当前位置:文档之家› 功能分类与表达谱基因芯片的比较

功能分类与表达谱基因芯片的比较

功能分类与表达谱基因芯片的比较
功能分类与表达谱基因芯片的比较

功能分类与表达谱基因芯片的比较

引言:

基因表达谱常被称为是某一生理/病理现象的“分子图像”。这类复杂的“分子图像”,可用于同时检测成千上万个基因的表达水平,再经专门的计算机软件解读出来。研究人员通过比较源于不同病理条件下的“分子图像”的结果,可以识别出引发癌症等复杂疾病的标志物(Marker)。目前,这些标志基因(Marker genes)还有待于大量工作对其作进一步验证。许多科研人员已把注意力投向密度相对较低的功能分类基因芯片(focused DNA microarray)。因为,如果研究对象是某一生物学通路的基因,使用针对该类基因的功能分类基因芯片比使用高密度表达谱芯片更加有效便利。这种将微列阵技术与特定生物学通路(specific biological pathways)最新知识有机结合而制成的功能分类基因芯片,可以大大缩短发现诊治各种疾病的生物学标志物(biomarkers)的时间。

表达谱芯片:整个基因表达谱的分子图像。

自从90年代中期DNA微列阵芯片技术开始引起广泛注意以来,DNA片段以及不同长度的寡核苷酸被尝试点样在尼龙膜、玻片、塑片、硅片及合金片上。有成千上万个点的表达谱芯片,也有百来个点的功能分类基因芯片,但是两种芯片都是用于摄取活细胞或组织标本的“分子图像”,然后对不同病理生理条件下所摄取的图像进行平行表达比较,从而人们可在更深的水平上认识器官的生理或病理现象。

当研究的对象是细胞中mRNA的稳定水平,这个分子图像的摄取过程就叫基因表达谱检测。在美国科学杂志1999年10月发表的文章中,T.R.Golub,E.S Lander[1]从表达谱芯片的6817个基因中发现了50个基因对急性白血病的分类与诊治有着重要意义。这一组基因不仅可以用于区分急性骨髓性白血病与原始淋巴细胞白血病,还解决了传统病理研究工具所无法解决的诊断难题。这一研究发现的意义不仅在于它将基因芯片技术引入到临床科研中来,以帮助肿瘤的分类,还在于这种技术可以预测某些化学疗法与荷尔蒙疗法的作用,监测恶性癌前病变与检测微生物机制[2]。但是,在临床疾病研究中广泛使用表达谱芯片检测几千个基因是不现实的,研究人员希望芯片上被研究的基因数目能够减少,因为由许多与研究对象无关的基因所提供的数据会对分析与研究对象有关的基因产生干扰,提供无用(inconsequential) [3]的或错误(detrimental)的信息[4]。

功能分类芯片:各类生物学通路的分子图像。

剔除基因芯片上对研究对象毫无意义的基因正是功能分类基因芯片与表达谱基因芯片的本质区别。有时,表达谱基因芯片的包罗万象的特征会受到这样的批评:如大海捞针式的缺乏科学假设为前提的实验方案[5]。然而,功能分类基因芯片上通常只有几百个或更少的基因,这些基因包括了那些与研究对象有确定关系的基因,或至少是与研究对象的关系有待考证的基因。不同于研究整个基因表达谱,使用功能分类基因芯片的研究人员的实验是建立在现有科学假设的基础上的。

毫无疑问,表达谱芯片提供了一种前所未有的研究基因相互关系的先进技术,这种技术自然成为了设计功能分类基因芯片的技术来源之一。在前述Lander的对急性白血病分类的研究中[6],科学家们根据表达谱芯片结果的选择了70个基因并制成低密度基因芯片。这个由70个功能明确的基因制成的芯片获得了极大的关注,因为它是欧美第一个以芯片技术为基础的临床诊断产品。但是,这并不是说功能分类基因芯片的设计必然依赖于表达谱基因芯片的结果。实际上,功能分类基因芯片的设计通常是基于研究课题的实际需要或是对特定基因组的现有知识。

按实验课题需要设计的功能分类芯片:

按实验课题需要设计的芯片通常也称作“定制芯片”(customized array)。

因为点在芯片上的基因完全由特定研究课题所决定。例如,为了研究细胞类型和供体特异性转录对干扰素的反应,J.Schlaak和同事们设计了一个定制芯片[7]。在这个芯片上包括了已知的(即已有文献记载

的)会受干扰素影响的基因,也包括了那些与细胞增殖、免疫反应及与各种细胞因子反应相关的基因(尽管在他们研究的各种细胞中,这些基因对干扰素的直接反应还没有文献记载)。这种芯片便是一种可用于发现新的细胞类型和供体特异性转录对干扰素反应的有效手段。大多数定制芯片是由研究人员自己设计并制作出来的,或者是由一些研究机构的芯片中心制作出来的。目前很少有商业机构有能力以经济有效的价格提供定制芯片服务。

按现有基因知识设计的功能分类芯片:

按现有基因知识设计的芯片也被称为是“预制芯片”(pre-printed DNA array)。

这种芯片由厂家按照各类研究人员的普遍需求成批生产。其用途可以很容易地从他们的名称中分辨出来。比如:一个细胞凋亡基因芯片包括了那些会引起细胞凋亡的基因,通过这类芯片可以检测组织或细胞标本中与细胞凋亡相关的基因表达量的变化。您可以通过google搜索引擎https://www.doczj.com/doc/e313786151.html,。(只需键入”apoptosis arrays”)找到提供细胞凋亡基因芯片的公司列表。我们最近一次搜索的结果是:Superarray, BD clontech, R&D Systems, Sigma-Genosys。

大多数预制芯片是根据对某一生物学过程和通路的知识而设计的。在互联网和生物信息学的推动下,特别是如Pub Med (https://www.doczj.com/doc/e313786151.html,/entrez/query.fcgi?db=PubMed) 和Gene Ontology (GO) Project(https://www.doczj.com/doc/e313786151.html,/doc/index.shtml)这类搜索引擎的出现,使收集有关功能分类基因芯片所需要的知识越来越容易了。每张功能分类基因芯片上的所有入选基因几乎都与某一明确的信号通路直接相关,并且通常都可以找到论证其入选资格的科学文献。有时通过精巧的实验设计,采用几个功能分类芯片便可以达到使用高通量表达谱芯片的同样目的,为您节省大量的时间和金钱,从而达到事半功倍的效果。

另外,有些预制的功能分类基因芯片是为某一研究方向而设计的,包含了与这一研究方向相关的多个生物学通路的基因。例如:一个癌症基因芯片往往包括了几个与癌症相关的生物学通路上的基因,如肿瘤形成、肿瘤转移等。还有一种功能分类基因芯片的设计原则是按照功能基因组来选择基因的。例如,选择所有与炎症细胞因子相关的基因(其中包括了细胞色素P450家族基因组,ATP结合盒转运器(ABC)和其它类别的基因)放在同一张芯片上用于检测炎症,研究自身免疫疾病和进行药物代谢与药物耐受的研究[8,9]。

