当前位置:文档之家› 光纤水听器阵列远程遥泵技术研究

光纤水听器阵列远程遥泵技术研究

光纤水听器阵列远程遥泵技术研究
光纤水听器阵列远程遥泵技术研究

龙源期刊网 https://www.doczj.com/doc/e212065946.html,

光纤水听器阵列远程遥泵技术研究

作者:张红王巍李东明葛辉良

来源:《声学与电子工程》2019年第02期

实验五反射式光纤位移传感器实验

实验五 反射式光纤位移传感器 一、实验目的 了解反射式光纤位移传感器的结构,学习和掌握最简单、最基本的光纤位移传感器的原理和应用。 二、基本原理 反射强度调制式光纤传感器具有准确、结构简单、价格低廉等优点,广泛应用于各种位移、压力和温度传感器中。反射式光纤位移传感器的基本结构如图5-1所示,其中发射光纤通常由一根光纤构成,接收光纤有时候由单根光纤构成,而有些时候为了提高光的接收效率也经常由多根光纤构成。本实验采用的传光型光纤,它是由两根光纤的一端熔合后组成的Y 型光纤,一根作为发射光纤,端部与光源相接发射光束;另一根作为接收光纤,端部与光电转换器相接接收反射光。两根光纤熔合后的端部是工作端也称传感探头,截面为半圆分布即D 型结构。由光源发出的光传到端部出射后再经被测体反射回来,由另一束光纤接收光信号经光电转换器转换成电压信号。 图5-1 反射式光纤位移传感器示意图 传光型光纤反射式位移传感器的发射调制方法,可用等效分析法来分析。首先,画出接收光纤关于反射体的镜像,然后计算出该镜像接收光纤在发射光纤纤端光场中所接收到的光强值,最后将该光强值乘以反射体的反射率R ,作为传感器的最后输出光强。如图5-2中的a 图所示。 接收光纤的镜像坐标即它的等效坐标位置为F (2z ,d ),这里z 为发射接收光纤的端面与反射体之间的距离,d 为发射光纤轴心到接收光纤轴心之间的距离,由此可以获得接收光纤接收到的光强为: ]] )/(1[exp[])/(1[)(2 2/30202222/3020c c tg a z a d tg a z RI z I θζσθζσ+-?+= 其中,0I 为光源的光强,σ为表征光纤折射率分布的相关参数,对于阶跃折射率光纤,它的值为1,0a 为光纤的纤芯半径,ζ为光源种类及光源与光纤耦合情况有关的调制参数, c θ为发射光纤的最大出射角。此函数的曲线形状如图5-2中的b 图所示。 reflector

光纤水听器综述

光纤水听器及阵列综述 马宏兰周美丽 (天津师范大学电子与通信工程学院) 摘要:为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基 础上 ,光纤水听器应运而生。光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。全光光纤水听器系统的湿端采用全光实现,信号传感与传输皆基于光纤技术。具有抗电磁干扰、重量轻和造价低等优点。文章简述了光纤水听器的发展历史、现状 ,论述了光纤水听器阵列的原理及其应用前景。 关键词:光纤水听器多路复用技术阵列 0引言:在光纤水听器的实际应用中,由于水下声场的复杂性,单元水听器很难获得目标的详细信息,因而需要将数百乃至上千个探测基元组成大的阵列,以获得更多水声场信息,通过水听器阵列完成声场信号的波束形成,实现对水下目标的定位与指向。在2003年8月下水的美国最新型攻击核潜艇上,装备的舷侧阵就由2 700个光纤水听器基元组成【1】。对于大规模的光纤水听器阵列,多达数十上百基元的光纤水听器光信号都是由同一根光纤传输的,在实际系统中,这种性能就是由光纤水听器的多路复用技术实现的。可见多路复用是光纤水听器的核心技术。 1 光纤水听器的开发 自1976年美国Bucar等人发表第一篇有关光纤水听器的论文【2】以来, 各工业发达国家的海军研究部门以及有关的研究和工业部门都在积极从事光纤水听器的研究和开发,尤其以美国最为突出。美国海军研究实验室、美国海军研究生院和Litton制导和控制公司等先后研究开发了Maeh一Zehnder、Michelson 干涉仪的光纤水听器, 主要结构有心轴型、互补型(推挽式) 、平面型和椭球弯 张式等光纤水听器。这些结构水听器达到的归一化灵敏度(△。/ 。△P)为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基础上 ,光纤水听器应运而生。光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。各国对光纤水听器的研究投入了大量人力和物力,技术也日益娴熟。 2、多路复用的阵列体系结构 阵列体系分为以下六大部分,其中时分/ 波分混合复用技术是其关键有效手段。 1 ) 频分复用(FDM) 【3】相位产生载波(PGC)问询的体系结构—美国海军研究实验室已用此方案对总数48 个单元水听器成网组成的阵列成功地进行了海上试验, 证实了这种体系结构的低阐值检测能力和低的串扰。 2) 时分复用(TDM) 相位产生载波问询的体系结构—美国海军研究实验室已作了10 单元的光纤水听器阵列演示, 证实了其低的光背景噪声和低的串扰。

