当前位置:文档之家› 初三数学《一元二次方程》:化归思想与数学建模

初三数学《一元二次方程》:化归思想与数学建模

初三数学《一元二次方程》:化归思想与数学建模
初三数学《一元二次方程》:化归思想与数学建模

初三数学《一元二次方程》:化归思想与数学建模

本章对一元二次方程解法的推导充分运用了化归思想,并提到了数学建模。

【一】化归之一:把一元二次方程降次为一元一次方程

本章?小结与复习?中说:解一元二次方程的基本思路是:降低次数,转化为两个一元一次方程。

有朋友会认为本章运用的基本思路是转化策略,我不赞成:

第一,基本思路应该就是数学基本思想方法,它是战略性的,策略那么是受战略指导的、战役性的方法,解题术那么是受策略指导的、战术性的具体技巧,因此转化策略不属于基本思路即数学基本思想方法。

第二,转化有二种:一种是等价两物的横向转化,如代数与几何各成一体但等价,用代数方法解几何问题或反之均属横向转化(故应称数形互化另一种是复杂之物向其简单成分的纵向转化,本章所用降次方法是把复杂的一元二次方程转化为较简单的两个一元一次方程,属于纵向转化。

第三,横、纵转化所依据的基本思想方法不同。横向转化依据的是结构化基本思想方法:代数体系与几何体系虽组成要素不同,但二者的结构关系相同(同构),其要素与结构关系可相互翻译(以点与数的一一对应为基础),故可实现代数问题及其解法与几何问题及其解法之间的相互转化。纵向转化依据的是化归化基本思想方法:新学的较复杂数学知识须能化归为已学的较简单数学知识,

如复数实数有理数自然数,复杂图形基本图形,本章那么是一元二次方程一元一次方程,它们都属于化归性的纵向转化。

综上可知,本章所运用的基本思路(基本思想方法)是降次这种化归思想方法其价值是化新为旧(化未知为)、化繁为简从而化难为易。运用这一资源对学生进行数学思想方法教育,让学生领悟它的价值,好处多多。

【二】化归之二:公式法配方法因式分解法或直接开平方法

本章推导一元二次方程多种解法的路线是从简单到复杂:因式分解法与直接开平方法配方法公式法。因式分解法和直接开平方法可直接利用旧知,但只适于解(axb)2=c这种特殊形式的方程;对一般式ax2+bx+c=0这种较复杂的方程可用配方法,但很多情况下难以配方;最终推出通用的公式法,且靠此法能推出许多其他一元二次方程的性质(如本章介绍的判别式及其意义)。

反过来思考:首先,公式从何而来对ax2+bx+c=0配方而来;然后,配方法又从何而来变一般式为能因式分解或能直接开平方的特殊式而来。于是可在本章看出化归之二:公式法配方法因式分解法或直接开平方法。

为何强调上述化归?因为它表现出数学方法发展的一个规律:复杂方法可化归为简单方法它不过是简单方法的合成。明白了这一点,学生就会知道:第一,学精简单方法是牢固基础;第二,学复杂方法时要自觉探讨它与简单方法的联系,以达到对诸方法的整体结构的整体理解与把握(要重视知识结构、还要重视方法结构);第

三,不迷信复杂方法比如对2x2-8=0,用公式法、配方法、因式分解法都不如用直接开平方法快捷。

发掘多种解题方法之间的化归关系,并让学生领略其价值,这样的数学思想方法教育同样好处多多。

【三】关于数学建模

模型思想是数学的一种重要思想方法(我认为它源于数学结构化基本思想方法),但要深刻了解它须先了解原型、模型、数学模型、数学建模等一系列概念。限于篇幅,本文不作解释,各位可先读本文前面的那篇?中小学数学教育中的数学建模?作为辅助。

本章三次提到建模:第一节以建立一元二次方程模型为题,分析问题一时说建立方程的模型来计算人行道的宽度,?小结与复习?中说建立一元二次方程的模型,求出一元二次方程的解,这是数学的基本功之一。

能做哪几件事才算有了数学建模的基本功呢?谨以本章第一个问题建草坪为例简要说明。

第一,知道谁是模型、是谁的模型、属于哪类模型?