由于对细胞信号转导途径重要意义的认识,美国高科技协会(AAAS)和科学杂志专门建立了一个“知识库”(Knowledge environment https://www.doczj.com/doc/e313786151.html,/index.dtl)以便最大限度的帮助读者提高收集、理解和吸收有关细胞变化规律的知识的效率。在当今对信号转导途径认识的基础上,美国SuperArray Bioscience Corporation已经设计出了一系列“信号通路发现者”(Pathway Finder)基因芯片,用于帮助研究人员在信号转导途径这一异常复杂的生物学网络中探索遨游。其中有一种信号转导通路发现者芯片(Signal Transduction Pathway Finder Gene Array 货号;HS-008)可以同时监测18条信号通路。例如:为了探测MAP30(一种抗HIV的试剂)对AIDS相关的淋巴瘤细胞的基因表达的影响,S.Lee-Hung等研究人员选用了SuperArray公司的一个与8个信号通路有关的通路发现者基因芯片。通过这个芯片的检测,他们很快发现其中三个信号通路受到MAP30的影响最大,它们是:细胞凋亡、细胞周期和细胞因子。在2001年发表的文章中[10],S.Lee-Hung公布了他们的发现:MAP30可以调控那些与细胞增殖,肿瘤形成和细胞凋亡有关的基因。

放大的分子图像:基因芯片技术的另一发展方向。

在照像技术大众化之前,为自己制作一张肖像不是一件简单的事。因为画师的主观性和对绘画技巧的过分表现都可能会使您在画布上的形象失真。从许多方面来讲,现在的基因芯片技术有点类似于过去的画像,因为尚缺乏可供研究人员共同参照的客观标准[11,12],其结果的可靠性仍然受到不少人的质疑[13]。根据Dana –Farber癌症研究中心和麻省whitehead 生物学研究中心的T.Golub的观点[6],微列阵芯片技术正在经历一场快速的“自然进化过程”(natural evolution)。目前,我们用表达谱芯片所获取的分子图像还

十分“模糊”,因为不同实验平台之前的区别如此之大, 以至于人们无法在没有其它独立验证方法的情况下把微列阵芯片的结果作为可以自圆其说(self-sufficient)的科学事实来接受[14]。然而,功能分类基因芯片采用了预先经过科学验证的标准和知识为基础,这对于研究的准确可靠性是十分有益的。因此,我们可以把功能分类基因芯片的结果比作对基因图谱进行局部“放大”(infocus)的分子图像。通过这一技术,基因技术革命或许会在生物医药和临床诊治研究中发挥更大的做用。

重要生物学通路研究工具

功能分类基因芯片因其对生物学通路的高针对性被视为生物学通路的重要研究工具之一。“生物学通路”(pathway-centric)研究工具是指针对研究某一生物学通路或者基因组特异性而设计的生命科学研究工具。这类工具由于是根据相关基因的现有知识组合而成的,可以使研究人员在研究中不需要再花费时间精确鉴别与此疾病或者细胞功能相关的基因是哪些。美国SuperArray公司开发的“生物学通路”研究工具包括针对各个生物学重要通路或者基因组而设立的三个产品技术平台:功能分类基因芯片,RT-PCR试剂盒和siRNA试剂盒。以功能分类基因芯片为核心,三种技术交叉使用可大大方便实验结果的验证和开展更深入的研究。

例如,利用SuperArray公司的“生物学通路”研究工具,研究者可以快速拟定并进行下列有关细胞凋亡的实验:

1、用人细胞凋亡基因芯片检测并比较正常样本和疾病样本中与细胞凋亡相关基因的改变。

2、用单基因(Single Gene)PCR试剂盒验证某细胞凋亡相关基因的表达变化或者用多基因

(MultiGene-12)PCR试剂盒验证一个基因家族的表达变化。

3、用siRNA试剂盒逐个敲除与细胞凋亡相关基因的表达或者用新推出的siRNA阵列板对某一个基因

家族进行敲除。

4、再用人细胞凋亡基因芯片检测敲除某基因后细胞凋亡相关基因的表达变化。

图1:三种研究工具互相辅助进行的基因研究方法可加速我们对重要疾病或者细胞功能通路的研

究,大大简化研究方案的设计,加快实验进程,并降低实验的整体费用[15]。

以下通过功能分类基因芯片和siRNA技术结合证明TBL1/TBLR1参与NFkB信号通路[16]的实验是生物学通路研究工具在科研中应用的一个很好的例子:

TBL1/TBLR1作为两种F box/WD-40因子,最初被认为是N-CoR辅抑制物复合体的组成部分。然而,在Perissi和他的同事们发表在Cell上的文章中,他们发现核受体介导的转录激活需要这两种因子的参与。在他们的实验中,作者用SuperArray公司的NFkB信号通路基因芯片(货号:MM-016)分析NFkB转录激活中是否需要TBL1/TBLR1的参与。RNA样品取自500个实验细胞,实验显示,当用合成的基因特异性siRNA将TBL1或者TBLR1敲除后,由TNFa 刺激导致的所有NFkB靶基因的激活便不再发生。

图2:用小鼠NFkB信号通路基因芯片所得到的基因表达状况之比较。

样品A来自未经处理的HUVEC细胞

样品B来自经TNFa刺激的HUVEC细胞

样品C来自经TNFa刺激又经Tbl1 siRNA作用的HUVEC细胞

样品D来自经TNFa刺激又经Tb1R1 siRNA作用的HUVEC细胞

References:

1、Golub, T.R., et al., Molecular Classification of Cancer: Class Discovery and Class Prediction by

Gene Expression Monitoring. Science, 1999. 286(5439): p. 531-537.

2、Snijders, A.M., et al., Microarray techniques in pathology: tool or toy? Mol Pathol, 2000. 53(6): p.

289-294.

3、Wooster, R., Cancer classification with DNA microarrays: is less more? Trends in Genetics, 2000.

16(8): p. 327-329.

4、Draghici, S., et al., Onto-Tools, the toolkit of the modern biologist: Onto-Express, Onto-Compare,

Onto-Design and Onto-Translate. Nucl. Acids. Res., 2003. 31(13): p. 3775-3781.

5、Schena, M., Microarray biochip technology. 2000, Natick, MA: Eaton Pub. xiv, 298 , 32 of plates.

6、Branca, M., GENETICS AND MEDICINE: Putting Gene Arrays to the Test. Science, 2003.

300(5617): p. 238.

7、Schlaak, J.F., et al., Cell-type and Donor-specific Transcriptional Responses to Interferon-alpha .

USE OF CUSTOMIZED GENE ARRAYS. J. Biol. Chem., 2002. 277(51): p. 49428-49437.

8、Huang, Y. and W. Sadee, Drug sensitivity and resistance genes in cancer chemotherapy: a

chemogenomics approach. Drug Discov Today, 2003. 8(8): p. 356-63.

9、Huang, Y., et al., Expression of transporter genes identified chemo-sensit, ivity and -resistance

markers in human cancer cells. Proceedings of the American Association of Cancer Research, 2003. 44(2nd ed.): p. 797.

10、Sun, Y., et al., Anti-HIV agent MAP30 modulates the expression profile of viral and cellular genes for proliferation and apoptosis in AIDS-related lymphoma cells infected with Kaposi's sarcoma-associated virus. Biochem Biophys Res Commun, 2001. 287(4): p. 983-94.

