当前位置:文档之家› 复变函数第四章学习方法导学

复变函数第四章学习方法导学

复变函数第四章学习方法导学
复变函数第四章学习方法导学

第四章级数

复级数也是研究解析函数的一种重要的工具,实际上,解析函数的许多重要性质,还需要借助适当的级数才能得到比较好的解决。例如,解析函数零点的孤立性、解析函数的惟一性、解析函数在其孤立奇点去心邻域内的取值特点等等。

根据所研究的解析函数所涉及的问题的需要,在本章中,我们重点介绍两类特殊的复函数项级数,一类是幂级数,通常考虑函数在其解析的区域内的整体性质或函数在其解析点邻域内的性质时,用这类级数;另一类是洛朗级数,通常考虑函数在其孤立奇点附近的有关性质时,用这类级数.

本章,我们主要介绍以下内容:

首先,平行介绍复数项级数和复函数项级数一般理论.

其次,作为函数项级数的特例,我们平行介绍形式简单且在实际中的应用广泛的幂级数,并建立如何将圆形区域内解析的函数表示成幂级数的方法,以及如何利用这种方法来研究解析函数的有关良好的性质(比如:解析函数零点的孤立性、解析函数的惟一性以及作为解析函数基本理论之一的最大模原理等).第三,进一步介绍由正、负整数次幂项构成的形式幂级数(也称为洛朗级数或双

<-<(0r≤,边幂级数)的概念及其性质,并建立(挖去奇点a的)圆环形区域r z a R

R≤+∞)内解析函数的级数表示(即解析函数在圆环形区域内的洛朗展式),然后再用洛朗展式作为工具研究解析函数在其孤立奇点附近的性质.作为解析函数孤立奇点性质的应用,再简要介绍复变函数的进一步研究中经常涉及到的两类重要的函数,即整函数与亚纯函数及其简单分类.

一、学习的基本要求

1.能正确理解复级数收敛和发散以及绝对收敛等概念.掌握复级数收敛的必要条件

和充要条件,特别是复级数收敛与实、虚部级数收敛之间的关系,并能熟练地运用这种关系来讨论复级数的有关问题以及利用复级数来讨论实级数的有关问题(比如:利用复级数的和求实级数的和的问题等).

2.了解复级数绝对收敛与条件收敛,掌握收敛以及绝对收敛级数的若干性质(比如收敛级数的线性性、添项减项性和添加括号性;绝对收敛级数的项的重排性、乘积性等;二次求和的可交换性,即在

,11()n m n m A

∞∞==∑∑,,11()n m m n A ∞∞==∑∑以及,,1n m n m A ∞=∑

都收敛的条件下,有

成立).

3.了解复函数项级数收敛、一致收敛和内闭(紧)一致收敛的含义,掌握一致收敛的柯西准则和魏尔斯特拉斯判别法,并能熟练运用此判别法判断复函数项级数的一致或内闭一致收敛,掌握一致或内闭一致收敛的函数项级数和函数的连续性、逐项积分性以及解析函数项级数和函数的解析性、逐项求任意阶导数性.

4.熟练掌握幂级数收敛半径的两种计算方法:

记00()()n n n f z a z z ∞==-∑,l =1z 是()f z 的不解析点中距0z 最近的点, 利用系数计算的公式:1

R l

=. 利用和函数的计算公式:10R z z =-.

熟练掌握同类幂级数的运算性质.比如:设有两个同类幂级数

00()()n

n n f z a z z ∞==-∑,00()()n n n g z b z z ∞

==-∑ 其收敛半径分别为1R ,2R ,不妨设12R R ≤,则在它们收敛的公共范围01z z R -<内

复变函数习题解答(第6章)

p269第六章习题(一) [ 7, 8, 9, 10, 11, 12, 13, 14 ] 7.从 Ceiz /√zdz出发,其中C是如图所示之周线(√z沿正实轴取正值),证明:(0, +)cosx/√xdx= (0, +)sinx/√xdx=√(/2). 【解】| C(R)eiz /√zdz| C(R)| eiz |/R1/2 ds = [0,/2]| ei(cos+isin) |/R1/2 ·R d Ri = [0,/2]| e Rsin |R1/2 d

R R1/2 [0,/2]e Rsin d. 由sin2/([0,/2] ),故R1/2 [0,/2]e Rsin d R1/2 [0,/2]e(2R/) d C r ri = (/(2R1/2 ))(1–e R )/(2R1/2

