSG484封装,其焊球间距为0.8mm 。内存采用Micron 公司的ELE1116芯片,存储容量为1GB 。交互方式采用主流的Xilinx MCB 硬核设计方案。本文采用的器件与互连方式是目前市场上主流的方案,其在目前的视频图像处理以及控制领域用着广泛的应用。同时器件的封装与性能为均为标准封装,具有很强的可 存储器与FPGA 接口互连的信号完整性设计? 王文磊1陈章进1,2季渊1,3黄舒平1,3 (1上海大学上海大学微电子研究与开发中心,上海200072;2上海大学上海大学计算中心,上海200072; 3上海昀光微电子有限公司,上海200072) 摘要:随着芯片性能的提升,芯片数据传输速率越来越高,高速信号导致信号串扰、振铃等一系列信号完整性问题。针对高性能FPGA 与高性能存储器之间的电路接口设计,提出了一套在FPGA 控制器极限频率工作下的单端信号阻抗匹配以及传输线设计仿真方案,实现单根数据线传输速率达到800MHz 。利用Cadence Sigrity 软件对接口电路建立模型,进行传输线串扰,阻抗匹配仿真,验证了设计方案的可行性。 关键词:信号完整性,印刷电路板,单端信号,高速传输 Abstract 押With the improvement of chip performance熏chip data transmission rate is higher and higher.High speed signal has a series of signal integrity problems such as signal crosstalk and ringing.Aim at the design of The circuit interface be?tween high -performance FPGA and high -performance memory熏in this paper熏a simulation scheme for single ended impedance matching and design of transmission line is presented.Single data line transmission rate is up to 800MHz. Keywords 押signal integrity熏printed circuit board熏single-ended熏high-speed transmission 图2传输线阻抗示意图 1

相关主题
文本预览
相关文档 最新文档