11、Brazma, A., et al., Minimum information about a microarray experiment (MIAME)-toward standards

for microarray data. Nat Genet, 2001. 29(4): p. 365-71.

12、Bowtell, D. and J. Sambrook, DNA microarrays : a molecular cloning manual. 2003, Cold Spring

Harbor, NY: Cold Spring Harbor Laboratory Press. xxiii, 712.

13、Goodman, N., Microarrays: Hazardous to Your Science. Genome Technology, 2003.

14、Chuaqui, R.F., et al., Post-analysis follow-up and validation of microarray experiments. Nat Genet,

2002. 32 Suppl: p. 509-14.

15、What Pathway-Centric Tools and Technology Can do for you? SuperArray Corporation Newsletter

16、Perissi V, Aggarwal A, Glass CK, Rose DW and Rosenfeld MG. (2004) A Corepressor/Coactivator

Exchange Complex Required for Transcriptional Activation by Nuclear Receptors and Other

Regulated Transcription Factors. Cell 116, 511-526

基因芯片技术基础知识(概念、制备、杂交、应用及发展方向)

生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP (human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀丽隐杆线虫以及中国和日本科学家攻关的水稻基因组计划。但单纯知晓生物基因组序列一级结构还远远不够,还必须了解其中基因是怎样组织起来的,每个基因的功能是什么,又是怎样随发育调控和微环境因素的影响而在特定的时空域中展开其表达谱的,即我们正由结构基因组时代迈入功能基因组时代。随着这个功能基因组学问题的提出(后基因组时代,蛋白组学)[1],涌现出许多功能强大的研究方法和研究工具,最突出的就是细胞蛋白质二维凝胶电泳(2-D-gel)(及相应的质谱法测蛋白分子量)和生物芯片(Biochip)技术[2]。 一.什么是基因芯片 生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,CCD相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是DNA芯片,即将无数预先设计好的寡核苷酸或cDNA在芯片上做成点阵,与样品中同源核酸分子杂交[3]的芯片。 基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization, SBH)。

基因芯片的数据分析

基因表达谱芯片的数据分析 基因芯片数据分析就是对从基因芯片高密度杂交点阵图中提取的杂交点荧光强度信号进行的定量分析,通过有效数据的筛选和相关基因表达谱的聚类,最终整合杂交点的生物学信息,发现基因的表达谱与功能可能存在的联系。然而每次实验都产生海量数据,如何解读芯片上成千上万个基因点的杂交信息,将无机的信息数据与有机的生命活动联系起来,阐释生命特征和规律以及基因的功能,是生物信息学研究的重要课题[1]。基因芯片的数据分析方法从机器学习的角度可分为监督分析和非监督分析,假如分类还没有形成,非监督分析和聚类方法是恰当的分析方法;假如分类已经存在,则监督分析和判别方法就比非监督分析和聚类方法更有效率。根据研究目的的不同[2,3],我们对基因芯片数据分析方法分类如下。(1)差异基因表达分析:基因芯片可用于监测基因在不同组织样品中的表达差异,例如在正常细胞和肿瘤细胞中;(2)聚类分析:分析基因或样本之间的相互关系,使用的统计方法主要是聚类分析;(3)判别分析:以某些在不同样品中表达差异显著的基因作为模版,通过判别分析就可建立有效的疾病诊断方法。 1 差异基因表达分析(difference expression, DE) 对于使用参照实验设计进行的重复实验,可以对2样本的基因表达数据进行差异基因表达分析,具体方法包括倍数分析、t检验、方差分析等。 1.1倍数变化(fold change, FC) 倍数分析是最早应用于基因芯片数据分析的方法[4],该方法是通过对基因芯片的ratio值从大到小排序,ratio 是cy3/cy5的比值,又称R/G值。一般0.5-2.0范围内的基因不存在显著表达差异,该范围之外则认为基因的表达出现显著改变。由于实验条件的不同,此阈值范围会根据可信区间应有所调整[5,6]。处理后得到的信息再根据不同要求以各种形式输出,如柱形图、饼形图、点图等。该方法的优点是需要的芯片少,节约研究成本;缺点是结论过于简单,很难发现更高层次功能的线索;除了有非常显著的倍数变化的基因外,其它变化小的基因的可靠性就值得怀疑了;这种方法对于预实验或实验初筛是可行的[7]。此外倍数取值是任意的,而且可能是不恰当的,例如,假如以2倍为标准筛选差异表达基因,有可能没有1条入选,结果敏感性为0,同样也可能出现很多差异表达基因,结果使人认为倍数筛选法是在盲目的推测[8,9]。 1.2 t检验(t-test) 差异基因表达分析的另一种方法是t检验[10],当t超过根据可信度选择的标准时,比较

基因芯片数据功能分析

生物信息学在基因芯片数据功能分析中的应用 2009-4-29 随着人类基因组计划(Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代(Postgenome Era),向基因的功能及基因的多样性倾斜。通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。生物信息学在基因组学中发挥着重大的作用, 而另一项崭新的技术——基因芯片已经成为大规模探索和提取生物分子信息的强有力手段,将在后基因组研究中发挥突出的作用。基因芯片与生物信息学是相辅相成的,基因芯片技术本身是为了解决如何快速获得庞大遗传信息而发展起来的,可以为生物信息学研究提供必需的数据库,同时基因芯片的数据分析也极大地依赖于生物信息学,因此两者的结合给分子生物学研究提供了一条快捷通道。 本文介绍了几种常用的基因功能分析方法和工具: 一、GO基因本体论分类法 最先出现的芯片数据基因功能分析法是GO分类法。Gene Ontology(GO,即基因本体论)数据库是一个较大的公开的生物分类学网络资源的一部分,它包含38675 个Entrez Gene注释基因中的17348个,并把它们的功能分为三类:分子功能,生物学过程和细胞组分。在每一个分类中,都提供一个描述功能信息的分级结构。这样,GO中每一个分类术语都以一种被称为定向非循环图表(DAGs)的结构组织起来。研究者可以通过GO分类号和各种GO数据库相关分析工具将分类与具体基因联系起来,从而对这个基因的功能进行描述。在芯片的数据分析中,研究者可以找出哪些变化基因属于一个共同的GO功能分支,并用统计学方法检定结果是否具有统计学意义,从而得出变化基因主要参与了哪些生物功能。 EASE(Expressing Analysis Systematic Explorer)是比较早的用于芯片功能分析的网络平台。由美国国立卫生研究院(NIH)的研究人员开发。研究者可以用多种不同的格式将芯片中得到的基因导入EASE 进行分析,EASE会找出这一系列的基因都存在于哪些GO分类中。其最主要特点是提供了一些统计学选项以判断得到的GO分类是否符合统计学标准。EASE 能进行的统计学检验主要包括Fisher 精确概率检验,或是对Fisher精确概率检验进行了修饰的EASE 得分(EASE score)。 由于进行统计学检验的GO分类的数量很多,所以EASE采取了一系列方法对“多重检验”的结果进行校正。这些方法包括弗朗尼校正法(Bonferroni),本杰明假阳性率法(Benjamini falsediscovery rate)和靴带法(bootstraping)。同年出现的基于GO分类的芯片基因功能分析平台还有底特律韦恩大学开发的Onto-Express。2002年,挪威大学和乌普萨拉大学联合推出的Rosetta 系统将GO分类与基因表达数据相联系,引入了“最小决定法则”(minimal decision rules)的概念。它的基本思想是在对多张芯片结果进行聚类分析之后,与表达模式

