当前位置:文档之家› 第22课时导数的运算法则(文)最新版

第22课时导数的运算法则(文)最新版

第22课时导数的运算法则(文)最新版
第22课时导数的运算法则(文)最新版

导数的运算法则

1.下列运算中正确的是( )

2 2

A.(lnx-3sinx) ' =(lnx) ' -3 '? (sinx) '

B.(ax +bx+c) ' =a(x ) ' +bx

2.已知f(x)=x -5+3sinx,贝U f ' (x)等于( )

A.-5x -6-3cosx

B.X-6+3COSX

C.-5x -6+3cosx

D.x -6-3cosx

3.曲线y= --------- 点M- 处的切线的斜率为( )

A.- —

B.—

C.- —

D.—

4.已知直线y=kx+1与曲线y=x3+ax+b相切于点(1,3),则b的值为(

A.3

B.-3

C.5

D.-5

5. f(x)=x 3,f '(x°)=6, 则X。等于( )

A.-

B.- -

C.± -

D. ± 1

6.已知f(x)=x 3+3x+l n3, 则f' (x)为( )

A.3x 2+3x

B.3x2+3x?? In3+ -

C.3x 2+3x? In3

D.x 3+3x? In3

7.曲线y=x2+-在点(1,2)处的切线方程为___________ .

8.设函数f(x)在(0,+ g)内可导,且f(e x)=x+e x,则f' (1)= ___________ .

9.已知函数f(x)=(2x+1)e x,f ' (x)为f(x)的导函数,则f ' (0)的值为_____________ .

10.已知函数f(x)=f ' - cosx+sinx,则 f -的值为 ____________ .

11.函数f(x)=xe x的导函数f' (x)= ________ .

12.已知函数f(x)=x-4lnx,贝U曲线y=f(x)在点(1,f(1)) 处的切线方程为_____________

13.求下列函数的导数.

(1)y=cosx ? Inx. (2)y=

C. D.(cosx -sinx) ' =(sinx) ' cosx+(cosx) cosx

_ 3 2 ..

15.已知函数f(x)=x +bx+cx+d的图象过点P(0,2),且在点M(-1,f(-1)) 处的切线方程为6x-y+7=0,

求函数f(x)的解析式.

__ 3

16.已知函数f(x)=x +X-16.

直线I为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标

17.已知函数f(x)= ,g(x)=alnx,a € R.若曲线y=f(x)与曲线y=g(x)相交且在交点处有相同的切线

求a的值及该切线的方程

导数的运算法则

C f(x) J -C' f (x) C f (x)二C f (x).

3 2 (6) y=x -2x+3 (7)y=sinx(cosc + 1) (8)y=x +Iog 3x. 2

5.若 f(x)=(2x+a),且 f ' (2)=20,则 a= ________

6.已知函数f(x)的导函数为f ' (x),且满足f(x)=2xf ' (1)+lnx,则f ' (1)=( )

A.-e

B.-1

C.1

D.e

x +1

7.设曲线y=

在点(3,2)处的切线与直线 ax+y+仁0垂直,则a 等于( )

1.

函数y=x ? Inx 的导数是 ( ) A.x

B. -

C.lnx+1

2.

函数

y=x 4+sinx 的导数为( )

A.y ' =4x 3

B.y ' =cosx

3. __________________________________ 函数y=xcosx-sinx 的导数为

.

D.lnx+x

C.y ' =4x 3

+sinx

D.y ' =4x 3+cosx

⑶ y = 5x

. (4)y=x 3

? e x

.

COSX

(5)y=-

X

2

(9)y=sinx-2x .

x -1

8.

若曲线y=xlnx 上点P 处的切线平行于直线 2x-y+1=0,则点P 的坐标为

.

2

9. 已知抛物线 y=f(x)=ax +bx+c 通过点(1,1),且在点(2,-1)处与直线y=x-3相切,求a,b,c 的值.

10.

若函数 f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),且 f ' (x)是函数 f(x)的导函数,则 f ' (1)=( )

A.24

B.-24

C.10

D.-10

11.(2017 ?蚌埠高二检测)已知函数f(x)= cosx 则f ' 二丨 =(

)

<2;

13.如果曲线y=x 2的某一切线与直线 y=4x+3平行,则切点坐标为 _______________ ,

14.(2016 ?天津高考)已知函数 f(x)=(2x+1)e x

,f ' (x)为 f(x)

的导函数,则f ' (0)的值为

5.(2015 ?天津高考)已知函数f(x)=axlnx,xe 0卢8), 其中a

为实数,¥仗)为fQ 的导函数,若f(l)=3,则a 的值为 ?

A.2

1

B.

2

1

C ??