反射式光纤位移传感器特性实验

仪器与电子学院实验报告 (操作性实验) 班级: 学号: 学生姓名: 实验题目:反射式光纤位移传感器特性实验 一、实验目的 1)掌握反射光纤位移传感器工作原理; 2)掌握反射光纤位移传感器静态特性标定方法。 二、实验仪器及器件 光纤、光电转换器、光电变换器、电压表、支架、反射片、测微仪。 三、实验内容及原理 反射式光纤位移传感器的工作原理如图3所示,光纤采用Y 型结构,两束多模光纤一端合并组成光纤探头,另一端分为两束,分别作为接收光纤和光源光纤,光纤只起传输信号的作用。当光发射器发生的红外光,经光源光纤照射至反射体,被反射的光经接收光纤至光电转换元件将接收到的光信号转换为电信号。其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到位移量。 图1 反射式光纤位移传感器原理及输出特性曲线 四、实验步骤 1、观察光纤结构:本仪器中光纤探头为半圆型结构,由数百根光导纤维组成,一半为光源光纤,一半为接收光纤。 2、将原装电涡流线圈支架上的电涡流线圈取下,装上光纤探头,探头对准镀铬反射片( 即

电涡流片)。 3、振动台上装上测微仪,开启电源,光电变换器Vo端接电压表。旋动测微仪,带动振 动平台,使光纤探头端面紧贴反射镜面,此时Vo输出为最小。然后旋动测微仪,使反射镜面离开探头,每隔0.5mm取一Vo电压值填入下表,作出V—X曲线。 4、根据所测数据求出平均值后,在坐标纸上画出输出电压-位移特性曲线(分前坡和后坡), 计算灵敏度S=,并在坐标纸上画出V—X关系线性、灵敏度、重复性、迟滞曲线。 五、实验测试数据表格记录 表1 六、实验数据分析及处理 1、线性度: 图2 线性曲线

光纤激光水听器的基本原理,国内外光纤激光水听器的研究进展以及发展趋势

光纤激光水听器的基本原理,国内外光纤激光水听器的研究进展以及发展趋 势 一、引言 声波是人类已知的唯一能在海水中远距离传输的能量形式。水听器(Hydrophone)是利用在海洋中传播的声波作为信息载体对水下目标进行探测以及实现水下导航、测量和通信的一类传感器。由于水下军事防务上的要求和人类开发利用海洋资源的迫切需要,水听器技术得到空前的发展。传统的水听器包括电动式、电容式、压电式、驻极体式,等等。 20世纪70年代以来,伴随着光导纤维及光纤通信技术的发展,光纤水听器逐渐成为新一代的水声探测传感器。与传统水听器相比,其最大优点是对电磁干扰的天然免疫能力。此外,光纤水听器还具有噪声水平低、动态范围大、水下无电、稳定性和可靠性高、易于组成大规模阵列等优点。现有的光纤水听器包括光强度型、干涉型、偏振型、光栅型等。其中,光纤激光水听器(FLH)就是一种光栅型水听器,但由于它的传感元件光纤激光器(又称有源光纤光栅)相比于无源光纤光栅具有高功率和极窄线宽的特点,配合上基于光纤干涉技术的解调方法,它的微弱信号探测能力相比于普通的无源光纤光栅水听器可以提高几个数量级。 压电式水听器和干涉式光纤水听器是目前应用最广泛的水声探测器件。与干涉式光纤水听器相比,压电式水听器技术更加成熟,结构和制作工艺更简单,大规模生产时一致性可以得到相对较好的控制。但是,防漏电、耐高温、长距离传输、动态范围大则是光纤水听器最大的优势。尤其在一些特殊领域(例如高温高压的深井油气勘探领域)有着比压电水听器更为广阔的应用前景。与干涉式光纤水听器相比,光纤激光水听器的最大优势在于易复用,即“串联即成阵”。同时,受弯曲半径影响,干涉式光纤水听器的体积较大,水听器直径通常大于1cm。而由于光纤激光型水听器结构简单,传感单元仅为一根光纤的尺寸,光纤激光水听器外径可细至4~6mm。当然,受光纤激光器本身弦振动及系统1/f噪声影响,加速度响应较大、低频段噪声相对较高是目前光纤激光型水听器存在的主要问题之一,有