基因芯片技术的应用和发展趋势

基因芯片技术的应用和发展趋势 随着基因芯片技术的日渐成熟, 在功能基因组、疾病基因组、系统生物学等领域中得到了广泛的应用, 已经发表了上万篇研究论文, 每年发表的论文呈现增长的趋势. 芯片制备技术极大地推进了生物芯片的发展, 从实验室手工或机械点制芯片到工业化原位合成制备, 从几百个点的芯片到几百万点的高密度芯片, 生物芯片从一项科学成为一项技术, 被越来越多的研究者广泛运用. 各个实验室不断产生海量的杂交数据, 相同领域的研究者需要比较不同实验平台产生的数据, 作为基于分子杂交原理的高通量技术, 芯片实验的标准化、可信度、重现性和芯片结果是否能作为定量数据等问题成为所有的芯片使用者关心的课题. 迈阿密原则和微阵列质量控制系列研究回答了这两个问题. 迈阿密原则(Minimum Information About a Micro- array Experiment, MIAME, 微阵列实验最小信息量)提出了生物芯片标准化的概念, 该原则的制定使世界各地实验室的芯片实验数据可以为所有的研究者共享. 同 时, 美国国家生物信息学中心(NCBI)和位于英国的欧洲生物信息学研究所(EBI)也建立了GEO ( https://www.doczj.com/doc/e313786151.html,/geo/)和ArryExpress (http:// ;https://www.doczj.com/doc/e313786151.html,/arrayexpress/)公共数据库, 接受和储存全球研究者根据迈阿密原则提交的生物芯片数据, 对某项研究感兴趣的研究人员可以下载到相关课题的芯片原始数据进行分析. 2006年美国FDA联合多个独立实验室进行了MAQC系列实验(micro array quality control, MAQC), 旨在研究目前所使用的芯片平台的质量控制. 该研究的12篇系列文章发表在2006年9月份的Nature Biotechnology 上, 用严格的实验分析了目前主流芯片平台数据质量, 芯片数据和定量PCR结果之间的相关性, 芯片数据均一化方法, 不同芯片平台之间的可重现性. 证明了不同芯片平台产生的数据具有可比性和可重现性, 各种芯片平台之间的系统误差远远小于人为操作和生物学样品之间本身的差异, 肯定了芯片数据的可信性, 打消了以往对芯片数据的种种猜疑, 明确了基于杂交原理的芯片同样可以作为一种定量的手段. 推动了生物芯片技术在分子生物学领域更广泛的应用. 生物信息学和统计学是在处理基因芯片产生的海量数据中必不可少的工具. 随着芯片应用的推进, 芯片数据分析的新理论和新算法不断地被开发出来, 这些方法帮助生物学家从海量的数据里面快速筛选出差异表达的基因. 一次芯片实验获得的是成千上万个基因的表达信息, 任何一种单一的分析方法都很难将所有蕴含在数据中的生物学信息全部提取出来, 从近年来生物信息学研究的趋势来看, 目前研究的重点开始转向芯片数据储存、管理、共享和深度信息挖掘, 旨在从芯片数据中获得更多的生物学解释, 而不再停留在单纯的差异表达基因筛选上。 目前基因芯片的制备向两个主要方向发展. 第一, 高密度化, 具体表现为芯片密度的增加, 目前原位合成的芯片密度已经达到了每平方厘米上千万个探针. 一张芯片上足以分析一个物种的基因组信息. 第二, 微量化, 芯片检测样品的微量化, 目前芯片检测下限已经能达到纳克级总RNA水平, 这为干细胞研究中特别是IPS干细胞对单个细胞的表达谱研究提供了可能. 另一方面, 微量化也体现芯片矩阵面积的微量化, 即在同一个芯片载体上平行的进行多个矩阵的杂交, 大大减少系统和批次可能带来的差异, 同时削减实验费用. 微阵列技术改变了生物学研究的方法, 使得微量样品快速高通量的分析成为可能, 从单个基因的研究迅速扩展到全基因组的系统生物学研究. 微阵列技术帮助生物学研究进入后基因组时代, 研究成果层出不穷。 2001年国家人类基因组南方研究中心韩泽广博士研究小组利用cDNA芯片对肝癌和正常组织中的12393个基因和EST序列进行了表达谱筛查, 其中发现了2253个基因和EST在肝癌中发生了差异表达, 并对这些差异基因的信号通路进行了分析, 发现WNT信号通路在肝癌的发生中出现了表达异常. 2002年中国科学院神经科学研究所张旭博士研究组利用表达谱芯片对大鼠外周神经损伤模型背根神经节的基因表达进行了研

基因芯片数据处理流程与分析介绍

基因芯片数据处理流程与分析介绍 关键词:基因芯片数据处理 当人类基因体定序计划的重要里程碑完成之后,生命科学正式迈入了一个后基因体时代,基因芯片(microarray) 的出现让研究人员得以宏观的视野来探讨分子机转。不过分析是相当复杂的学问,正因为基因芯片成千上万的信息使得分析数据量庞大,更需要应用到生物统计与生物信息相关软件的协助。要取得一完整的数据结果,除了前端的实验设计与操作的无暇外,如何以精确的分析取得可信数据,运筹帷幄于方寸之间,更是画龙点睛的关键。 基因芯片的应用 基因芯片可以同时针对生物体内数以千计的基因进行表现量分析,对于科学研究者而言,不论是细胞的生命周期、生化调控路径、蛋白质交互作用关系等等研究,或是药物研发中对于药物作用目标基因的筛选,到临床的疾病诊断预测,都为基因芯片可以发挥功用的范畴。 基因表现图谱抓取了时间点当下所有的动态基因表现情形,将所有的探针所代表的基因与荧光强度转换成基本数据(raw data) 后,仿如尚未解密前的达文西密码,隐藏的奥秘由丝丝的线索串联绵延,有待专家抽丝剥茧,如剥洋葱般从外而内层层解析出数千数万数据下的隐晦含义。 要获得有意义的分析结果,恐怕不能如泼墨画般洒脱随兴所致。从raw data 取得后,需要一连贯的分析流程(图一),经过许多统计方法,才能条清理明的将raw data 整理出一初步的分析数据,当处理到取得实验组除以对照组的对数值后(log2 ratio),大约完成初步的统计工作,可进展到下一步的进阶分析阶段。

