当前位置:文档之家› 高中二年级解三角形综合练习题

高中二年级解三角形综合练习题

高中二年级解三角形综合练习题
高中二年级解三角形综合练习题

解三角形

一、选择题

1.在△ABC中,角A,B,C的对边分别为a,b,c.若A=60°,c=2,b=1,则a=( )

A.1 B. 3

C.2 D.3

2.设a,b,c分别是△ABC中角A,B,C所对的边,则直线l1:sin A·x+ay+c=0与l

2

:bx-sin B·y+sin C=0的位置关系是( )

A.平行B.重合

C.垂直D.相交但不垂直

3.在△ABC中,若2cos B sin A=sin C,则△ABC的形状一定是( )

A.等腰直角三角形B.直角三角形

C.等腰三角形D.等边三角形

4.在△ABC中,已知A∶B=1∶2,∠ACB的平分线CD把三角形分成面积为3∶2的两部分,则cos A等于( )

A.1

3

B.

1

2

C.3

4

D.0

5.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于( )

A.

3

2

B.

33

2

C.3+6

2

D.

3+39

4

6.已知锐角三角形三边长分别为3,4,a,则a的取值范围为( )

A.1

C.7

D.7

7.在△ABC中,内角A,B,C所对的边分别为a,b,c.若A=60°,b=1,且

△ABC 的面积为3,则a =( )

A .43-1 B.37 C.13

D .1

8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( ) A .(0,π6]

B .[π6

,π) C .(0,π

3

]

D .[

π3

,π)

9.如图,△ADC 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 与

AC 交于E 点.若AB =2,则AE 的长为( )

A.6- 2

B.1

2(6-2) C.6+ 2

D.1

2

(6+2) 10.如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC ,ED ,则sin ∠CED =( )

A.310

10 B.1010 C.510

D.515

11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =π

3

,a =3,b =1,则

c 等于( )

A .1

B .2 C.3-1

D. 3

12.符合下列条件的三角形有且只有一个的是( ) A .a =1,b =2,c =3 B .a =1,b =2,A =30° C .a =1,b =2,A =100° D .b =c =1,B =45°

13.在△ABC 中,若B =120°,则a 2+ac +c 2-b 2的值( ) A .大于0 B .小于0 C .等于0

D .不确定

14.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )

A.4

3

B.8-4 3

C.1 D.2 3

15.设a,b,c为△ABC的三边,且关于x的方程(a2+bc)x2+2b2+c2x+1=0有两个相等的实数根,则A的度数是( )

A.120° B.90°

C.60° D.30°

16.在△ABC中,a、b、c分别为A、B、C的对应边,C=60°,则

b

a+c

a

b+c

值为( )

A.1

2

B.

2

2

C.1 D. 2

17.海上有两个小岛A、B相距10海里,从A岛望B岛和C岛成60°视角,从B 岛望C岛和A岛成75°视角,则B、C间的距离是( )

A.5海里B.56海里

C.10海里D.106海里

18.在锐角三角形ABC中,已知A=2C,则a

c

的范围是( )

A.(0,2) B.(2,2)

C.(2,3) D.(3,2)

19.在△ABC中,若(a-a cos B)sin B=(b-c cos C)sin A,则这个三角形是( ) A.底角不等于45°的等腰三角形

B.锐角不等于45°的直角三角形

C.等腰直角三角形

D.等腰三角形或直角三角形

20.某人站在山顶看见一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车和第二辆车之间的距离d1与

第二辆车和第三辆车之间的距离d2之间的关系为( )

A.d1>d2B.d1=d2

C.d1

二、填空题

21.在△ABC中,已知∠BAC=60°,∠ABC=45°,BC=3,则AC=________.

22.在△ABC中,若a=2,b+c=7,cos B=-1

4

,则b=________.

23.如图,海岸线上有相距5海里的两座灯塔A,B,灯塔B位于灯塔A的正南方向,海上停泊着两艘货轮,甲船位于灯塔A的北偏西75°方向,与A相距32海里的D处;乙船位于灯塔B的北偏西60°方向,与B相距5海里的C处,则两货轮的距离为________海里.

24.在△ABC中,已知(b+c)∶(c+a)∶(a+b)=8∶9∶10,则sin A∶sin B∶sin C =________.

25.设△ABC的内角A,B,C所对的边分别为a,b,c,则下列命题正确的是________(写出所有正确命题的编号).

①若a>b,则函数f(x)=(sin A-sin B)x在R上是增函数;②若sin2A=sin2B,

则A=B;③若cos2A=cos2B,则A=B;④若ab>c2,则0

3

.