所以,| C(R)eiz /√zdz|0 (asR+).rR而由| C(r)eiz /√zdz|(/(2r1/2 ))(1–e r ) 知| C(r)eiz /√zdz|0 (asr0+ ). 当r0+ ,R+时, [r,R]eiz /√zdz= [r,R]eix /√xdx= [r,R](cosx+isinx)/√xdx

(0, +)cosx/√xdx+i (0, +)sinx/√xdx. [ri,Ri]eiz /√zdz= [r,R]ei(iy) /√(iy)idy= [r,R]e y ei/4 /√ydy. = (1 +i)/√2 · [r,R]e y /√ydy= 2(1 +i)/√2 · [√r,√R]e u^2 du (1 +i)√2 · (0, +)e u^2 du= (1 +i)√2 ·√/2 = (1 +i)√(/2).由Cauchy积分定理, Ceiz

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) () 1 -=n n nz z ' (n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-?? ??? ?++-+ += -+= --→→ 2 2 1 12 1lim lim ' ()() 1 1 2 1 12 1----→=?? ? ?? ?++-+ = n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: () ()2 11 111 1z z z z z z z z z z z z z z z z z - =+-= +-= - += ?? ? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??, 0=??y u , 0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2 在直线2 1- =x 上可导,在复平面内处处不解析。 2) ()3 3 32y i x z f += 解:设()iv u z f +=,则3 2x u =,3 3y v = 2 6x x u =??, 0=??y u , 0=??x v , 2 9y y v =??都是连续函数。 只有2 2 96y x =,即032=± y x 时才满足柯西—黎曼方程。 ()3 3 32y i x z f +=∴在直线 032=± y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 2 2 += 解:设()iv u z f +=,则2 xy u =,y x v 2 =

(完整版)复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数 1.(定理6.1 柯西留数定理): ∫f(z)dz=2πi∑Res(f(z),a k) n k=1 C 2.(定理6.2):设a为f(z)的m阶极点, f(z)= φ(z) (z?a)n , 其中φ(z)在点a解析,φ(a)≠0,则 Res(f(z),a)=φ(n?1)(a) (n?1)! 3.(推论6.3):设a为f(z)的一阶极点, φ(z)=(z?a)f(z),则 Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点 φ(z)=(z?a)2f(z)则 Res(f(z),a)=φ′(a) 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数: Res(f(z),∞)= 1 2πi ∫f(z)dz Γ? =?c?1 即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1 z 这一项系数的反号 7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。 8.计算留数的另一公式:

Res (f (z ),∞)=?Res (f (1t )1t 2,0) §2.用留数定理计算实积分 一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ 注:注意偶函数 二.∫P(x)Q(x)dx +∞?∞型积分 1.(引理6.1 大弧引理):S R 上 lim R→+∞zf (z )=λ 则 lim R→+∞∫f(z)dz S R =i(θ2?θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中 P (z )=c 0z m +c 1z m?1+?+c m (c 0≠0) Q (z )=b 0z n +b 1z n?1+?+b n (b 0≠0) 为互质多项式,且符合条件: (1)n-m ≥2; (2)Q(z)没有实零点 于是有 ∫ f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0 +∞ ?∞ 注:lim R→R+∞ ∫f(x)dx +R ?R 可记为P.V.∫f(x)dx +∞?∞ 三. ∫P(x)Q(x)e imx dx +∞?∞ 型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且 lim R→+∞g (z )=0 在ΓR 上一致成立。则 lim R→+∞ ∫g(z)e imz dz ΓR =0 4.(定理6.8):设g (z )=P (z )Q (z ),其中P(z)及Q(z)为互质多项式,且符合条件:

复变函数第二章答案

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉 (1)提到复变函数,首先需要了解复数的基本性质和四则运算规则。怎么样计算复数的平方根,极坐标与 xy 坐标的转换,复数的模之类的。这些在高中的时候基本上都会学过。 (2)复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到 复平面里面,从而引出解析函数的定义。那么研究解析函数的性质就是关键所在。最关键的地方就是所谓 的Cauchy—Riemann 公式,这个是判断一个函数是否是解析函数的关键所在。 (3)明白解析函数的定义以及性质之后,就会把数学分析里面的曲线积分的概念引入复分析中,定义几乎 是一致的。在引入了闭曲线和曲线积分之后,就会有出现复分析中的重要的定理:Cauchy 积分公式。这 个是复分析的第一个重要定理。 (4)既然是解析函数,那么函数的定义域就是一个关键的问题。可以从整个定义域去考虑这个函数,也可 以从局部来研究这个函数。这个时候研究解析函数的奇点就是关键所在,奇点根据性质分成可去奇点,极 点,本性奇点三类,围绕这三类奇点,会有各自奇妙的定理。(5)复变函数中,留数定理是一个重要的定理,反映了曲线积分和