图一、整体分析流程。基本上raw data 取得后,将经过从最上到下的一连串分析流程。(1) Rosetta 软件会透过统计的model,给予不同的权重来评估数据的可信度,譬如一些实验操作的误差或是样品制备与处理上的瑕疵等,可已经过Rosetta error model 的修正而提高数据的可信值;(2) 移除重复出现的探针数据;(3) 移除flagged 数据,并以中位数对荧光强度的数据进行标准化(Normalized) 的校正;(4) Pearson correlation coefficient (得到R 值) 目的在比较技术性重复下的相似性,R 值越高表示两芯片结果越近似。当R 值超过0.975,我们才将此次的实验结果视为可信,才继续后面的分析流程;(5) 将技术性重复芯片间的数据进行平均,取得一平均之后的数据;(6) 将实验组除以对照组的荧光表现强度差异数据,取对数值(log2 ratio) 进行计算。 找寻差异表现基因 实验组与对照组比较后的数据,最重要的就是要找出显著的差异表现基因,因为这些正是条件改变后而受到调控的目标基因,透过差异表现基因的加以分析,背后所隐藏的生物意义才能如拨云见日般的被发掘出来。 一般根据以下两种条件来筛选出差异表现基因:(i) 荧光表现强度差异达2 倍变化(fold change 增加2 倍或减少2倍) 的基因。而我们通常会取对数(log2) 来做fold change 数值的转换,所以看的是log2 ≧1 或≦-1 的差异表现基因;(ii) 显著值低于0.05 (p 值< 0.05) 的基因。当这两种条件都符合的情况下所交集出来的基因群,才是显著性高且稳定的差异表现基因。

基因芯片技术及其应用简介(精)

基因芯片技术及其应用简介 生物科学学院杨汝琪 摘要:随着基因芯片技术的发展,基因芯片越来越多的被人们利用,它可应用于生活中的方方面面,如:它可以应用于医学、环境科学、微生物学和农业等多个方面,基因技术的发展将有利于社会进一步的发展。 关键词:基因芯片;技术;应用 基因(gene是载有生物体遗传信息的基本单位,存在于细胞的染色体(chromosome上。将大量的基因片段有序地、高密度地排列在玻璃片或纤维膜等载体上,称之为基因芯片(又称DNA 芯片、生物芯片。在一块1 平方厘米大小的基因芯片上,根据需要可固定数以千计甚至万计的基因片段,以此形成一个密集的基因方阵,实现对千万个基因的同步检测。基因芯片技术是近年来兴起的生物高新技术,把数以万计的基因片段以显微点阵的方式排列在固体介质表面,可以实现基因检测的快速、高通量、敏感和高效率检测,将可能为临床疾病诊断和健康监测等领域,带来全新的技术并开拓广阔的市场。 1 基因芯片技术原理及其分类 1.1基因芯片的原理: 基因芯片属于生物芯片的一种"其工作原理是:经过标记的待测样本通过与芯片上特定位置的探针杂交,可根据碱基互补配对的原则确定靶序列[1],经激光共聚集显微镜扫描,以计算机系统对荧光信号进行比较和检测,并迅速得出所需的信息"基因芯片技术比常规方法效率高几十到几千倍,可在一次试验中间平行分析成千上万个基因,是一种进行序列分析及基因表达信息分析的强有力工具。 1.2基因芯片分类: 1.2.1根据其制造方法可分原位合成法和合成后点样法;

1.2.2根据所用载体材料不同分为玻璃芯片!硅芯片等; 1.2.3根据载体上所固定的种类可分为和寡核苷酸芯片两种; 1.2.4根据其用途可分测序芯片!表达谱芯片!诊断芯片等 2 基因芯片技术常规流程 2.1 芯片设计根据需要解决的问题设计拟采用的芯片,包括探针种类、点阵数目、片基种类等。 2.2 芯片制备将DNA, cDNA或寡核昔酸探针固定在片基上的过程。从本质上可分为两大类fz} ,一类是在片基上直接原位合成,有光蚀刻法、压电印刷法和分子印章多次压印法三种;另一类是将预先合成的探针固定于片基表面即合成点样法。 2.3 样品制备常规方法提取样品总RNA,质检控制。再逆转录为。DNAo 2.4 样品标记在逆转录过程中标记荧光素等。 2.5 芯片杂交标记的cDNA溶于杂交液中,与芯片杂交。 2.6 芯片扫描一用激光扫描仪扫描芯片。 2.7 图像采集和数据分析专用软件分析芯片图像,然后对数据进行归一化,最后以差异为两倍的标准来确定差异表达基因。 2.8 验证用定量PCR或原位杂交验证芯片结果的可信性。 3基因芯片合成的主要方法 目前已有多种方法可以将基因片段(寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种: 3.1原位合成:

基因芯片技术的研究进展与前景

基因芯片技术的研究进展与前景 摘要 关键词基因芯片,遗传性疾病,基因组计划, 一、基因芯片技术的产生背景 基因芯片技术是伴随着人类基因组计划而出现的一项高新生物技术。2001年6月公布了人类基因组测序工作草图;2002年出发飙了较高精确度和经过详细注解的人类基因组研究结果;2004年10月发表了已填补基因组中许多Gap片段的更精确的人类全基因组序列,标志人类基因组计划的完成和新时代的开始。随着人类基因组计划的开展,也同时进行了模式生物基因组测序工作。动物、植物、细菌及病毒基因组等测序工作都已取得重大进展。 随着各种基因组计划的实施和完成(有的即将完成),一个庞大的基因数据库已经建成。怎样从海量的基因信息中发掘基因功能。如何研究成千上万基因在生命过程中所担负的角色;如何开发利用各种基因组的研究成果,将基因的序列与功能关联起来,认识基因在表达调控、机体分化等方面的生物学意义;解释人类遗传进化、生长发育、分化衰老等许多生命现象的奥秘;深入了解疾病的物质基础及发生、发展过程;开发基因诊断、治疗和基因工程药物并用来预防诊断和治疗人类几千种遗传性疾病……这些都将成为现代生物学面临的最大挑战。这样的背景促使人们研究和开发新的技术手段来解决后基因组时代面临的一系列关键问题。20世纪90年代初,为适应“后基因组时代”的到来,产生了一项新的技术,即以基因芯片为先导的生物芯片技术。 二、基因芯片的概念 基因芯片(又称DNA芯片、DNA微阵列)技术是基于核酸互补杂交原理研制的。该技术指将大量(通常每平方厘米点阵密度高于400 )探针分子固定于支持物上后与有荧光素等发光物质标记的样品DNA或RNA分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息,从而对基因表达的量及其特性进行分析。通俗地说,就是通过微加工技术,将数以万计、乃至百万计的特定序列的DNA片段(基因探针),有规律地排列固定于2cm2的硅片、玻片等支持物上,构成的一个二维DNA探针阵列,与计算机的电子芯片十分相似,只是在固相基质上古高度集成的不是半导体管,而是成千上万的网格状密集排列的基因探针,所以被称为基因芯片。 三、基因芯片技术的分类 1 根据功能分类:基因表达谱芯片和DNA测序芯片两类。基因表达图谱芯片可以将克隆的成千上万个基因特异的探针或其cDNA片段固定在一块DNA芯片上,对于来源不同的个体、组织、细胞周期、发育阶段、分化阶段、病变、刺激(包括不同诱导、不同治疗手段)下的细胞内mRNA或反转录后产生的cDNA进行检测,从而对这个基因表达的个体特异性、组织特异性、发育阶段特异性、分化阶段特异性、病变特异性、刺激特异性进行综合的分析和判断,迅速将某个或某几个基因与疾病联系起来,极大地加快这些基因功能的确定,同时可进一步研究基因与基因间相互作用的关系,DNA测序芯片则是基于杂交测序发展起来的。其原理是任何线状的单链DNA或RNA序列均可裂解成一系列碱基数固定、错落而重叠的寡核苷酸,如能把原序列所有这些错落重叠的寡核苷酸序列全部检测出来,就可据此重新组建出新序列。 2 根据基因芯片所用基因探针的类型不同,可分为cDNA微阵列和寡核苷酸微阵