该问题的实际数量关系某栋建筑所占地是边长35m的正方形,四周留出一样宽的人行道之后,中间的正方形草坪面积是900m2是问题的原型,而模拟该实际数量关系的符号集合(35-2x)2=900是该原型的模型因为用的是数学符号,所以属于数学模型(数学定义、图形、表格、公式、函数式、不等式等等也属于数学模型)。第二,会用建立数学模型的基本方法。对建草坪这个问题而言,

建模的基本方法是:第一步数学抽象,挑出问题中的数量要素,淘汰无关内容;第二步找数量关系,此题是找出所得各数量要素之间的等量关系;第三步找数学模型,此题是从学过的知识中找到合用的方程模型,用它来表述所得等量关系这就建立了数学模型;第四步解模,解得方程结果,对照原型问题进行检验,得出可用结果。

其实用数学建模方法解决问题时,所需运用的基本方法都是上述四步,即数学抽象找数量关系找合用的数学模型解模。

谈谈初中数学建模思想

谈谈初中数学建模思想 随着数学教育界中数学建模理念地不断深化,提高数学建模教学势在必行。通过数学建模能力的培养,既能使学生可以从熟悉的情境中引入数学问题,拉近数学与生活、生产的联系,激发学生学习数学的兴趣,又能培养学生的数学应用意识;既能使学生掌握学习数学的方法又能培养学生的创新意识以及分析和解 决实际问题的能力,使“人人学有价值的数学”。这正是新课程改革和数学教育的目的。 数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展. 对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型. 数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴. 一、初中数学建模教学常见的几种模型

1.建立“方程(组)”模型 现实生活中广泛存在着数量之间的相等关系,“方程(组)”模型是研究现实世界数量关系的最基本的数学模型,它可以帮助人们从数量关系的角度更正确、清晰的认识、描述和把握现实世界。诸如纳税问题、分期付款、打折销售、增长率、储蓄利息、工程问题、行程问题、浓度配比等问题,常可以抽象成“方程(组)”模型,通过列方程(组)加以解决。 例:学校准备在图书馆后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建比较合理? [简析]:设与墙面垂直的边长为x米,可得方程x(25-2x)=50。解方程可得答案。 2、不等式模型 现实世界中不等关系是普遍存在的,许多现实问题很难确定(有时也不需要确定)具体的数值。但可以求出或确定这一问题中某个量的变化范围,从而对所有研究问题的面貌有一个比较清楚的认识。 例 2 某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元。已知两种球厂家的批发价和商场的零售价如下表,试解答下列问题:

初中数学建模

初中数学建模教学有感 摘要:数学模型可以有效地描述自然现象和社会现象.数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程.初中数学建模教学宜低起点、小步子、多活动.数学思想是数学知识的结晶,是高度概括的数学理论.数学建模教学要重视数学知识,更应突出数学思想方法,让学生通过观察、实验、猜测、验证、推理与交流等数学学习活动,在获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展.关键词:初中数学;数学建模;建模教学 数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展[1]. 对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型.[2]数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.[2]从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴. 数学建模的基本过程大致为: 一、初中数学建模教学宜低起点、小步子、多活动 过去数学建模只作为高等院校数学专业和部分计算机专业的课程.初中

数学建模教学和高校的数学建模教学有很大的不同,初中数学建模教学一般先提出问题、引入正题;然后分析问题,在“引导——探索——创造”中建立模型;最后利用模型解决问题.[3]根据初中学生的身心发展水平、已经掌握的知识结构,初中数学建模教学宜“低起点、小步子、多活动”.低起点,就是根据学生的现有水平,结合课程标准的要求,降低教学的起点,以便全体学生都能真正进入到教学活动中去.小步子,就是按照由易到难,由浅入深,由单一到综合,由简单到复杂的原则,安排层次分明,但梯度较小的教学情境,分散教学难点,突出教学重点,引领学生沿着数学学习活动的台阶拾级而上,最终达到课程标准的要求.多活动,就是恰当地设计问题情境,引领学生动眼看、动脑想、动口说、动手做,引领学生开展自主学习、合作交流、提问质疑等数学学习活动,引领学生在活动中获得知识,引领学生在活动中发展思维. [案例1]销售中的盈亏问题的建模教学 1、背景问题 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏? (人教版数学七年级上册第104页) 2、数学建模 (1)问题分析 ①假设一件衣服的进价是x元,以60元卖出,卖出后盈利25%,那么这件衣服的利润是多少元? ②假设一件衣服的进价是y元,以60元卖出,卖出后亏损25%,那么这件衣服的利润是多少元? (2)模型建立 问题1 你认为销售价与进价之间具有怎样的关系时是盈利的?