浅谈反射式强度型光纤传感器

大学物理实验 光纤技术专题实验 学院 班级 学号 姓名 教师张丽梅 首次实验时间2012年9月17日

浅谈反射式强度型光纤传感器 摘要:本文通过物理实验的经历和收获和查阅相关资料,简要地论述了反射式强度型光纤传感器的工作原理,以及国内外对该类传感器研究现状,指出其存在的问题和解决方法。 关键词:反射式光纤传感器,反射面,强度调制,研究,发展趋势 1引言 通过光纤技术专题实验,我对光纤的结构和一般性质,光纤的耦合、传输及传感特性有了一定的了解,尤其是在做第三个实验“光纤传感”时,对反射式强度型光纤传感器产生了浓厚的兴趣。通过查阅资料等手段,写下了这篇浅显的论文。 2反射式强度型光纤传感器及其原理 反射式强度型光纤传感器(RIM-FOS:Reflective Intensity Modulated Fiber Optic Sensor)具有原理简单、设计灵活、价格低廉等特点,并已在许多物理量

( 如位移、转速、振动等) 的测量中获得成功应用。其结构原理如图1。 图2 与传统传感器是以机- 电测量为基础相比,,光纤传感器则以光学测量为基础。从本质上分析, 光就是一种电磁波, 其波长范围从极远红外的1nm 到极远紫外线的 10nm。电磁波 的物理作用和生物化学作用主要因其中的电场而引起。因此, 在讨论光的敏感测量时必须考虑光的电矢量E 的振动。通常用下式表示:E=Asin( ωt+")

式中A—电场E 的振辐矢量; ω—光波的振动频率;"— 光的相位; t—光的传播时间。由上式可见, 只要使光 的强度、偏振态( 矢量A的方向) 、频率和相位等参量 之一随波测量状态的变化而变化, 或者受被测量调制, 那么, 我们就有可能通过对光的强度调制、偏振调制、频率调制或相位的调制等进行解调, 获得我们所需要 的被测量的信息。最简单的反射式强度型光纤传感 ( RIMFOS)由光源、发送光纤、接收光纤、反射面以及 光电探测器组成.在图一中S 为光源, D 为检测器。光 源S 发出的光经发送 光纤束全反射传播, 到达反射面( 被测物) , 射 进入接收光纤束再次全反射传播到达检测器D, 测器D 输出相应的电信号U0。 U0=f( d) 在光纤芯半径r、光纤的数值孔径NA、反射面、 检测器已确定情况下, 输出电压U0 只是位移d 的函数。所以通过分析输出电压U0, 可以得到相应位移d的数值, 这样可以实现非接触微小位移的精密测量。

英国PA医用光纤水听器FOH

光纤水听器是一种建立在光纤、光电子技术基础上的水下声信号传感器。它通过高灵敏度的光学相干检测,将水声振动转换成光信号,通过光纤传至信号处理系统提取声信号信息。光纤水听器具有灵敏度高,频响特性好等特点。由于采用光纤作信息载体,适宜远距离大范围监测。 深圳市一测医疗测试技术有限公司是一家专注于医疗器械测试 产品和技术的研发、销售与服务为一体的“国家高新技术企业”,我们拥有自主研发的国家发明专利技术并且代理了众多国外先进专业 测试产品,如膜式水听器、光纤水听器、水听器校准、吸声材料、声场测试水处理系统等。