26.在相距2 km的A、B两点处测量目标点C.若∠CAB=75°,∠CBA=60°,则A、C两点之间的距离是________km.

27.在△ABC中,B=45°,C=60°,a=2(3+1),则S△ABC=________.

28.已知在△ABC中,

7

sin A

8

sin B

13

sin C

,则C的度数为________.

29.在△ABC中,已知b=a sin C且c=a sin(90°-B),则△ABC的形状为________.

30.如图,要在山坡上A、B两处测量与地面垂直的铁塔CD的高,由A、B两处测得塔顶C的仰角分别为60°和45°,AB长为40 m,斜坡与水平面成30°角,则铁塔CD的高为________m.

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

解三角形大题及答案

(I)求 (II)若,求. 2.(2013四川)在 中,角的对边分别为,且 . (Ⅰ)求的值; (Ⅱ)若,,求向量在方向上的投影. 3.(2013山东)设△ 的内角所对的边分别为,且,, . (Ⅰ)求的值; (Ⅱ)求的值. 4.(2013湖北)在 中,角,,对应的边分别是,,.已知 . (I)求角的大小; (II)若的面积,,求的值. 5.(2013新课标)△ 在内角的对边分别为,已知. (Ⅰ)求; (Ⅱ)若 ,求△ 面积的最大值. 6.(2013新课标1)如图,在△ABC中,∠ABC=90°,AB= 3 ,BC=1,P 为△ABC内一点,∠BPC=90° (1)若PB=1 2 ,求PA;(2)若∠APB=150°,求tan∠PBA [ 7.(2013江西)在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-3sinA)cosB=0. (1) 求角B 的大小; (2)若a+c=1,求b 的取值范围 B sin sin A C = C ABC ?,,A B C ,,a b c 2 3 2cos cos sin()sin cos()25 A B B A B B A C ---++=-cos A a =5b =BA u u u r BC uuu r ABC ,,A B C ,,a b c 6a c +=2b =7 cos 9 B = ,a c sin()A B -ABC ?A B C a b c ()cos23cos 1A B C -+=A ABC ?S =5b =sin sin B C

(I)求 (II)若,求. 【答案】 4.(2013年高考四川卷(理))在 中,角的对边分别为,且 . (Ⅰ)求的值; (Ⅱ)若,,求向量在方向上的投影. 【答案】解: 由,得 , 即, 则,即 B sin sin A C = C ABC ?,,A B C ,,a b c 2 3 2cos cos sin()sin cos()25 A B B A B B A C ---++=-cos A a =5b =BA u u u r BC uuu r ()I ()()2 3 2cos cos sin sin cos 25 A B B A B B A C ---++=-()()3 cos 1cos sin sin cos 5 A B B A B B B -+---=-????()()3 cos cos sin sin 5 A B B A B B ---=- ()3cos 5A B B -+=- 3cos 5 A =-

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

高中数学-解三角形知识点汇总及典型例题1

解三角形的必备知识和典型例题及详解 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2 +b 2 =c 2 。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B = c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角.

解三角形大题专练(2020更新)

解三角形大题专练 1.(2018·北京)在△ABC 中,a =7,b =8,cos B =-1 7. (1)求∠A ; (2)求AC 边上的高. 解 (1)在△ABC 中,因为cos B =-1 7, 所以sin B =1-cos 2 B =43 7 . 由正弦定理得sin A = a sin B b =3 2 . 由题设知π2<∠B <π,所以0<∠A <π 2, 所以∠A =π 3. (2)在△ABC 中, 因为sin C =sin(A +B )=sin A cos B +cos A sin B =33 14 , 所以AC 边上的高为a sin C =7×3314=33 2 . 2.在△ABC 中,∠A =60°,c =3 7 a . ①求sin C 的值; ②若a =7,求△ABC 的面积. [解析](2)(文)①在△ABC 中,因为∠A =60°,c =3 7a , 所以由正弦定理得sin C = c sin A a =37×32=33 14 . ②因为a =7,所以c =3 7 ×7=3. 由余弦定理a 2=b 2+c 2-2bc cos A 得72=b 2+32 -2b ×3×12, 解得b =8或b =-5(舍). 所以△ABC 的面积S =12bc sin A =12×8×3×3 2 =6 3.