数学建模方法大全

数学中国国赛专题培训(一) 《数学建模思想方法大全及方法适用范围》 主讲人:厚积薄发(冰强,Bruce Jan) 第一篇:方法适用范围 一、统计学方法 1.1多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1)回归方程的显著性检验(可以通过sas和spss来解决) (2)回归系数的显著性检验(可以通过sas和spss来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验 (5)进行后继研究(如:预测等) 1.2聚类分析 1、方法概述 该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。 这种模型的的特点是直观,容易理解。 2、分类 聚类有两种类型: (1)Q型聚类:即对样本聚类; (2)R型聚类:即对变量聚类;

数形结合思想在小学数学中的应用完整版

数形结合思想在小学数 学中的应用 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

德宏师范高等专科学校 毕 业 论 文 系部:数学系 姓名:李宏 班级:2013级初等教育理科1班 目录

数形结合思想在小学数学教学中的应用 【摘要】数形结合思想是一种重要的数学思想,数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。本文主要研究了四个方面的问题:一是数学结合思想的简要概述;二是数形结合在小学数学中的意义和价值;三是数形结合在小学数学中的应用;四是在运用数形结合教学中,应注意的问题。 【关键词】数形结合;小学数学;教学应用 引言:小学数学教学的根本任务是全面提高学生素质,其中最重要的是思维素质,而数学思想方法是增强学生数学观念、形成良好思维素质的关键。随着小学数学教学改革的不断深入,小学数学的教学模式更加多样化,传统的教学模式已经逐渐被取代。在多媒体教学的加入下,小学数学中的抽象概念变得形象,生动学生的数学逻辑思维能力以及创新能力也是显着提升。数形结合思想在数学中得到了充分的重视。运用数形结合的方法,可以直现感知抽象的理论及概念,避免机械记忆,使枯燥的名词真正地活起来,看得见,更有助于学生掌握知识。新课程标准修改后,将“双基”改为了“四基”,即基础知识、基本技能、基本思想方法、基本活动经验[1],说明人们已经意识到数学思想方法的重要性。这一转变并不是偶然,而是纵观小学数学学习内容和小学生的认知特点而决定的。常用的数学思想方法:对应思想、假设思想、比较思想、符号化思想、类比思想、转化思想、分类思想、集合思想及数形结合思想等。本文就数形结合思想进行讨论。1数学结合思想的简要概述 我国数学家张广厚曾说过:“抽象思维如果脱离直观,一般是很有限度的。同样,在抽象中如果看不出直观,一般说明还没有把握住问题的实质。”这句话深刻阐明了“数形结合”的思想[2]。依据《数学课程标准》中“变注重知识获得的结果为知识获得的过程”的教育理念,我以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣直观演示,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中,充分调动学生学习的积极性,培养学生的自主学习、合作交流、解决实际问题的能力。 数形结合思想的涵义 数、形是一个数学事物两个方面的基本属性。数形结合思想的实质是数字与

数学建模 练习题1

2.14成绩与体重数学建模 一、问题 举重比赛按照体育运动员的体重分组,你能在一些合理、简单的假设下,建立比赛成绩与体重之间的关系吗?下面是下一届奥运会的成绩,可供检验你的模型。 一、问题分析 成绩与肌肉的力度有直接关系,随着力度的增加,成绩呈上升趋势。 假设力度与肌肉横截面积成正比,而截面积和体重都与身体的某个特征尺寸有直接关联。由此可以找到成绩和体重之间的关系。可以以此建立模型。

二、模型假设以及符号说明 1.本模型主要考虑运动员举重总成绩和体重的关系,所以假设运动员其他条件相差不大。 2.运动员的举重能力用其举重的总成绩来刻画 3.符号说明: 人的体重 W 人的身高 h 肌肉横截面积 S 人的体积 V 肌肉强度 T 举重成绩 C 非肌肉重量 W1 斜率 K 三、模型构成 模型一 1.题中给出举重比赛按照体育运动员的体重分组,所以我们猜测成绩与体重应该是正比关系。 2.画出坐标图,体重越重,成绩越好,进一步验证了正比关系。 最大体重

从上图可以看出,体重越大,举重总成绩相对越好,所以我们猜测举重总成绩与体重大概成线性关系。则,我们可以用一次函数C=kW+b对三个体重进行拟合,根据图中数据,可得: = = 2.66, = = 1.45, = = 1.17 把b代入得出三个一次函数为: = 2.66W+143.8, = 1.45W+75.1, = 1.17W+69.7, 用上述模型计算得到的理论值,并画出图表与原图表进行比较: 最大体重

通过比较两个图表,我们可以推测体重与成绩数据的推测图表和已知图标的拟合度并不是特别的理想,所以我们可以认为用线性函数对举重总成绩与体重进行拟合的模型过于简单、粗略,考虑的因素比较少。 模型二 我们这一次综合各种因素来进行分析建模。 通过查阅各种自然科学磁疗,我们可以近似以为:一般举重运动员的举重能力是用举重成绩来衡量,而举重运动员的举重能力与其肌肉强度近似成正比关系,从而举重运动员的举重总成绩与其肌肉强度近似成正比,即: C = T (为常数且>0) ○1从运动生理学得知,肌肉的强度与其横截面积近似成正比,即: T = S (为常数且>0) ○ 2综合○1,○2可得 C=T=S ○3通过查阅资料,我们可以假设肌肉的横截面积正比于身高的平方,人的体重正比于身高的三次方,即可得: S = , W = (,为常数且>0,>0) 综合上述所有算式,我们有: C= S = ○ 4 因为W = ,我们可以推测出举重运动员举重总成绩与其体重的关系为: C = 利用题目表格中所给的体重和举重总成绩数据,求出上述模型的常数M。利用题目表格中所给的体重和举重总成绩数据,运用最小二乘法求出上述模型的系数 K 。因为体重超过108千克的运动员的体重没有具体的数据,为了模型的准确性,故将这个数据舍去。经过代入9次运算得出平均常数,为=20.3,=9.6,=9.0。于是举重运动员的举重总成绩与体重的关系模型为