光纤水听器FOH:灵敏度高,抗电磁干扰,价格便宜,可测量同一个点的温度和压力,并描绘出压力和温度变化曲线。光纤水听器非常适合高强度声输出的测量。 技术参数: 构成:10um 的材料附着在玻璃上,构成光纤,直径为 10um; 校准:250kHz to 50MHz 可校准; 灵敏度:平行传感器: 150mV/MPa at 3MHz;锥形传感器: 100mV/MPa at 3MHz; 灵敏度变化范围:+/-3dB; 能量承受范围:10kPa to 15MPa。

以上就是深圳一测医疗给大家介绍英国PA光纤水听器FOH相关信息,如果您还想了解更多的相关事项可以拨打我们的热线电话,可以点击我们的官网在线实时咨询我们,或者关注我们的官方微信公众号,我们会有专业的工作人员为您解答。 我们通过与国际优秀的医疗器械测试仪器制造商和专业实验室的广泛深入合作以及国内行业专家的紧密交流与协作,并严格按照ISO9001:2015质量管理体系要求为医疗器械产业在研发、生产,监督、检验,在用售后、培训,教学与研究等各领域客户提供完善的医疗器械测试整体解决方案和专业的技术服务。 公司秉承“热情、专注、高效、负责”的经营理念,以“专业专注,精益求精”为服务宗旨,力求解决医疗器械测试过程中的各种繁杂问题,而不仅仅是一次测试,从而保障患者得到安全有效的诊断和治疗。

压电式MEMS仿生结构矢量水听器设计 开题报告

毕业设计开题报告 学生姓名:学号: 学院: 专业: 设计(论文)题目:压电式MEMS仿生结构矢量水听器 封装及性能测试研究指导教师: 2013年12月10日

开题报告填写要求 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.学生写文献综述的参考文献应不少于15篇(不包括辞典、手册)。文中应用参考文献处应标出文献序号,文后“参考文献”的书写,应按照国标GB 7714—87《文后参考文献著录规则》的要求书写,不能有随意性; 4.学生的“学号”要写全号(如020*******,为10位数),不能只写最后2位或1位数字; 5. 有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年3月15日”或“2004-03-15”; 6. 指导教师意见和所在专业意见用黑墨水笔工整书写,不得随便涂改或潦草书写。

毕业设计开题报告

矢量水听器由于体积小、重量轻、布放方便等特点,在实际应用中已经受到重视。近年来,在MEMS仿生器件研究方面,国外已有多家研究机构通过模仿鱼类侧线器官、蟋蟀的听觉纤毛等,设计并制造出了多种压电式、压阻式以及电容式的MEMS纤毛仿生微传感器,如德国的Nest-erov和Brand于2005年研制出了压阻式MEMS仿生微探测器,美国伊利诺斯州立大学微米纳米技术研究中心的Chen等于2006年通过模仿鱼类的侧线器官工作原理,研制出了纤毛式MEMS仿生微流量传感器。荷兰的Krijnen等在2006年通过模仿蟋蟀的听觉纤毛,制作出了纤毛式仿生微声传感器[5]。 目前,在美国和俄罗斯,性能稳定的矢量水听器已经进入了工程应用阶段。美国在SURTASS系统中已经应用矢量水听器,解决了左右舷模糊问题;前苏联利用其研制的矢量水听器托线阵,系统地研究了矢量水听器托线阵的姿态、拖拽速度和流噪声对矢量水听器检测性能的影响。国外的纤毛仿生传感器也主要为微触觉传感器或微流量传感器,关于纤毛式的仿生MEMS水声传感器还未见报道[6]。 1.2.2 国内本课题的发展现状及前景 国内从“八.五”期间开始矢量水听器的研究,并取得了丰硕的成果,先后研发了以双迭片为敏感元件的不动外壳型矢量水听器和以加速度计为敏感元件的同振球型矢量水听器。十年来,我国在矢量水听器的研制方面取得了长足的进步,先后研制出多种结构具有自主产权的矢量水听器,包括动圈式矢量水听器、悬臂梁式多维测振传感器、压电圆盘弯曲式同振型矢量水听器以及中、高频二维柱形、三维球型矢量水听器等,从而实现了水声测量中不同场合的不同需求[7]。 目前,国内关于纤毛式仿生MEMS传感器的研究还比较少,主要研究成果是中北大学微米纳米研究中心设计并制造的压阻式MEMS仿生结构矢量水听器,如图1所示[8]。该水听器是通过模仿鱼类侧线器官的神经丘感觉器,完成了以压敏电阻为敏感单元的水声传感器仿生组装设计;利用新型精巧的仿生结构和压阻敏感机理设计制作新型的矢量水声传感器;利用MEMS批量制造技术,实现矢量水声传感器的小型化和一致性;结合MEMS工艺和组装工艺技术,解决复杂结构的仿生制造问题。该矢量水声传感器的低频特性、灵敏度、小尺寸以及水声传感器的一致性等方面带来好处,为水声传感器的设计提供一种新方法[9]。