基因芯片技术及其应用(精)

基因芯片技术及其应用 李家兴1001080728 园艺107 基因芯片( gene chip, DNA chip, DNA microarray 又被称为DNA芯片、DNA微阵列和生物芯片, 是指以大量人工合成的或应用常规分子生物学技术获得的核酸片段作为探针, 按照特定的排列方式和特定的手段固定在硅片、载玻片或塑料片上, 一个指甲盖大小的芯片上排列的探针可以多达上万个[1- 3]。在使用时,先将所研究的样品标记, 然后与芯片上的寡聚核苷酸探针杂交,再用激光共聚焦显微镜等设备对芯片进行扫描, 配合计算机软件系统检测杂交信号的强弱, 从而高效且大规模地获得相关的生物信息。此项技术将大量的核酸分子同时固定在载体上, 一次可检测分析大量的DNA和RNA, 解决了传统核酸印迹杂交技术复杂、自动化程度低、检测目标分子数量少、成本高、效率低等的缺点[4]。此外, 通过设计不同的探针阵列( array , 利用杂交谱重建DNA序列, 还可实现杂交测序( sequencing by hybridization,SBH [5]。目前, 该技术在基因表达研究、基因组研究、序列分析及基因诊断等领域已显示出重要的理论和应用价值[6]。 1 基因芯片技术的产生和发展 21 世纪将是生命科学的世纪, 基因芯片技术是近年产生的一项生物高新技术, 它将像计算机一样成为21 世纪即将来临的又一次新兴革命的奠基石[7,8]。基因芯片技术的产生与发展与人类基因组计划(Human Genome Project, HGP 的研究密不可分[9]。人类基因组的大量信息需要有一种快速、敏感、平行检测的技术,随着越来越多的基因被解码, 基因的功能研究成为迫切需要解决的课题。在这一背景下, 以基因芯片技术为主体的生物芯片诞生了, 它被誉为是20 世纪90 年代中期以来影响最深远的重大科技进展之一。基因芯片技术充分结合灵活运用了寡核苷酸合成、固相合成、PCR 技术、探针标记、分子杂交、大规模集成电路制造技术、荧光显微检测、生物传感器及计算机控制和图像处理等多种技术, 体现了生物技术与其他学科相结合的巨大潜力。基因芯片技术的理论基础是核酸杂交理论, Southern 印迹可以看作是生物芯片的雏形; 其后, 人们又发明了一个以膜片为介质基础的克隆库扫描

基因芯片技术及其应用

基因芯片技术及其应用摘要: DNA芯片技术是指在固相支持物上原位合成寡核苷酸,或者直接将大量的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可获得样品的遗传信息。由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片。 关键词 DNA芯片制备检测应用 随着人类基因组计划的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组测序得以测定,基因序列数据正在以前所未有的速度迅速增长。DNA芯片的出现是科学发展的必然产物。本文就DNA芯片的制备及其在医学领域的应用予以阐述。 1 基因芯片的制备及检测技术[1-4] 1.1 基因芯片的制备方法 1.1.1 原位合成法其中最具代表的是原位光刻合成法。该法是利用分子生物学、微电光刻技术及计算机技术等直接在基片上合成所需的DNA探针。除原位光刻合成法外,原位合成法还包括原位喷印合成和分子印章在片合成法。 1.1.2 直接点样法该法是将制备好的DNA(cDNA)片段直接点在芯片上。近来有人提出用电定位捕获法和选择性沉淀法制备芯片。 1.1.3 电定位捕获法是将生物素标记的探针在电场的作用下快速地固定在含有链霉素亲和素的琼脂糖凝胶膜上。由于生物素与链霉素亲和素的强亲合力,使得探针的固定更加容易和牢固。在电场的作用下,靶基因能快速地在杂交部位积聚,大大缩短了杂交时间,提高了杂交的效率,且改变电场电极的方向可以除去未杂交或低效率杂交的靶基因。 1.1.4 选择性沉淀法该技术是用金属纳米粒标记探针的方法来制备微阵列,靶基因在芯片上与探针杂交后发生选择性沉淀,通过检测沉淀物的电化学值等来获取相应的生物信息。

基因芯片技术论文

生物技术导论 ——基因芯片技术

基因芯片技术 摘要:基因芯片技术具有无可比拟的高效、快速和多参量特点,使其进行基因研究、法医鉴定、疾病检测和药物筛选等方面远远超过了传统方式方法在不远的将来,用它制作的微缩分析仪将广泛地应用于分子生物学、医学基础研究、临床诊断治疗、新药开发、司法鉴定、食品卫生监督、生物武器战争等领域。 关键字:基因芯片简介、基因芯片的种类、基因芯片技术、基因芯片的应用技术举例及其应用领域 一、基因芯片简介 基因芯片(Gene Chip)通常指DNA芯片,其基本原理是将指大量寡核苷酸分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强弱进而判断样品中靶分子的数量,是在90年代中期发展出来的高科技产物。基因芯片大小如指甲盖一般,其基质一般是经过处理后的玻璃片。每个芯片的基面上都可划分出数万至数百万个小区。在指定的小区内,可固定大量具有特定功能、长约20个碱基序列的核酸分子(也叫分子探针)。 二、基因芯片的种类 基因芯片产生的基础则是分子生物学、微电子技术、高分子化学合成技术、激光技术和计算机科学的发展及其有机结合。根据基因芯片制造过程中主要技术的区别,以下是主要的三类基因芯片。 (1)光引导原位合成技术生产寡聚核苷酸微阵列 它采用了照相平板印刷技术技术结合光引导原位寡聚核苷酸合成技术制作DNA芯片,生产过程同电子芯片的生产过程十分相似。采用这种技术生产的基因芯片可以达到1×106/cm2的微探针排列密度,能够在一片1厘米多见方的片基上排列几百万个寡聚核苷酸探针。它不仅可用于寡聚核苷酸的合成,也可用于合成寡肽分子,为合成高密度核酸探针及短肽列阵提供了一条快捷的途径。 (2)微电子芯片 微电子基因芯片,其基质全部以硅、锗与基础的半导体材料,在其上构建25-400个微铂电极位点,各位点可由计算机独立或组合控制。它通过相似微电极的电场变化来使核酸结合,由于引入“电子严谨度”参数使芯片检测通过靶、探针序列特征和使用者要求来控制杂交过程中的严格性。 (3)微量点样技术 使用这种方法生产的芯片上探针不受探针分子大小种类的限制,能够灵活机动地根据使用者的要求制作出符合目的的芯片。由于对检测仪的要求很高,其使用范围受到很大限制