论数学建模思想教学(1)

论数学建模思想教学 1在线性代数教学中融入数学建模思想的意义 1.1激发学生的学习兴趣,培养学生的创新水平 教育的本质是让学生在掌握知识的同时能够学以致用。但是当前的线性代数教学重理论 轻应用,学生上课觉得索然无味,主动学习的积极性差,创新性就更无从谈起。如果教师能够将数学建模的思想和方法融入到线性代数的日常教学中,不但能够激发学生学习线性代数的兴趣,而且能够调动学生使用线性代数的知识解决实际问题的积极性,使学生理解到线性代数的真正价值,从而改变线性代数无用的观点,同时还能够培养学生的创新水平。 1.2提升线性代数课程的吸引力,增加学生的受益面 数学建模是培养学生使用数学工具解决实际问题的最好表现。若在线性代数的教学中渗透数学建模的思想和方法,除了能够激发学生学习线性代数的兴趣,使学生了解到看似枯燥的定义、定理并非无源之水,而是具有现实背景和实际用途的,这能够大大改善线性代数课堂乏味沉闷的现状,从而提升线性代数课程的吸引力。由数学建模的教学现状能够看到学生的受益面很小,不过任何高校的理工类、经管类专业都会开设高等数学、线性代数以及概率统计这3门公共数学必修课,若能在线性代数、高等数学及概率统计等公共数学必修课的教学中渗透数学建模的思想和方法,学生的受益面将会大大增加。 1.3促动线性代数任课教师的自我提升 要想将数学建模的思想和方法融入线性代数课程中,就要求线性代数任课教师不但要具有良好的理论知识讲授技能,更需要具备利用线性代数知识解决实际问题的水平,这就迫使线性代数任课教师要持续学习新知识和新技术,促动自身知识的持续更新,进而达到提升教 学和科研水平的效果。 2在线性代数教学中融入数学建模

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

初中数学中的数形结合思想

浅谈初中数学中的数形结合思想 在解决初中数学问题过程中,运用数形结合的思想,根据问题的具体情形,把图形性质问题转化成数量关系来研究。或者把数量关系问题转化成图形性质来研究,以便以“数”助“形”或以“形”助“数”,使问题简单化、具体化,促进“数”与“形”的相互渗透,这种转换不但能提高教学质量,同时也能有效地培养学生思维素质,所以“数形结合”是初中数学的重要思想,也是学好初中数学的关键所在。 数形结合在数学教学中对学生能力的培养是非常重要的,而对一个学生数学能力的培养主要包括使学生形成运算能力和利用数学思想方法解题的能力。数学思想是对数学知识的更高层次的概括和提炼,是培养学生数学能力的最重要的环节。数形结合的思想是初中数学学习中一个重要的数学思想,它贯穿了数学教学的始终。本文就数形结合的思想谈一点自己的认识。 数形结合的思想就是根据数(量)与形(图)的对应关系,把数与形结合起来进行分析研究把抽象的数学语言与直观的图形结合起来;使复杂的问题简单化抽象的问题具体化;通过图形的描述代数的论证来研究和解决数学问题的一种思想方法。数形结合的思想在初中数学中的应用主要体现在一下两个方面。 一、有数思形数形结合,用形来解决数的问题和解决一些运算公式;把代数关系(数量关系)与几何图形的直观形象有机的结合起来,使抽象的问题形象化复杂的问题简单化。 如1.利用数轴来讲解绝对值的概念、相反数的概念、有理数的加、减、乘、除运算等。 2.用几何图形来推导平方差、平方和、完全平方公式以及多边形外角和定理。 3.用函数的图像解决函数的最值问题、值域问题。 4.用图形比较不等式的大小问题。解这种类型题的关键是根据数(量)结构特征构造出相应的几何图形,将概念形象化,复杂计算的问题简单化。 二、由形思数数形结合。解决这类问题的关键是运用数的精确性来阐明形的某些属性;将图形信息转化为代数信息,利用数(量)特征将图形问题转化为代数问题来解决。这类问题在初中数学中运用的也比较多,如: 1.用数(量)表示角的大小和线段的大小,用数(量)的大小比较角的大小