光纤水听器原理与应用综述(1)

光纤水听器原理与发展现状 袁虎邓华秋 (华南理工大学物理系广州510640) 摘要光纤水听器由于其特有的抗电磁干扰、体积小等特点,在军事、民用方面有着广泛应用。本文简介了光纤水听器的基本原理,并分别对强度调制型、干涉型和光栅型光纤水听器进行了简单的介绍。在现在的光纤水听器的应用中,点式的传感已不能满足现在的大规模集成化要求,因此分布式光纤水听器也是近期的研究热点。文中介绍了两种分布式光纤水听器的技术方案,分别是OTDR和FMCW技术。与此同时由于光纤激光器的发展,其良好的单色性和稳定性可以用于优良的光源,把它用到干涉型光纤水听器中可以极大程度的提高光纤水听器的性能。 关键词:光纤水听器;FMCW;光纤激光器 1.光纤水听器简介 声波作为一种机械波,可以在海水中进行远程能量传递,而其他类型的能量场在水中衰减很快,因此,声波是海洋深层信息收集、传递和处理的最重要形式[1]。水声传感器简称水听器,是在水中侦听声场信号的仪器。它作为反潜声纳的核心部件,在军事领域中有着重要的应用;在工业生产和民用领域,也有着广泛的用途,如用于海洋石油和天然气的勘探、地震预测、水声物理研究、海洋气候以及渔业等众多方面。 早期的水听器主要有压电陶瓷制成的压电水听器。但随着应用的深入,基于压电陶瓷传感元件的水听器出现了许多不足之处。如对电磁场的敏感性,电缆负载、连接电缆的共振效应,同时利用压电陶瓷进行点传感的技术难度和成本也十分困难。正是由于传统压电式水听器存在这些问题,随着光纤和激光技术的发展,人们研制出了一种基于光纤光电子技术的新型水听器-光纤水听器。它的研究始于冷战时期,由于反潜战的需要,美国海军开始了光纤水听器的研究。[2,3]1977年布卡诺等人发表首篇关于光纤技术的水声传感系统的论文[4]。 光纤水听器由于传感头部分不用使用电,而是通过光来传输信号,所以具有抗电磁干扰、电绝缘、动态范围宽、稳定可靠性高、灵敏度不受水流静压力和频率的影响、可以进行远距离测量、探头体积小、方便构成大规模阵列等众多优点。所以,光纤水听器的研究越来越受到各国的重视[4]。 2.光纤水听器原理

反射式光纤传感器原理操作步骤

五、注意事项 1.不得随意摇动和插拔面板上的各种元器件,以免造成实验仪不能正常工作。 2.光纤传感器弯曲半径不得小于5㎝,以免折断。 3.旋动螺旋测微丝杆尾帽中出现咔咔声表示不能继续前进,不能超过其量程。 4.在使用过程中,出现任何异常情况,必须立即关机断电以确保安全。 5.不得用手触摸反射面,以免影响实验结果。 六、实验操作 1)光路与机械系统组装调试实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 图3 光纤传感器安装示意图 2.将发射和接收部分接入电路,探测器输出信号处理电路不接调零电路,输出端U0接入电路板上电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.选择智能可调档位200mv或者2v档位。 5.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 6.关闭电源。 2)发光二极管驱动实验1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把发射部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 3)光电探测器PD接收实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把接收部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 4)光纤位移传感器输出信号放大处理实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.将发射和接收部分接入电路,探测器输出信号处理电路接调零电路,输出端U0接入电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面某一距离后维持不动,调节增益旋钮,观察电压表显示变化,并分析。 5.关闭电源。 5) 光纤位移传感器输出信号误差补偿电路 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座 7