2

D.-2

A.-

B. 2

C. D.-

12.若f(x)与g(x)是定义在R 上的两个可导函数,

A.f(x) = g(x)

B.f(x) — g(x)为常数函数

且 f(x), g(x)满足 f (x)=g (x),则 f(x)与 g(x)满足(

为常数函数

基本初等函数的导数公式及运算法则

课时授课计划

教师活动 教学过程: 一?创设情景 2 1 四种常见函数y=c、y = x、y =x、y —的导数公式及应用 :■?新课讲授 学生活动学生自行预习

(二)导数的运算法则导数运算法则 1. 〔f(X)土g(x)i = f'(x) ±g'(x) 2. [f(x) g(x)]' = f'(x)g(x)±f(x)g'(x) I f (x) I f (x) g (x) - f (x) g (x) / . . 3. = ——(g(x)HO) ]g(x) 一[g(x)f (2)推论:lcf(x) I - Cf'(x) (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1 .假设某国家在20年期间的年均通货膨胀率为5% ,物价p (单位:元)与时间t (单位:年)有如下函数关系p(t) = p0(1 - 5%亍,其中p0 为t = 0时的物价.假定某种商品的p0 = 1,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有p'(t) =1.0“ In 1.05 所以p (10) =1.0510|n1.05 : 0.08 (元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2?根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1) y = x3 -2x 3 (2) y 1 1 (3) y = x sin x ln x; (4)y (5)y (6)y 4x 1 -ln x 1 l n x (2 x2—5 x + 1) e x / 、sin x—xcosx (7) y =-------------------------- cosx +xsin x 通过预习自行完成 在老师的指导下独立完成后面几道题

导数公式及其运算法则

§1.2.2基本初等函数的导数公式及导数的运算法则(两课时) 学习目标 1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 3.复合函数的分解,求复合函数的导数. 一、预习与反馈(预习教材P 14~ P 19,找出疑惑之处) 复习1:常见函数的导数公式: (1) '____C =(C 为常数);(2)()'________n x =, n ∈N +;(3)(sin )'_______x =; (4)(cos )'_______x =; (5)()'________x e =; (6)()'_________x a =; (7)(ln )'______x =; (8) e x x a a log 1)'(log = 复习2:根据常见函数的导数公式计算下列导数 (1)6y x = (2 )y = (3)21y x = (4 )y = 新知 1.可导函数的四则运算法则 法则1 '[()()]____________.u x v x ±=(口诀:和与差的导数等于导数的和与差). 法则2 [()()]____________u x v x '=. (口诀:前导后不导,后导前不导,中间是正号) 法则3 ()[]_______________(()0)() u x v x v x '=≠(口诀:分母平方要记牢,上导下不导,下导上不导,中间是负号)

例1. 根据基本初等函数的导数公式和导数运算法则,求函数3123y x x x =-++导数. 变式:( 1)2log y x =; (2)2x y e =; (3)522354y x x x =-+-; (4)3cos 4sin y x x =- 例2求下列函数的导数: (1)32log y x x =+; (2)n x y x e = (3)y=2e -x 2. 复合函数: 1.定义:一般地,对于两个函数y =f (u )和()u g x =,如果通过变量u,y 可以表示成x 的函数,那么这个函数为函数 和 的复合函数,记住 2.复合函数的求导法则 复合函数(())y f g x =的导数和函数y =f (u ),()u g x =的导数间的关系式为 ,即y 对x 的导数等于 的乘积。 例。3 求下列函数的导数: (1)2(23)y x =+; (2)1x y e -+=; (3)sin()y x π?=+

导数公式及其运算法则

§122基本初等函数的导数公式及导数的运算法则 (两课时) 学习目标 1. 理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 2. 理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数 3. 复合函数的分解,求复合函数的导数 . 一、预习与反馈(预习教材P l4~ P l9,找出疑惑之处) 复习1:常见函数的导数公式: cosx)' ________ ; (5) (e x )' ________ ; ⑹(a x )' 1 ⑺(l nx)' ________ ; (8) (log a x)' log a e x 复习2:根据常见函数的导数公式计算下列导数 新知 1. 可导函数的四则运算法则 法则1 [u(x) v(x)]' ______________ . ( 口诀:和与差的导数等于导数的和与差 ). 法则2 [u(x)v(x)] ____________ . ( 口诀:前导后不导,后导前不导,中间是正号 ) 法则3 [凹] __________________ ( v(x) 0)( 口诀:分母平方要记牢,上导下不导,下 v(x) (1) C' _______ (C 为常数);(2) (x n )' n € N +; (3) (sin x)' ______ 6 (1)y x (2) y - x

导上不导,中间是负号) 1 例1. 根据基本初等函数的导数公式和导数运算法则,求函数 y x 3 2x 丄3导数. x 变式:(1) y log 2x ; 例2求下列函数的导数: (1) y x 3 log 2 x ; 2. 复合函数: 1. 定义:一般地,对于两个函数y =f (u )和u g(x)如果通过变量u,y 可以表示成x 的函数, 那么这个函数为函数 _________ 和 ______________ 的复合函数,记住 _____________________ 2. 复合函数的求导法则 复合函数y f(g(x))的导数和函数y =f (u ), u g(x)的导数间的关系式 为 ________________ ,即y 对x 的导数等于 _________________ 的乘积。 例。3求下列函数的导数: 2 x 1 (1) y (2x 3) ; ( 2) y e ; (3) y sin( x ) x (2) y 2e ; (3) y 2x 5 3x 2 5x 4; (4) y 3cosx 4sin x (3)y=2e -x