数学建模训练题

数学建模训练题 1、个人住房贷款,根据中国人民银行颁布的《个人住房贷款管理办法》的规定,个人住房贷款的最长期限为30年,5年(含5年)的年利率为5.31%(折合月利率为4.425‰),5年以上年利率为5.58%(折合月利率为4.65‰)。同时还规定了个人住房贷款的两种按月还本付息的办法。第一种是等额本息还款法,即在贷款期间借款人以月均还款额偿还银行贷款本金和利息;第二种是等额本金还款法(又叫等本不等息还款法),即在贷款期间除了要还清当月贷款的利息外,还要以相等的额度偿还贷款的本金。 (1)试给出两种还款法的每月还款额、还款总额和利息负担总和的计算公式。 (2)若一借款人从银行得到贷款40万元,计划20年还清。试以此为例说明借款人选择何种还款法更为合算? 2、某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量。面临的困难是,当水塔水位下降到设定的最底水位时,水泵自动启动向水塔供水,到设定的最高水位的时候停止供水,这段时间无法测量水塔的水位和水泵的供水量。通常水泵每天供水一两次,每次约3h. 水塔是一个高为12.2m,直径为17.4m的正圆柱。按照设计。水塔水位降至约8.2m时,水泵自动启动,水位升至约10.8m时水泵停止工作。 下表是某一天的水位测量记录(符号“//”表示水泵启动),试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。 表1 水位测量记录 (符号//表示水泵启动) 3、某探险队驾驶一越吉普车穿行2000km的大沙漠。除起点能得到足够的汽油供应外,行车途中的燃料供应必须在沿途设立若干的储油点,依靠自己运输汽油来解决。该车在沙漠中行车平均每公里耗油0.25L,车载油箱及油桶总共只能装载250L汽油。请设计一个最优的行车方案,使行车耗油最少而通过沙漠。试根据实际情况进行推广和评价。 4、由于军事上的需要,需将甲地n名战斗人员(不包括驾驶员)紧急调往乙地,但是由于运输车辆不足,m辆车无法保证每个战斗人员都能同时乘车,显然,部分战斗人员乘车,部分战斗人员急行军是可行的方案。设每辆车载人数目相同,只有一条道路,但足以允许车辆,人员同时进行,请制定一个调运方案,能最快地实现兵力调运,并证明方案的最优性。 5、为向灾区空投一批救灾物资,共2000kg,需选购一些降落伞,已知空投高度为500m,要求降落伞落地时的速度不能超过20米每秒,降落伞的伞面为半径为r的半球面,用每根长

把数学建模的思想和方法融入到大学数学教学中去

把数学建模的思想和方法 融入到大学数学教学中去 北京理工大学叶其孝 一.数学和数学建模的重要性 二.为什么要把数学建模的思想和方法融入 大学的主干数学课程? 三.怎样融入? A.融入的几个原则 B.具体做法: 两个例子 1. 复利和抵押贷款买房问题 2. 易拉罐问题—一个想法改变了可 口可乐易拉罐的形状 四. 几个值得注意的问题 五. 困难和可能的解决办法 一.数学和数学建模的重要性 高技术本质上是数学技术. 戴维(E. David, 1972年曾任尼克松总统的科学顾问,1966年入选美国工程院院士)在1984年说的一段话:

“…对数学研究的低水平的资助只能来自对于数学研究带来的好处的完全不妥的评价,显然,很少有人认识到当今被如此称颂的‘高技术’本质上是数学技术。” ... the low levels of support for mathematics research can only flow from a totally inadequate preciation of the benefits it confers. Apparently, too few people recognize that the "high technology" that is so celebrated today is essentially mathematical technology. E. E. David Jr., Notices of American Mathematical Society, v. 31(1984), no. 2, p. 142. ********************************** 21世纪是科学和工程数学化的世纪. 美国科学基金会数学部主任Eisenstein在评述 该基金会把数学科学列为2002-2006该基金会 五大创新项目(其他四个分别为: 环境中的生物复杂性,信息技术研究,纳米科学和工程,以及 21世纪的劳动力)之首时所说的,“该重大创新 项目背后的推动力就是一切科学和工程领域的数学化(Mathematization).” "The driving force behind the initiative is the 'mathematization' of all areas of science and