零点极点的性质。与之类似的幅角定理 也展示了类似的关系。 (6)除了积分,导数也是解析函数的一个研究方向。导数加上收敛的概念就可以引出Taylor 级数和 Laurent 级数的概念。除此之外,正规族里面有一个非常重要的定理,那就是Arzela 定理。 (7)以上都是从分析的角度来研究复分析,如果从几何的角度来说,最重要的定理莫过于Riemann 映照 定理。这个时候一般会介绍线性变换,就是Mobius 变换,把各种各样的区域映射成单位圆。研究 Mobius 变换的保角和交比之类的性质。 (8)椭圆函数,经典的双周期函数。这里有Weierstrass 理论,是研究Weierstrass 函数的,有经典的 微分方程,以及该函数的性质。 以上就是复分析或者复变函数的一些课程介绍,如果有遗漏或者疏忽的地方请大家指教。

第二章 复变函数钟玉泉版习题解答提示

第二章 习题解答提示 (一) 1.(定理)设连续曲线[]βα,),(:∈=t t z z C ,有[]),(0)(00βα∈≠'t t z ,则(试证)曲线C 在点)(0t z 有切线。 分析 1)在)(0t z 的某去心领域内能联结割线()(10t z t z ; 2)割线的极限位置就是切线。 证1),0>?δ使}{\),(0001t t t t δδ+-∈?,有)()(01t z t z ≠,即C 在)(0t z 的 对应去心领域内无重点,即能够连接割线()(10t z t z ,否则就存在数列{},01t t n →使 )()(01t z t z n =。于是 0) ()(lim )(0 10100 1=--='→t t t z t z t z n n t t n , 这与假设矛盾。 2)01001),(t t t t t >?+∈δ, [],)()(arg ) ()(arg 010 101t z t z t t t z t z -=-- [])()(arg lim 010 t z t z t t -∴→(对)(0t z 割线)()(10t z t z 倾角的极限) ?? ????--=--=→→01010101)()(lim arg )()(arg lim 010 1t t t z t z t t t z t z t t t t )(a r g 0t z '=。 因此,割线确实有极限位置,即曲线C 在点)(0t z 的切线存在,其 倾角为)(arg 0t z '. 3. 设 ?? ?? ?=≠+==+++-. 0, 0; 0,)(2 23333 )(z iy x z z f y x y x i y x 试证)(z f 在原点满足..R C -条件,但却不可微. 证 1) 有公式(2.5)及(2.6)有

复变函数经典例题

第一章例题 例1.1试问函数把平面上的下列曲线分别变成平面上的何种曲线? (1)以原点为心,2为半径,在第一象项里的圆弧; (2)倾角的直线; (3)双曲线。 解设,则 因此 (1)在平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周。(2)在平面上对应的图形为:射线。 (3)因,故,在平面上对应的图形为:直线 。 例1.2设在点连续,且,则在点的某以邻域内恒不为0. 证因在点连续,则,只要,就有 特别,取,则由上面的不等式得 因此,在邻域内就恒不为0。 例1.3设 试证在原点无极限,从而在原点不连续。

证令变点,则 从而(沿正实轴) 而沿第一象限的平分角线,时,。 故在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1在平面上处处不可微 证易知该函数在平面上处处连续。但 当时,极限不存在。因取实数趋于0时,起极限为1,取纯虚数而趋于零时,其极限为-1。故处处不可微。 例 2.2函数在满足定理2.1的条件,但在不可微。 证因。故 但

在时无极限,这是因让沿射线随 而趋于零,即知上式趋于一个与有关的值。 例2.3讨论的解析性 解因, 故 要使条件成立,必有,故只在可微,从而,处处不解析。例2.4讨论的可微性和解析性 解因, 故 要使条件成立,必有,故只在直线上可微,从而,处处不解析。 例2.5讨论的可微性和解析性,并求。 解因, 而 在复平面上处处连续且满足条件,从而在平面上处处可微,也处处解析。且 。 例2.6设确定在从原点起沿负实轴割破了的平面上且,试求 之值。 解设,则