反射式光纤位移传感器实验

反射式光纤位移传感器实验报告 一、实验内容 1、按照光路图搭建各类光学元件 2、用螺丝固定两侧推平移平台,侧推平移台装在滑块上,然后采用 FC=FC对接法兰连接半导体激光输出接口与塑料反射式传感光纤,塑 料反射式光鲜FC端口与功率计感应端口通过光纤法兰座固定。 3、塑料反射式传感光纤螺纹端夹持固定可调棱镜支架中,并调节可调 棱镜支架的调节旋钮使出射的光路与导轨平行。 4、调节反射镜与反射式光纤跳线之间距离,使得反射端紧贴反射镜, 调节旋钮使得反射光与入射光重合达到反射镜与光路垂直,直到显示 的功率接近0值。 5、固定反射镜与可调棱镜的位置,旋转沿光轴方向(导轨方向)xuan 转侧推平移台尺杆,使反射镜远离光纤发光端,并记录位移-功率值数 据并绘制实验图,在曲线图中线性最好的那一段可作为实际位移传感 器应用。 二、实验结果 三、实验分析 如图,线性较好的第一段(即位移在0-0.3mm间)满足线性化,可作为实际位移传感应用。反射式光纤位移传感器是一种传输型光纤传感器。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电

转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

干涉型光纤水听器调制解调方案研究

干涉型光纤水听器调制解调方案研究 ! 沈梁"叶险峰"李志能 #浙江大学信息与电子工程学系"杭州$%&&’()摘要*本文概述了+,-./01.2314 干涉型光纤水听器两种不同的调制解调技术"着重分析了用$5$耦合器组成的干涉型光纤水听器的解调原理" 并比较分析了这两种方案的特点"指出采用$5$耦合器解调技术是将来构成全光纤干涉型水听器系统的优选方案6 关键词*干涉型光纤水听器789零差检测解调$ 5$耦合器中国分类法*:7’%’6%;"文献标识码*<文章编号* %&&;/%=>>#’&&%)&%/&&&?/&=@引言 光纤水听器是利用光纤的传光特性以及它与周围环境相互作用产生的种种调制效应" 在海洋中侦听声场信号的仪器A %B 6 干涉型光纤水听器具有高灵敏度的相位检测能力和大的动态范围"可以远距离捕获海洋中声发射源如潜艇C 鱼群等发出的噪声"以便进行警报和定位"其检测声压灵敏度比传统的压电式水听器高出$个数量级"因而对光纤水听器技术的研 究在?&年代初就引起各国的高度重视6 同国外相比"我国在这一领域差距很大"仍处于原理性探索与实验室研究阶段"通过近几年的探索"已取得了一些成果6本文概述了+,-./01.2/ 314 干涉型光纤水听器两种不同调制解调技术6通过严密的数学推导"重点分析了$5$耦合器对称解调技术方案A D "=B " 并分析研究了这两种方案的特点"这些工作对于实现全光纤化水听器阵列远距离信号传输与检测具有重要的意义6 E 789调制/ 解调原理干涉型光纤水听器的789检测方案是在光纤水听器中引入检测信号带宽外的某一频 率的大幅度相位调制信号A ’B " 通过分离随机漂移与信号项"消除随机漂移对传感信号的影响6将圆频率为F G " 信号幅度为H 的相位调制信号加在+,-./01.2314光纤干涉仪上"则干涉仪的检测信号及其I 1J J 1K 函数展开为L M NO P -Q J A -Q J F G R O S #R )B M NO P T A U &#H )O ’V W X M % # Y %)X U ’X #H )-Q J ’X F G R B -Q J S #R )Y A ’V W X M &# Y %)X U ’X O %#H )-Q J #’X O %)F G R B J Z 2#R )[#%) ’&&%年$月传感技术学报第%期 !来稿日期*’&&&/&>/’?资助项目*国家自然科学基金资助项目#=>(&’&&$)万方数据