3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2 B 2 . ①求cos B ; ②若a +c =6,△ABC 的面积为2,求b . (理)①解法一:∵sin(A +C )=8sin 2 B 2, ∴sin B =8sin 2 B 2,即2sin B 2·cos B 2=8sin 2 B 2, ∵sin B 2>0,∴cos B 2=4sin B 2 , ∴cos 2B 2=1-sin 2B 2=16sin 2B 2,∴sin 2B 2=117 ∴cos B =1-2sin 2B 2=1517 . 解法二:由题设及A +B +C =π得sin B =8sin 2 B 2,故sin B =4(1-cos B ). 上式两边平方,整理得17cos 2 B -32cos B +15=0, 解得cos B =1(舍去),cos B =15 17 . ②由cos B =1517得sin B =817,故S △ABC =12ac sin B =4 17ac . 又S △ABC =2,则ac =17 2. 由余弦定理及a +c =6得, b 2=a 2+ c 2-2ac cos B =(a +c )2-2ac (1+cos B ) =36-17×32 17 =4,∴b =2. 4.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知. (1)求tanC 的值; (2)若△ABC 的面积为3,求b 的值。 【答案】(1)2;(2)3. 【思路分析】(1)根据正弦定理可将条件中的边之间的关系转化为角之间满足的关系,再将式子作三角恒等变形即可求解;(2)根据条件首先求得sinB 的值,再结合正弦定理以及三角形面积的计算公式即可求解. 2221 ,42 A b a c π =-=

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

高中数学必修五第一章解三角形知识点总结及练习题

第一章 解三角形 1、正弦定理: 在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有: 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④ sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 注意:正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。 2、已知两角和一边,求其余的量。 ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况)如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。具体的做法是:数形结合思想 画出图:法一:把a 扰着C 当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B 有两个解。 法二:是算出CD=bsinA,看a 的情况: 当ab 时,B 有一解

注:当A 为钝角或是直角时以此类推既可。 3、三角形面积公式: 111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 4、余弦定理: 在C ?AB 中,有2222cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论: 222 cos 2b c a bc +-A =, 222 cos 2a c b ac +-B =, 222 cos 2a b c C ab +-=. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状: 设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >. 7、正余弦定理的综合应用: 如图所示:隔河看两目标A 、B, C 并测得∠ACB=75O , ∠BCD=45O , ∠ADC=30O ,

解三角形大题经典练习

解三角形大题经典练习

高考大题练习(解三角形1) 1在"BC中,内角A*的对边分别为a,b,c,已知co TZ 普 cosB (1)求哑的值;(2)若cos^1,^2,求:ABC的面积S . sin A 4 C 2、在.ABC中,角A, B,C的对边分别是a,b,c,已知si nC?cosC=1-s in . 2 (1)求sin C的值; (2)若a2 b2=4(a b) -8,求边c 的值. 3、在. ABC中,角A,B,C的对边分别是a,b,c . ■TT d (1)若sin(A ^2 cos A,求A 的值;(2)若cosA= —,b=3c,求sinC 的值. 6 3 5 3 4、- ABC 中,D 为边BC 上的一点,BD=33,sin B ,cos ADC ,求AD . 13 5 高考大题练习(解三角形1、在ABC中,角A,B,C的对边分别是a,b,c,已知 1 a =1, b =2, cosC 二- 4 (1)求ABC的周长;(2)求cos(A-C)的值. 2、在ABC中,角A, B,C的对边分别是a,b,c .已知si n A ? si nC二psi nB(p?R),且 ac」b2. (1)当p =5,b =1时,求a,c的值;(2)若角B为锐角,求p的取值范围. 4 4 3、在ABC 中,角A, B,C 的对边分别是a,b,c .且2asi nA = (2b,c)si nB,(2c,b)si nC . (1)求A的值;(2)求sin B sinC的最大值. 1 4、在ABC中,角A, B,C的对边分别是a,b,c,已知cos2C - 4

(1)求sinC 的值;(2)当a=2,2s in A=s in C 时,求b,c 的长. 高考大题练习(解三角形3) A 2x15 T 1、在ABC中,角A,B,C的对边分别是a,b,c,且满足cos , AB A^ 3 . 2 5

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

【高中数学】解三角形基本题型

解三角形 解三角形 正弦定理的基本运用 1、 △A BC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为 。 2、 在△ABC 中,b cos A =a cos B ,则三角形为 。 3、 已知△ABC 中,a =10,B =60°,C =45°,则c = 。 4、 在△ABC 中,已知150,350,30==?=c b B ,那么这个三角形是 。 5、 在ABC ?中,?===452232B b a ,,,则A 为 。 6、 在△ABC 中,A =60°,C =45°,b =2,则此三角形的最小边长为 。