浅谈初中数学建模思想的培养

浅谈初中数学建模思想的培养 作者姓名:邓小宏单位:于都县乱石初中邮编:342321 内容摘要:数学建模教育旨在拓展学生的思维空间,让数学贴近现实生活,从而使学生在进行数学知识和实际生活双向建构的过程中,体会到数学的价值,享受到学习数学的乐趣,体验到充满生命活力的学习过程。这对于培养学生的应用意识和创新精神是一个很好的途径,也是新大纲中提出的“学数学,做数学,用数学”理念的体现。数学建模是对日常生活和社会中的实际问题进行抽象化,建立数学模型,然后求解数学模型的过程。 关键词:初中数学建模思想培养 数学建模教育旨在拓展学生的思维空间,让数学贴近现实生活,从而使学生在进行数学知识和实际生活双向建构的过程中,体会到数学的价值,享受到学习数学的乐趣,体验到充满生命活力的学习过程。这对于培养学生的应用意识和创新精神是一个很好的途径,也体现出新大纲中提出的“学数学,做数学,用数学”的理念。数学建模是对日常生活和社会中的实际问题进行抽象化,建立数学模型,然后求解数学模型的过程。现在谈谈如何在教学中渗透数学建模的思想过程: 1、激发学生的学习兴趣,培养学生数学建模思想 数学建模活动的实际结果告诉我们,它不仅对好学生、而且对学习有一定困难的学生都能起到培养兴趣、激发创造的目的。例如:如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程;例如,在水塘中投进一块石头,水面上产生圈圈荡漾的水波,便是一个个圆的形象,然后使学生抽象出圆的概念以及圆心、半径等等。研究这样问题,学生积极性很高,就可以激发学生的创造欲望。数学建模的成果还可以为学生建立一种更表现学生素质的评价体系。数学建模的过程可以为不同水平的学生都提供体验成功的机会。 2、重视课本知识的功能,形成学生数学建模思想 数学建模应结合正常的教学内容切入。把培养学生的应用意识落实到平时的教学过程中。从课本的内容出发,联系实际,以教材为载体,拟编与教材有关的建模问题或把课本的

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数形结合思想的含义 数与形是数学中两个最古老

数形结合思想的含义数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法。 正恩格斯曾经说过:"数学是研究现实世界的空间形式和数量关系的一门科学。"在数学领域中包含着两大研究对象,即"数"与"形",这两大研究对象既是对立的又是统一的,它们是数学发展的内在因素。纵观数学知识的发展长河中,数形结合始终是发展的一条主线,并且数与形相结合能够让学生在实际应用中对知识的运用更加广泛和深入。在初中数学教学中教师要特别重视将数形结合的思想渗透到教学环节中,以此来让学生感受到数形结合的伟大力量,促进学生生成数形结合的思想,让学生在以后的数学学习中受益 1.数形结合思想的涵义 “数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空 间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨著,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。 2.数形结合思想的发展

浅谈如何培养初中生的数学建模思想

浅谈如何培养初中生的数学建模思想 [摘要]本文简明扼要的阐述了初中数学建模的两种类型,说明了数学建模思想在人才培养的作用和地位。 [关键词] 类型;数学建模;创新作用 21世纪课程改革的一个重要目标就是要加强综合性、应用性内容,重视联系学生生活实际和社会实践.这是在课程、教学中注入素质教育内容的具体要求.因此,进入21世纪以后,数学应用题的数量和分值在中考中将逐步增加,中、低档题目将逐渐齐全,并将在命题中转变传统的学科体系观念,结合生活实际和社会实践,突出理论与知识结合,理论与实践结合,引导学生关心社会、关心未来,实现中考命题改革与中学教育、教学观念改革的结合,成为推动素质教育发展的重要内容。 数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。中学数学教学中建模思想的培养与应用是数学教育的重要内容,呼唤数学应用意识,提高数学应用质量,已成为广大数学教育工作者的共识。开展中学数学建模教学与应用的研究,对提高学生数学应用意识,培养学生灵活的思维能力,分析问题、解决问题的能力,促进中学数学教学改革,全面推进中学数学素质教育有重要意义。本文结合教学实践,谈谈初中建模教学在人才培养中的作用和体会。 初中教学建模的类型主要是数学概念模式、数学原理教学模式、数学习题教学题模式、数学复习课教学模式、数学讲评课模式、数学思想方法教学模式等十一类。本文主要就前两种模式谈一些看法。 数学概念模式分“讨论模式”“自学辅导模式”。“启发讨论式”将教师教学的着力点放在:“导”上,在课堂教学中,教师通过启发、引导、指导、辅导等方式与讲授结合起来,以提高学生的参与程度,加强学生学习的主动性,另处学生通过自主探究、发现、尝试、提问、讨论、反馈、练习等,经历数学概念形成的过程,从而加深对概念的理解,使其主体作用得到更充分的发挥,从而使教学与学法能够较好的相融相进,同时,学生在此过程中所获得的体验和经历,可以使他们在后继的学习中,逐渐理解能力,掌握教学思维方法、学会数学思维。“自学--辅导”教学模式。该模式以学生为主,以培养学生学会学习、适应未来社会发展的需要为目的,在教学过程中,强调以学生为主体,以教师为主导,在教师的辅导下,学生通过系统的自学,彼此交流、合作、研讨,掌握概念、获取新知。同时在获取新知的过程中,掌握自主学习的方法,提高学习数学的能力。建构主义理论认为,知识产生于主体与客体的作用过程之中,数学知识不是简单机械地从一个人迁移到另一个人,而是基于个人对经验的操作、交流,通过反省来建构的,学生可以充分感受到成功与失败的情感体验为建构新的认识结构奠定扎实的基