由代入得 解得:,从而 。 例2.7设则 且的主值为。 例2.8考查下列二函数有哪些支点 (a) (b) 解(a)作一条内部含0但不含1的简单闭曲线, 当沿正方向绕行一周时,的辐角得到增量,的辐角没有改变, 即 从而 故的终值较初值增加了一个因子,发生了变化,可见0是的支点。同理1 也是其支点。 任何异于0,1的有限点都不可能是支点。因若设是含但不含0,1的简

《复变函数论》第六章

第六章 留数理论及应用 第一节 留数 1、留数定理: 设函数f (z )在点0z 解析。作圆r z z C =-|:|0,使f (z )在以它为边界的闭圆盘上解析,那么根据柯西定理,积分 ? C dz z f )( 等于零。 设函数f (z )在区域R z z <-<||00内解析。选取r ,使0

数。 注解3、如果0z 是f (z )的可去奇点,那么.0),(Res 0=z f 定理1.1(留数定理)设D 是在复平面上的一个有界区域,其边界是一条或有限条简单闭曲线C 。设f (z )在D 内除去有孤立奇点n z z z ,...,,21外,在每一点都解析,并且它在C 上每一点都解析,那么我们有: ),,(Res 2)(1 k n k C z f i dz z f ∑? ==π 这里沿C 的积分按关于区域D 的正向取。 证明:以D 内每一个孤立奇点k z 为心,作圆k γ,使以它为边界的闭圆盘上每一点都在D 内,并且使任意两个这样的闭圆盘彼此无公共点。从D 中除去以这些k γ为边界的闭圆盘的一个区域G ,其边界是C 以及k γ, 在G 及其边界所组成的闭区域G 上,f (z )解析。因此根据柯西定理, ,)()(1 ∑?? ==n k C k dz z f dz z f γ 这里沿C 的积分按关于区域D 的正向取的,沿k γ的积分按反时针方向取的。根据留数的定义,得定理的结论成立。 2、留数的计算: 本节讲述几种常见的情形下,如何计算留数。 首先考虑一阶极点的情形。设0z 是f (z )的一个一阶极点。因此在去掉中心0z 的某一圆盘内(0z z ≠), ),(1 )(0 z z z z f ?-= 其中)(z ?在这个圆盘内包括0z z =解析,其泰勒级数展式是:

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 § 1■留数 1.(定理6.1柯西留数定理): 2.(定理6.2):设a为f(z)的m阶极点, 其中在点a解析,,则 3. (推论6.3):设a为f(z)的一阶极点, 则 4. (推论6.4):设a为f(z)的二阶极点则 5. 本质奇点处的留数:可以利用洛朗展式 6. 无穷远点的留数: 即,等于f(z)在点的洛朗展式中这一项系数的反号 7. (定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 &计算留数的另一公式:

§ 2■用留数定理计算实积分 型积分一引入 注:注意偶函数 型积分 1.(引理6.1大弧引理):上 2.(定理6.7)设为有理分式,其中 为互质多项式,且符合条件: (1)n-m> 2; (2)Q(z)没有实零点 于是有 注: 可记为 型积分 3.(引理6.2若尔当引理):设函数g(z)沿半圆周充分大上连续,且 在上一致成立。则 4.(定理6.8):设,其中P(z)及Q(z)为互质多项式,且符合条件:

(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成: ——及—— 四■计算积分路径上有奇点的积分 5.(引理 6.3小弧引理): 于上一致成立,则有 五■杂例 六■应用多值函数的积分 § 3■辐角原理及其应用 即为:求解析函数零点个数 1■对数留数: 2.(引理6.4):( 1)设a为f(z)的n阶零点,贝U a必为函数------ 的一阶极点,并且 (2)设b为f(z)的m阶极点,贝U b必为函数--- 的一阶极点,并且 3. (定理6.9对数留数定理):设C是一条周线,f(z)满足条件:

复变函数(第四版)课后习题答案

习题一解答 1.求下列复数的实部与虚部、共轭复数、模与辐角。 (3)(3+ 4i )(2 5i ) ; (4)i 8 4i 21 + i 1 3+ 2i 1 3i 1 i (1) ; (2) ; i 2i 3+ 2i = (3+ 2i )(3 2i ) = 1 (3 2i ) 1 3 2i 13 解 (1) 所以 ? 1 ?3+ 2i ↑ 13 ? = ← 3, Im ?? ←= 2 1 ? Re ? , 13 ?3+ 2i ↑ 2 2 1 3+ 2i = 1 1 3+ 2i = ?? 3 ? +?? 3 ? 13 (3+ 2i ), , 13 13 ? 13 ? = 13 Arg ? 1 3+ 2i ? ? = arg ? 1 3+ 2i ? ? + 2k π 2 = arctan + 2k ,k = 0,±1,±2," 3 1 3i i 3i (1+ i ) = i 1 ( 3+ 3i )= 3 5 (2) 1 i = i ( i ) (1 i )(1+ i) i, i 2 2 2 所以 ?1 3i ? 3 , Re ? ?i 1 i ↑←= 2 ?1 3i ? ←= 5 Im ? ?i 1 i ↑ 2 2 2 1 3i = + i 5, 3 1 3i 1 i = ? ? +? ? = 34, 3 5 i 1 i ? 1 3i 2 2 i 2 2 2 1 3i ? + 2k π Arg = arg i 1 i ? i 1 i ? = arctan 5 + 2k π, k = 0,±1,±2,". 3 (3) (3+ 4i )(2 5i ) = (3+ 4i )(2 5i )( 2i ) = (26 7i )( 2i ) 2i (2i )( 2i ) 4 = 7 26i = 7 13i 2 2 所以 ?(3+ 4i )(2 5i )? Re ? ←= 7 , ? 2i ↑ 2 ?(3+ 4i )(2 5i )? Im ? ←↑= 13, ? 2i

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数1.(定理柯西留数定理): 2.(定理):设a为f(z)的m阶极点, 其中在点a解析,,则 3.(推论):设a为f(z)的一阶极点, 则 4.(推论):设a为f(z)的二阶极点 则 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数:

即,等于f(z)在点的洛朗展式中这一项系数的反号 7.(定理)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 8.计算留数的另一公式: §2.用留数定理计算实积分 一.→引入 注:注意偶函数 二.型积分 1.(引理大弧引理):上 则 2.(定理)设

为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有 注:可记为 三.型积分 3.(引理若尔当引理):设函数g(z)沿半圆周 上连续,且 在上一致成立。则 4.(定理):设,其中P(z)及Q(z)为互质多项式,且符合条件:(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成:

及 四.计算积分路径上有奇点的积分 5.(引理小弧引理): 于上一致成立,则有 五.杂例 六.应用多值函数的积分 §3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数: 2.(引理):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且 (2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且 3.(定理对数留数定理):设C是一条周线,f(z)满足条件: (1)f(z)在C的内部是亚纯的;

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) ()1-=n n nz z '(n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-??????++-++=-+=--→→ 2210 0121lim lim ' ()()11210121----→=??????++-+= n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: ()()2000111111z z z z z z z z z z z z z z z z z -=+-=+-=-+=??? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??,0=??y u ,0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。 2) ()3332y i x z f += 解:设()iv u z f +=,则32x u =,33y v = 26x x u =??,0=??y u ,0=??x v ,29y y v =??都是连续函数。 只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。 ()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 22+= 解:设()iv u z f +=,则2xy u =,y x v 2=

复变函数与积分变换第六章测验题与答案

第六章 共形映射 一、选择题: 1.若函数z z w 22+=构成的映射将z 平面上区域G 缩小,那么该区域G 是 ( ) (A )21< z (B )211<+z (C )21>z (D )2 11>+z 2.映射i z i z w +-= 3在i z 20=处的旋转角为( ) (A )0 (B ) 2 π (C )π (D )2 π - 3.映射2 iz e w =在点i z =0处的伸缩率为( ) (A )1 (B )2 (C)1-e (D )e 4.在映射i e iz w 4 π +=下,区域0)Im( w (B )22)Re(->w (C )22)Im(> z (D )2 2 )Im(->w 5.下列命题中,正确的是( ) (A )n z w =在复平面上处处保角(此处n 为自然数) (B )映射z z w 43 +=在0=z 处的伸缩率为零 (C ) 若)(1z f w =与)(2z f w =是同时把单位圆1w 的分式线性变换,那么)()(21z f z f = (D )函数z w =构成的映射属于第二类保角映射 6.i +1关于圆周4)1()2(2 2 =-+-y x 的对称点是( )