Bioconductor基因芯片数据分析系列(一):数据的读取

Bioconductor基因芯片数据分析系列(一):R包中数据的读取 R软件的Bioconductor包是分析芯片数据的神器,今天小编打算推出芯片数据的系列教程。首先讲数据读取,以CLL数据包中的数据为例。 打开R studio。 #安装所需的R包以及CLL包,注意大小写,一般函数都是小写的 source("https://www.doczj.com/doc/e313786151.html,/biocLite.R"); biocLite(“CLL”) 图1.显示已经安装好Bioconductor了,版本为3.4 #打开CLL包 library(CLL)

图2.显示打开CLL成功

图3.右侧栏内可见看到目前载入的程序包 data(CLLbatch) #调用RMA算法对数据预处理 CLLrma<-rma(CLLbatch) #读取处理后所有样品的基因表达值 e<- exprs(CLLrma) #查看数据 e 我们可以看到,CLL数据集中共有24个样品(CLL10.CEL, CLL11.CEL, CLL12.CEL, 等),此数据集的病人分为两组:稳定组和进展组,采用的设计为两组之间的对照试验(Control Test)。从上面的结果可知,Bioconductor具有强大的数据预处理能力和调用能力,仅仅用了6行代码就完成了数据的读取及预处理。

Bioconductor基因芯片数据分析系列(二):GEO下载数据CEL的读取首先得下载一个数据,读取GEO的CEL文件采用如下命令: 登陆pubmed,找到一个你感兴趣的数据库

在底下栏目下载CEL文件 打开R软件 #安装所需的R包以及CLL包,注意大小写,一般函数都是小写的 source("https://www.doczj.com/doc/e313786151.html,/biocLite.R"); biocLite(“CLL”) >library(affy) >affybatch<- ReadAffy(celfile.path = "GSE36376_RAW") 请注意目录的路径,在window下,反斜杠‘\’要用转义字符“\\”表示。 然后可以使用RMA或者MAS5等方法对数据进行background.correction, normaliztion, pm.correct等等一系列处理。如果你一切用默认参数,则可以使用如下命令: >eset<- rma(affybatch),or eset<- mas5(affybatch) >exp<- exprs(eset) exp就是数字化的表达谱矩阵了 请注意,rma只使用匹配探针(PM)信号,exp数据已经进行log2处理。mas5综合考虑PM和错配探针(MM)信号,exp数据没有取对数。 下一期就得等到2017年春节期间啦,敬请期待~ 另外一种是直接利用GEO上面的GEO2R按钮里面的R script下载文件: # Version info: R 3.2.3, Biobase 2.30.0, GEOquery 2.40.0, limma 3.26.8 # R scripts generated Mon Dec 26 06:54:42 EST 2016 Server: https://www.doczj.com/doc/e313786151.html, Query: acc=GSE36376&platform=GPL10558&type=txt&groups=&color s=&selection=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX&padj=fdr&logtransform=auto&col umns=ID&columns=adj.P.Val&columns=P.Value&columns=F&c

基因芯片绝版复习总结

第一章生物芯片概述生物芯片概念 生物芯片是将大量生物分子按预先设计的排列固定于一种载体表面,利用生物分 子的特异性亲和反应,来分析各种生物分子存在的量的一种技术。 生物芯片的分类 根据生物芯片的结构特点 根据用途不同: 二、生物芯片的研究概况 生物芯片的发展 最初级的生物芯片 DNA芯片 1991 寡核苷酸芯片 1994 测序芯片 1995 cDNA芯片 其他生物芯片 生物芯片技术研究存在的问题 重复性(稳定性)提高 灵敏度增强 标准化实现 设备及软件完善 操作过程简化 三、生物芯片技术的基础知识 生物芯片技术工作的总流程 生物芯片的制备 生物芯片技术主要包括四个基本技术环节: 芯片制备、样品制备、生物分子反应、信号的检测与分析 生物芯片的制备步骤有哪些?分别有什么目的? 基片处理、点样、固定、封闭 第二章核酸芯片

一、核酸芯片简介 概念:核酸芯片是指采用一定的技术将许多特定的DNA序列排列固定于固相支持物表面,然后与标记的样品进行杂交,通过检测杂交信号来实现对生物样品的快速、并行和高效的检测和分析。 二、核酸芯片的载体 载体概念:用于连接、吸附或包埋各种生物分子使其以水不溶性状态行使功能的固相材料统称为载体。 如何选择载体? 载体表面必须具有可进行化学反应的活性基团,以便于生物分子进行偶联。 使单位载体上结合的生物分子达到最佳容量 载体应当是惰性的和有足够的稳定性 载体具有良好的生物兼容性,以利于制作不同种类的芯片。 载体类型:玻片、硅片、硝酸纤维素膜、尼龙膜、塑料等 三、寡核苷酸芯片技术oligonucleotide microarray oligochip概念:寡核苷酸芯片是把寡核苷酸固定在玻片上,与荧光标记的待检序列在一定条件下杂交,经洗涤后扫描获得检测信息。 制作技术与原理 原位合成原理(略) 合成后微点样原理 利用手工或自动点样装置将预先合成和纯化的寡核苷酸点在经特殊处理的载体上即可。 包括接触式与非接触式两种,主要用于中低密度芯片制备 点样方式及点样针 比较三种针的优缺点? 使用裂缝针时,如果看到玻片上某些点没有点上,分析可能的原因? 点印完以后,含有斑点的区域必须加以行列标志,为什么?如何保存? 点样的后期处理 目的:为了使探针能与载体表面牢固结合,同时,避免在杂交过程中非特异性的吸附对实验结果(特别是背景)造成影响。 小结: 寡核苷酸芯片的基本概念 寡核苷酸芯片的制备原理 光引导原位合成 点样针及点样过程 四、cDNA微阵列芯片 cDNA是与mRNA互补的DNA分子,长约0.2-5.0kb。 cDNA微阵列芯片是由固定于基质材料上的cDNA片段组成的微阵列,待测样品标记后与芯片上的探针分子杂交,通过荧光强度的检测对杂交结果进行分析。主要内容: cDNA文库的构建 提高cDNA文库构建的效率 cDNA基因文库构建的步骤 细胞总RNA的提取和mRNA的分离 第一条cDNA合成 双链cDNA合成 双链cDNA克隆进质粒或噬菌体载体并导入宿主中繁殖 cDNA文库构建效率 cDNA文库构建的效率低的表现?