初中数学中的数形结合思想

初中数学中的数形结合思想 “数缺形欠直观,形缺数难入微”,数形结合是解决数学问题最重要的数学思想方法之一.数形结合思想通过“以数助形,以形解数”,使复杂问题简单化,抽象问题具体化,它是数学的规律性和灵活性的有机结合. 一、以数助形 例1如图1,在平面直角坐标系中,A(1,1),B(5,1),C(1,4)是三角形ABC的三个顶点,求BC的长. 这一题经过转化后实质上就是求平面上两点之间的距离.而在本题中△ABC是直角三角形,所以利用勾股定理可BC=AB2+AC2=5. 这个问题实质上是利用数形结合的思想来推导在具体点的坐标下的两点之间的距离公式.利用同样的思想可以推导出平面上两点之间的距离公式:平面上点P1(x1,y1),P2(x2,y2),则P1P2=(x1-x2)2+(y1-y2)2. 例2在直角坐标系中,已知直线l经过点(4,0),与两坐标轴围成的直角三角形的面积等于8,若一个二次函数的图象经过直线l与两坐标轴的交点,以x=3为对称轴,且开口向下,求这个二次函数的解析式,并求最大值. 分析如果不画出图象,本题很难理解.由三角形的面积来

确定点B的坐标时,就需要把几何问题化为代数问题,确定OB的长度后,由绝对值的双值性来决定点B的纵坐标. 设直线l与x轴交点A(4,0),与y轴交点坐标B(0,m), 则OA=4,OB=|m|. 如由图,S△AOB=12OA?OB=12×4|m|=8, 所以|m|=4.因此,B(0,4)或B′(0,-4). 由二次函数图象的对称轴为x=3,可知点A的对称点A′(2,0),则图象经过A、A′、B,或A、A′、B′. 设抛物线的解析式为y=a(x-2)(x-4). 把点B或B′坐标代入,得a=12或a=-12. 因为开口向下,所以,a=12不符合题意. 故y=-12(x-2)(x-4),即y=-12(x-3)2+12, 所以当x=3时,y最大=12. 二、以形助数 例3已知a、b均为正数,且a+b=2,求W=a2+4+b2+1的最小值. 在本题中由求解式子的特点可以联想到构造直角三角 形利用勾股定理进行处理.如图作线段ED,在ED上截取EP,DP,过点E作AC⊥ED,且使得AE=2,过点D作DB⊥ED,且使得DB=1.这种构图后可以得到两个直角三角形,所以可以使用勾股定理得到AP=a2+4,BP=(2-a)2+1,所以本题中