光纤矢量水听器研究进展

光纤矢量水听器研究进展+ 倪明*张振宇孟洲胡永明 (国防科技大学光电科学与工程学院长沙410073) 摘要:阐述了光纤矢量水听器拾取声波振速信号的基本原理。介绍了国内外矢量水听器研究现状与发展趋势,国防科大研制的同振球型光纤矢量水听器探头尺寸为Φ110mm,工作带宽20~2000Hz,加速度灵敏度大于35dB(ref 1rad/g),指向性呈现“8”字自然指向性,工作水深大于500m。海上初步实验结果表明,光纤矢量水听器可有效拾取水声信号,实现对目标的定向处理。最后展望了光纤矢量水听器可应用的领域。 关键词:光纤矢量水听器矢量水听器 目前水声探测所用的水听器一般都是声压水听器,它只能得到声场的声压标量。光纤矢量水听器(fiber optic vector hydrophone, FOVH)是一种新型水声探测器,它在一个点上的测量信号中就已包含了声场的标量信息和三维矢量信息,通过这些信息的互相关处理,能极大地抑制干扰,提高信噪比。传感单元具有指向性,抑制环境噪声4.8~6.0dB,这样在相同阵增益的情况下可大大减小阵列的孔径。单个传感器具有指向性,可有效解决声压水听器阵列的左右弦模糊问题。 光纤矢量水听器是一种建立在光纤、光电子技术基础上的水下三维声场信号传感器[1]。它通过高灵敏度的光学相干检测,将声波振速信号转换为光信号,并通过光纤传至信号处理系统提取声波信息。相对于传统压电矢量水听器,干涉型光纤矢量水听器灵敏度高、信号经光纤传输损耗小、免电磁干扰、无串扰、能在恶劣的环境中实现长期稳定工作,系统具有光纤网络的特点,可大规模组阵实现水下大范围声学监测。 1 基本原理 干涉型光纤矢量水听器基于光纤干涉仪原理构造,拾取声信号的原理基于声压对干涉仪两臂的调制,全光光纤矢量水听器系统则是湿端基于光纤矢量水听器探测单元,信号传输采用光缆传输,以湿端无任何电子器件为特性的先进水下声测量系统。 1.1 光纤干涉仪原理 图1是Michelson光纤干涉仪基本结构图。由激光器发出的激光经3dB光纤耦合器分为两路,一路构成光纤干涉仪的传感臂,接受声波的调制,另一路则构成参考臂,两臂的光信号经后端反射膜反射后返回光纤耦合器,发生干涉,干涉的光信号经光电探测器转换为电信号,由信号处理就可以拾取声波的信息。 +国家863计划资助(2006AA09Z121) * 通讯作者。Email: niming_1@https://www.doczj.com/doc/e212065946.html,