(A )i +6 (B )i +4 (C )i +-2 (D )i 7.函数i z i z w +-=33将角形域3arg 0π<w (C ) 0)Im(>w (D )0)Im(z 映射为( ) (A )ππ <<- w arg 2 (B ) 0arg 2 <<- w π (C ) ππ <z 映射成圆域22; (2)Q(z股有实零点 于是有 f(x)dx — 2ui工Res(f(z)t au} Jrtiajt >0 注:以fg可记为PM广;?x)dx 丿;黔厂心型积分 3. (引理6.2若尔当引理):设函数g(z)沿半圆周5£=恥叫0彰"?丘充金走上连续,且 lim鸟⑵=0 在「里上一致成立。则 lim f幻(胡叫E = o ■ rn

复变函数习题答案第4章习题详解

第四章习题详解 1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限: 1) mi ni a n -+=11; 2) n n i a -?? ? ??+=21; 3) ()11++-=n i a n n ; 4) 2 i n n e a π-=; 5) 2 1i n n e n a π-=。 2. 证明:????? ? ?≠==>∞<=∞→1 11 11 1 0a a a a a a n n ,,,,lim 不存在, 3. 判别下列级数的绝对收敛性与收敛性: 1) ∑∞ =1n n n i ; 2) ∑∞ =2n n n i ln ; 3) ()∑∞ =+0856n n n i ; 4) ∑∞ =02 n n in cos 。 4. 下列说法是否正确?为什么? 1) 每一个幂级数在它的收敛圆周上处处收敛;

2) 每一个幂级数的和函数在收敛圆内可能有奇点; 3) 每一个在0z 连续的函数一定可以在0z 的邻域内展开成泰勒级数。 5. 幂级数()∑∞ =-02n n n z c 能否在0=z 收敛而在3=z 发散? 6. 求下列幂级数的收敛半径: 1) ∑∞ =1n p n n z (p 为正整数); 2) ()∑∞ =12n n n z n n !; 3) ()∑∞=+01n n n z i ; 4) ∑∞ =1n n n i z e π; 5) ()∑∞ =-??? ??11n n z n i ch ; 6) ∑∞=??? ??1n n in z ln 。 7. 如果∑∞=0n n n z c 的收敛半径为R ,证明()∑∞=0n n n z c Re 的收敛半径R ≥。[提示:()n n n n z c z c

《复变函数》第六章习题全解钟玉泉版

第六章 留数理论及其应用 (一) 1.解:(1)z=1是一级极点,故由推论6.3知 4 1|) 1)(1(1) 1()(Re 12 1 = +--===z z z z z z f s Z=-1是二级极点,同前由推论6.4知 4 1|]) 1)(1(1) 1[()(Re 12 2 1 -='+-+=-=-=z z z z z z f s ∞=z 是可去奇点,则由教材(6.2)式知0)](Re )(Re [)(Re 1 1 =+-=-==∞ =z f s z f s z f s z z z (2)因),1,0( ±==n n z π为分母sinz 的一级零点,知),1,0( ±==n n z π为z sin 1的一级极点,故由定理6.5知 n z n z z z f s )1(|)(sin 1)(Re -=' = ∞==π (3)由 ----=??? ? ??----=-z z z z z z z z e z 3422!3)2(!2)2(211233 244 2所以3 4)(Re 10 - ==-=C z f s z 又由z=0是唯一有限奇点,故3 4)(Re )(Re 0 = -==∞ =z f s z f s z z (4)由() +-+ -+ =-2 11 1!211 11z z e z 所以1)(Re 1 ==z f s z 又因z=1是唯一的有限奇点,所以1)(Re )(Re 1 -=-==∞ =z f s z f s z z (5)因z=1为 n n z z ) 1(2-的n 级极点,所以 )! 1()!1()!2(|) ()1(Re 1) 1(221 +-= =-=-=n n n z z z s z n n n n z )! 1()!1()!2() 1(Re ) 1(Re 21 2+-- =--=-=∞ =n n n z z s z z s n n z n n z (6)2 |1 )1(1 Re 12 2 1 e z e z z e s z z z z = -? -=-==

相关主题
文本预览
相关文档 最新文档