[数学建模,高职,能力]关于利用数学建模训练增强高职学生创新能力

关于利用数学建模训练增强高职学生创新能力 当前,随着我国现代化教育技术的逐步发展,为了确保人才质量,高校数学教学必须注重联系实际生活与生产实践,强调创新意识的培养.数学建模为数学学科同其他学科之间的联结提供了桥梁和枢纽,采用数学建模不仅可以对实际问题加以数学形式的描述,还为实际问题的理论分析及科学解决提供了强有力的工具.由于数学建模均来源于生活实践,并非固定、唯一的答案,其目的在于激发学生的思维,提高学生的动手能力,能够深入生产及生活实践,去寻找并解决问题,因此,提高学生的数学建模能力,有助于培养学生的创新意识及实践能力. 1、数学建模的内涵及其重要性分析 数学建模,即采用数学思想及方法解决实际生活及生产实践中所遇到的各种问题,是将数学理论知识同实际问题进行有效联系的枢纽,并直接展现了数学教育对于大学生创新意识及能力培养方面的重要作用.如今,数学建模的重要性已经受到了社会各界的广泛认同,并在多个领域得到了广泛的应用.因此,各高校纷纷开设了数学建模课程,并积极组织大学生参与数学建模竞赛,将数学教育有效地融入社会生活实践中,转变了传统数学教学过程中的自我封闭、自成体系的局面,为数学同现实世界之间的联接提供了可行之道. 在如今这个注重素质教育,强调个性化发展的新时代,提高大学生的数学建模能力显得尤为重要.我国著名数学家丁石孙先生曾经说过:数学公式更为重要的作用,在于培养大学生树立科学的思想方法,同时,根据自身所学知识,不断创新,寻求更多新的途径,这远非在课堂中死啃定理即可实现的.我们采用何种方法,才能使更多学生意识到这个问题?我认为,建模竞赛就是一种很可行的方法.数学建模使学生应用所学数学知识解决问题,并通过实践进一步创新,寻求更多解决途径,在此过程中,不仅游戏提高了学生的动手能力,还培养了其创新意识,提高了自身的综合素质,推动了应用型人才的成长与发展.这不仅是数学教学改革的结果,也是我国经济社会发展对于数学教育所提出的要求.数学建模为大学生有效运用数学思想、理论知识及方法体系提供了途径.在数学建模教学过程中,应将重点放在基础理论知识,如微分方程、概率统计、优化方法、拟合等理论知识方面,同时,还应加强前沿理论成果的介绍,注重提高学生常用数学软件的使用等等,以逐步积累建模知识,开拓思路,提高寻找问题、分析问题及解决问题等能力,使大学生逐步养成创新意识及创新能力,推动其综合素质的全面提高. 2、数学建模与创新之间的关系 数学建模采用了计算机、信息查询等数学工具,针对实际生活及生产过程中所遇到的各种问题,将数学研究同工业、农业、经济管理等多个领域进行交叉组合所产生的一门新兴学科.数学建模是针对所研究事物的实际特征及数量关系,借助于形式化数学语言进行近似性表达所形成的数学结构,具体而言,常常表现为一套具体算法,或一系列数学关系式.在构建数学模型时,不仅要全面反映出问题的实质,还要将问题予以适当简化,以方便进行分析和推导,回到实际研究对象中将问题予以顺利解决,此外,合适的数学模型还应能够对误差范围进行科学估计.图1为数学建模的基本流程,是由简单问题出发,通过师生共同努力,进行数学模型的构建,从而初步理解数学模型构建的思路及方法,培养自身的创新意识及能力,利用活动小组或实习作业等多种形式进行讨论和分析,对不同模型的利弊进行分析,提出相

初中数学“数学建模”的教学研究

初中数学“数学建模”的教学研究 张思明(北大附中,数学特级教师) 鲍敬谊(北大附中数学学科主任,高级教师) 白永潇(北京教育学院数学教师) 一、什么是数学建模? 1.1数学建模(Mathematical Modeling)是建立数学模型并用它解决问题这一过程的简称,有代表的定义如下: (1)普通高中数学课程标准中认为,数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育的重要内容和基本内容。 (2)叶其孝在《数学建模教学活动与大学数学教育改革》一书中认为,数学建模(M athematical Modeling)就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。 两种定义的区别在于课程标准对数学建模的定义没有强调建立特定的解决问题的数学模型。数学建模的过程中当然会运用数学思想、方法和知识解决实际问题,但仅仅如此很难称得上是“数学建模”。处理很多事情,比如法律和组织上的问题,常常会用到分类讨论的思想、转化的思想、类比的思想,而并没有建立数学模型,这就不能说是进行了数学建模。这里所谈(实际上,同大部分人认为的一样)的数学建模,其过程是要建立具体的数学模型的。 什么是数学模型?根据徐利治先生在《数学方法论选讲》一书中所谈到,所谓“数学模型”(Mathematic Model)是一个含义很广的概念,粗略的讲,数学模型是指参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一个数学结构。广义的说,一切数学概念、数学理论体系、数学公式、数学方程以及由之构成的算法系统都可以称为数学模型;狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。 本论文所谈到的数学建模,其过程一定是建立了一定的数学结构。 另外,我们所谈的数学建模主要侧重于解决非数学领域内的问题。这类问题往往来自于日常生活、经济、工程、医学等其他领域,呈现“原胚”状态,需要分析、假设、抽象等加

数学中数形结合思想、分类讨论的思想、函数与方程的思想

初中数学中蕴含的数学思想方法很多,最基本最主要的有:数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。 1. 数形结合的思想和方法 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: (1)、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 (2)、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 (3)、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 (4)、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 (5)、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 (6)、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。(7)、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。(8)、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。 数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。 ①由数思形,数形结合,用形解决数的问题。 例如在《有理数及其运算》这一章教学中利用“数轴”这一图形,巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。实际上,对学生来说,也只有通过数形结合,才能较好地完成本章的学习任务。另外,《一元一次方程》中列方程解应用题中画示意图,常常会给解决问题带来思路。第九章《生活中的数据》“统计图的选择”及“复习形统计图”,利用图形来展示数据,很直观明了。 ②由形思数,数形结合,用形解决数的问题。例如第四章的《平面图形及其位置关系》中,用数量表示线段的长度,用数量表示角的度数,利用数量的比较来进行线段的比较、角的比较等。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何

相关主题
文本预览
相关文档 最新文档