光纤矢量水听器

光纤矢量水听器的设计与研究 XX (安徽大学xxxxxxxxxxxxXX学院,安徽合肥) 摘要:光纤矢量水听器是建立在光纤技术,光电子技术基础上的水下声信号传感器。本文在介绍了强度型、干涉型和光纤光栅型矢量水听器原理的基础上,比较了它们的灵敏度、测量范围和抗干扰能力等参数。干涉型光纤矢量水听器是通过水中声波对光纤的压力来改变纤芯折射率或长度,从而引起光纤中传播光束光程的变化,通过检测其相位差得到水声信息。光纤矢量水听器被广泛的用于拖曳阵、固定阵、船壳阵和声呐浮标中,是现代海洋技术不可或缺的一部分。关键词:光纤矢量水听器,强度型,干涉型,光纤光栅型,潜艇拖曳阵 Design of Optical Fiber Vector Hydrophone Ge Xin (Anhui University ,physics and Material science College,AnHui HeFei)Abstract:Optical fiber vector hydrophone is the underwater acoustic signal sensor,which is based on optical fiber technology and photoelectron technology.This paper compared their sensitivity, measuring range ,Anti-jamming capability and other Parameter, based on describing Strength Type,Interference type and optical fiber grating type.Interferometric fiber optic vector hydrophone obtain acoustic information by detecting the water pressure.Acoustic pressure of the water changes the length of the fiber core refractive index,which force the optical path difference changing.Optical fiber vector hydrophone is widely used for Towed Array,Fixed array ,Hull array and Sonar buoy,which is an integral part of marine technology Key words:Optical fiber vector hydrophone,Strength Type,Interference Type, Optical fiber Grating Type,Towed Array 光纤矢量水听器是建立在光纤技术,光电子技术基础上的水下声信号传感器,其信号的探测与传输均以光作为传输媒介,更具有体积小,重量轻,抗电磁干扰,灵敏度高等特性,被广泛的用于水下打捞作业,军事侦察,国防等重要方面。光纤水听器经过将近20多年的发展与研究,其技术已日臻成熟,一些领域内已广泛应用,前景广阔]1[。 光纤矢量水听器最基本的功能就是探测由被测物体发出的声场。被探测物体在水中移动会产生声波,声波在三维空间上发散开来形成声场。水声技术中要想准确的描述声场并探知声场信息,不仅需要声场的标量信息如声压,还需要声场

光纤水听器在海洋中的应用

光纤水听器在海洋中的应用 光纤水听器是一种建立在光纤、光电子技术基础上的水下声信号传感器。它通过高灵敏度的光学相干检测,将水声振动转换成光信号,通过光纤传至信号处理系统提取声信号信息。它具有灵敏度高,频响特性好等特点。由于采用光纤作信息载体,适宜远距离大范围监测。 在美国最为先进的新型核潜艇——“弗吉尼亚”级潜艇中,为了提高反潜、反舰和远程侦察能力,装备了大孔径阵列光纤声学传感器系统,即光纤水听器。它利用光纤和激光技术把目标在水中传播的声音信号转化为光学信息,从而使“弗吉尼亚”级潜艇能够精准识别和跟踪目标。光纤水听器就像人类洞察汪洋的一双“慧眼”,难怪美国海军研究实验室光纤水听器的研究人员曾经自豪地说:“属于光纤水听器技术的时代已经到来!” 一、光纤水听器的优势 看似安宁的海洋,其实从来都不平静。声波是目前人类知道的唯一能够在水中远距离传播的物质,而光和电磁波在水中传播时很快就会被吸收。声波不仅可以在水里传得很远,而且当声波遇到海洋中的物体时,会被反射回来,不同频率的声波,在水中被吸收和反射的程度也不相同。人们根据声

波的这一特性发明了声呐,用来进行水中探测、定位和通信。 但近年来随着武器装备的迅速发展和消噪技术的不断进步,各类静音效果良好的核动力潜艇以及aip潜艇先后列装各国海军,利用传统声呐装置进行侦听的难度大大增加。反潜作战成为当今世界各国海军公认的最大难题之一。 光纤水听器主要用于海洋声学环境中的声传播、噪声、混响、海底声学特性、目标声学特性等的探测,是现代海军反潜作战、水下兵器试验、海洋石油勘探和海洋地质调查的先进探测手段。2009年2月初,英国“前卫”号弹道导弹核潜艇与法国“凯旋”号核潜艇在大西洋深海上演了“深情一吻”。当时两艘潜艇均在水下航行,而且艇上带着核导弹,碰撞发生时,潜艇上共有约250名乘员,可竟然无人利用声呐装置发现对方。 其实,自冷战时代起,美国和西方国家就经常派潜艇近距离监视苏联的大型海上军事演习,双方潜艇发生相撞事件时有发生。据不完全统计,在北方舰队和太平洋舰队过去30年来进行军事演习的海域,就曾发生过11起俄罗斯(前苏联)潜艇与外国潜艇相撞事故。俄核潜艇“库尔斯克”号的沉没引发了世人的种种猜测,其中有一种猜测就是认为发生了潜艇相撞事件。 二、光纤水听器技术发展 光纤水听器是一种建立在光纤传感和光电子技术基础

相关主题
文本预览
相关文档 最新文档