导数的四则运算法则

§4 导数的四则运算法则 一、教学目标: 1.知识与技能 掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算的导数,能运用导数的几何意义,求过曲线上一点的切线。 2.过程与方法 通过用定义法求函数f (x )=x+x 2 的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明;由定义法求f(x)=x 2 g(x)的导数,发现函数乘积的导数,归纳出两个函数积、商的求导发则。 3.情感、态度与价值观 培养学生由特别到一般的思维方法去探索结论,培养学生实验——观察——归纳——抽象的数学思维方法。 二、教学重点:函数和、差、积、商导数公式的发掘与应用 教学难点:导数四则运算法则的证明 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导函数的概念和导数公式表。 1.导数的定义:设函数)(x f y =在0x x =处附近有定义,如果0→?x 时,y ?与x ?的比 x y ??(也叫函数的平均变化率)有极限即x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0 /x x y =,即x x f x x f x f x ?-?+=→?) ()(lim )(000 0/ 2. 导数的几何意义:是曲线)(x f y =上点()(,00x f x )处的切线的斜率因此,如果 )(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 ))(()(00/0x x x f x f y -=- 3. 导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个 ),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f , 称这个函 数)(/ x f 为函数)(x f y =在开区间内的导函数,简称导数,

基本初等函数的导数公式及运算法则教案

§1.2.2基本初等函数的导数公式及导数的运算法则 一.教学目标: 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.教学重点难点 重点:基本初等函数的导数公式、导数的四则运算法则 难点: 基本初等函数的导数公式和导数的四则运算法则的应用 三.教学过程: (一).创设情景 复习五种常见函数y c =、y x =、2y x =、1y x = 、y = 用 (二).新课讲授 1(1)基本初等函数的导数公式表

(2)根据基本初等函数的导数公式,求下列函数的导数. (1)2y x =与2x y = (2)3x y =与3log y x = 2.(1 推论:[]' '()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号. (2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+(2)sin y x x =?;(3)2(251)x y x x e =-+?;(4)4 x x y =; 【点评】 ① 求导数是在定义域内实行的. ② 求较复杂的函数积、商的导数,必须细心、耐心. 四.典例精讲 例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 分析:商品的价格上涨的速度就是函数关系()(15%)t p t =+的导数。 解:根据基本初等函数导数公式表,有'() 1.05ln 1.05t p t = 所以'10(10) 1.05ln 1.050.08p =≈(元/年)

基本初等函数的导数公式及导数的四则运算法则

全国中小学“教学中的互联网搜索”优秀教学案例评选 教案设计 高中数学人教A版选修1-1 3、2、2基本初等函数的导数公式及导数的四则运算 一、教案背景:面向学生:周村区实验中学学科:数学 课时:1课时 二、教学目标:熟练掌握基本初等函数的导数公式;掌握导数的四则 运算法则;能利用给出的基本初等函数的导数公式和导数的 四则运算法则求简单函数的导数. 三、教学重点:基本初等函数的导数公式、导数的四则运算法则 四、教学难点:基本初等函数导数公式和导数的四则运算法则的应用 五、教材分析:教科书直接给出基本初等函数的导数公式及导数的运 算法则,不要求根据导数定义推导这些公式和法则,只要求 能够利用他们能求简单函数的导数即可。在教学中,适量的 联系对于熟悉公式和法则的运用是必要的,但应避免过量的 形式化的运算联系。 六、教学方法及教学思路: 运用“721”信息化课堂教学模式----“自主、展示、合作、交流、引领”,本课的设计内容分为以下几个部分: 1、回顾公式、寻找技巧 2、自主探究、合作学习 3、成果展示,汇报交流

4、归纳总结,提升拓展 5、反馈训练,巩固落实 6、总结本节复习要点及课后作业的布置 七、教学过程 1、回顾公式、寻找技巧 基本初等函数的导数公式: 导数的四则运算法则: 函数的和、差、积、商的求导法则:

简单复合函数的求导: 函数 其中 和 都可导,则: 2、自主探究、合作学习 针对性训练:求下列函数的导数 3、成果展示,汇报交流 学生分学习小组到黑板上板书本组解决的任务,并且进行讲解, 同时指出本题目所运用的数学思想和数学方法。 4、归纳总结,提升拓展 总结反思: 1、先观察函数是由哪些子函数组成。 2、再观察有哪些运算法则。 3、拿到题目不要急于动手计算,先要分析清楚函数的组合成员x x y sin 34+=)(3229+=x e y )(5)35(7+=x y )( (4)y=xsinx )5)(23(62-+=x x y )()12(log 103+=x y )() 32sin(8π+=x y )( )(x g u =x u x u f y '''?=)(u f y =))((x g f y =26331x x x y -+=)(x e y x cos 2-=)((5)y=tanx

相关主题
文本预览
相关文档 最新文档