基因芯片技术及其应用

基因芯片技术及其应用 摘要 进入21世纪以来,生命科学发展日益迅速,基因芯片作为生命科学研究的一种新的技术平台日益受到人们的关注,并已经广泛应用于生命科学研究、医学研究、食品卫生领域以及其它相关的各个学科领域。随着技术的不断完善,基因芯片必将在越来越多的领域里面发挥作用。本文阐述了基因芯片的基本概念及技术流程,简述了其在不同领域的应用,并对其发展前景作了展望。 关键词:基因芯片技术流程应用展望 Gene Chip Technology and its Application Shu Mian (College of Horticulture, South China Agricultural University Guangzhou 510642, China) Abstract: Life science has developed rapidly since the 21th century, gene chip, as a new technical platform in the reaseach of Life science, has got increasingly attention, and has been used widely in life science research、medical research、food hygiene field and other related disciplines. With the continuous improvement of the technology, gene chip will be helpful in more fields. This article expounds the basic concepts and technological process of gene chip, gives an introduction of its application in different fields, and a prospection of its development prospect. Key words: gene chip technological process application prospection 基因芯片(gene chip),又称DNA芯片(DNA chip)或DNA微阵列(DNA microarray),是生物芯片的一种类型,它是将DNA分子固定于支持物上,并与标记的样品杂交,通过自动化仪器检测杂交信号的强度来判断样品中靶分子的数量,进而得知样品中mRNA的表达量,也可进行基因突变体的检测和基因序列的测定,为进一步了解基因间的相互关系及基因克隆提供有用的工具。作为一项基于基因

基因芯片技术及其应用

基因芯片技术及其应用 郑敏 (临沂大学生命科学学院,山东临沂276000) 摘要基因芯片(DNA芯片,微阵列)是20世纪后期在杂交理论基础上发展起来的又一个分子生物学技术.将大量的核苷酸探针以点阵列方式排列于特定的固相支持物上,与放射性或荧光标记的样品靶DNA杂交,通过激光共聚焦等技术来分析靶DNA的存在和量的方法.基因芯片技术已基本实现了自动化,应用于功能基因研究、杂交测序、药物筛选诊断、基因表达、基因多态性和突变检测等,在生物学、医学、制药学、环境保护学和农林业等领域上都有极为广阔的应用前景。 .关键词基因芯片;微阵列;分子生物学;基因表达 基因芯片(genechip)是生物芯片(biochip)的一种,又称DNA芯片、DNA微阵列(DNA microarray)、寡核苷酸阵列(oligonucleotide array),是20世纪90年代初随着人类基因组计划的发展而兴起的技术。基因芯片是按预先设计的阵列方式,把大量核酸片段固定在载体基片上,组成密集的按序排列的探针集群,通过与标记样品核酸杂交,检测其杂交信号,从而达到判断靶核酸的有无或数量的目的[1].基因芯片技术室当今生命科学领域集微电子学、生物学、化学、计算机科学于一体的高度交叉的一项尖端应用型新技术,现已成为国际上的前沿和热点[2]。现将基因芯片技术及其应用作一综述。 1基因芯片技术的产生和发展 21 世纪将是生命科学的世纪, 基因芯片技术是近年产生的一项生物高新技术, 它将像计算机一样成为21 世纪即将来临的又一次新兴革命的奠基石[]。基因芯片技术的产生与发展与人类基因组计划(Human Genome Project, HGP) 的研究密不可分[5]。人类基因组的大量信息需要有一种快速、敏感、平行检测的技术,随着越来越多的基因被解码, 基因的功能研究成为迫切需要解决的课题。在这一背景下, 以基因芯片技术为主体的生物芯片诞生了, 它被誉为是20 世纪90 年代中期以来影响最深远的重大科技进展之一。基因芯片技术充分结合并灵活运用了寡核苷酸合成、固相合成、PCR 技术、探针标记、分子杂交、大规模集成电路制造技术、荧光显微检测、生物传感器及计算机控制和图像处理等多种技术, 体现了生物技术与其他学科相结合的巨大潜力。

基因芯片技术基本过程

基因芯片技术基本过程 1 DNA方阵的构建 选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针;(2)或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating device ARD),或阵列机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,再由紫外线交联固定后即得到DNA微阵列或芯片。 2 样品DNA或mRNA的准备。 从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅 读灵敏度。Mosaic Technologies公司发展了一种固相PCR系统,好于传统PCR技术,他们在靶DNA上设计一对双向引物,将其排列在丙烯酰胺薄膜上,这种方法无交叉污染且省去液相处理的繁锁;Lynx Therapeutics公司提出另一个革新的方法,即大规模平行固相克隆(massively parallel solid-phase cloning)这个方法可以对一个样品中数以万计的DNA片段同时进行克隆,且不必分离和单独处理每个克隆,使样品扩增更为有效快速。 在PCR扩增过程中,必须同时进行样品标记,标记方法有荧光标记法、生物素标记法、同位素标记法等。 3 分子杂交 样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测,杂交的严格性较低、低温、时间长、盐浓度高;若用于突变检测,则杂交条件相反。芯片分子杂交的特点是探针固化,样品荧光标记,一次可以对大量生物样品进行检测分析,杂交过程只要30min。美国Nangon公司采用控制电场的方式,使分子杂交速度缩到1min,甚至几秒钟(6)。德国癌症研究院的Jorg Hoheisel等认为以肽核酸(PNA)为探针效果更好。

基因芯片数据分析中的标准化算法和聚类算法

基因芯片数据分析中的标准化算法和聚类算法 北京大学生命科学院 生物信息专业 王向峰 学号:10211058 摘要: 基因芯片技术已经广泛的应用于各种模式生物的功能基因组的研究中,应用芯片技术可以高效,高通量的检测基因表达行为。芯片数据分析中的标准化主要分为芯片内标准化和芯片间标准化,芯片内标准化根据目的不同可分为消除染色偏差的Lowess Normalization ,消除点样针头引起的空间差异的Print-tip Normalization 。常用的芯片间标准化有Quantile Normalization ,Global Normalization 。芯片数据分析中常见的聚类算法有分层聚类(Hierarchical clustering)、K 均值聚类(K-means clustering)、自组织图谱SOM (self organizing map)、PCA (principle component analysis)等等。所有的聚类方法归结为有监督的学习和无监督的学习两种方法。 第一部分 基因芯片的数据标准化(Normalization) 对基因芯片数据的标准化处理,主要目的是消除由于实验技术所导致的表达量(Intensity)的变化,并且使各个样本(sample)和平行实验的数据处于相同的水平,从而使我们可以得到具有生物学意义的基因表达量的变化。标准化的方法根据芯片的种类、数据处理的阶段和目的不同而有所差异。这里主要讨论一下双荧光染色(Red and Green Chip)的cDNA 微列阵(cDNA microarray)的标准化方法。 一、实验数据的预处理(data transformation ) 的细胞进行培养(Cultured Cell),以保证绝大部分的基因可以表达。样本基因是根据试验设计的目的从不同组织,不同发育阶段,不同条件下培养的细胞中提取的cDNA 样本。通过样本基因对参照基因的比值,而判断不同条件下的基因表达量的变化。 扫描仪对基因芯片的图像进行扫描,根据每个点的光密度值尝试相对应的绝对表达量(intensity)。然后图像分析软件通过芯片的背景噪音以及杂交点的光密度分析,对每个点的intensity 校准,然后取样本基因和参照基因的比值(R/G ratio ),作为每个样本基因的相对表达量(relative intensity)。选择相对表达量,可以在一定程度上减少芯片之间,荧光染色,扫描所产生的系统偏差。然后对比值取对数,2log 10 =,选择以2为底的对数方便于对 基因表达量变化的研究,比如R/G=1 ,则2log 10=,即认为表达量没有发生变化,当R/G=2 或者,R/G=0.5,则log 值为1 或 –1,这是可以认为表达量都发生两倍的变化,只是一个是

相关主题
文本预览
相关文档 最新文档