余弦定理的基本运用 1、 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于 。 2、 已知△ABC 的面积2,32,3===b a S ,解此三角形。 3、 在△ABC 中,1326+===c b a ,,,求A 、B 、C 。 4、 在△ABC 中,化简b cos C +c cos B = 。 5、 在△ABC 中,化简 ) cos cos cos (222c C b B a A c b a abc ++++。 正余弦定理的综合运用 1、已知在△ABC 中,c =10,A =45°,C =30°,求a 、b 和 B 。 2、在△ABC 中,c =22,tan A =3,tan B =2,试求a 、b 及此三角形的面积。 3、在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC 等于 。

4、已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为。 5、△ABC中,A=60°,b=1,这个三角形的面积为3,则△ABC外接圆的直径 为。 6、在△ABC中,BC=3,AB=2,且 )1 6 ( 5 2 sin sin + = B C ,A=。

解三角形高考大题-带答案汇编

解三角形高考大题,带答案 1. (宁夏17)(本小题满分12分) 如图,ACD △是等边三角形,ABC △是等腰直角三角形, 90ACB =∠,BD 交AC 于E ,2AB =. (Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE . 解:(Ⅰ)因为9060150BCD =+=∠, CB AC CD ==, 所以15CBE =∠. 所以62 cos cos(4530)4 CBE +=-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理 2 sin(4515)sin(9015) AE =-+. 故2sin 30 cos15 AE = 122 624 ? = +62=-. 12分 2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。 (1)按下列要求写出函数关系式: ①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式; (2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。 【解析】:本小题考查函数的概念、 解三角形、导数等基本知识,考查数学建模能力、 抽象概括能力和解决实际问题的能力。 (1)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad ),则10 cos cos AQ OA BAO θ = =∠, 故10 cos OB θ = 又1010OP tan θ=-,所以1010 1010cos cos y OA OB OP tan θθθ =++= ++- B A C D E B C D A O P

解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;s in s in B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

解三角形大题与答案36029

1.(2013大纲)设ABC ?的角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=. (I)求B (II)若31 sin sin 4 A C -= ,求C . 2.(2013)在 ABC ?中,角,,A B C 的对边分别为,,a b c ,且 2 3 2cos cos sin()sin cos()25 A B B A B B A C ---++=-. (Ⅰ)求cos A 的值; (Ⅱ)若42a =,5b =,求向量BA u u u r 在BC uuu r 方向上的投影. 3.(2013)设△ ABC 的角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7 cos 9 B = . (Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值. 4.(2013)在ABC ?中,角A ,B ,C 对应的边分别是a ,b ,c .已知()cos23cos 1A B C -+=. (I)求角A 的大小; (II)若ABC ?的面积53S =,5b =,求sin sin B C 的值. 5.(2013新课标)△ABC 在角 ,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (Ⅰ)求B ; (Ⅱ)若2b =,求△ABC 面积的最大值. 6.(2013新课标1)如图,在△ABC 中,∠ABC=90°,AB=3,BC=1,P 为△ABC 一点,∠BPC=90° (1)若PB=1 2 ,求PA;(2)若∠APB=150°,求tan ∠PBA [ 7.(2013)在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA- sinA)cosB=0.

(完整版)高中数学解三角形方法大全

解三角形 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解 【例1】考查正弦定理的应用 (1)ABC ?中,若ο 60=B ,4 2 tan = A ,2=BC ,则=AC _____; (2)ABC ?中,若ο 30=A ,2= b ,1=a ,则=C ____; (3)ABC ?中,若ο 45=A ,24=b ,8=a ,则=C ____; (4)ABC ?中,若A c a sin =,则c b a +的最大值为_____。

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ?中,已知a、b、A (1)若A为钝角或直角,则当b a>时,ABC ?有唯一解;否则无解。 (2)若A为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b< < sin时,三角形有两解; 当b a≥时,三角形有唯一解 实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式 1.余弦定理:在ABC ?中,角C B A、 、的对边分别为c b a、 、,则有 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ,其变式为: ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2.余弦定理及其变式可用来解决以下两类三角形问题: (1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; (2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; 说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决 3.三角形的面积公式 (1) c b a ABC ch bh ah S 2 1 2 1 2 1 = = = ? ( a h、 b h、 c h分别表示a、b、c上的高); (2)B ac A bc C ab S ABC sin 2 1 sin 2 1 sin 2 1 = = = ? (3)= ?ABC S C B A R sin sin sin 22(R为外接圆半径) (4) R abc S ABC4 = ? ; (5)) )( )( (c p b p a p p S ABC - - - = ? 其中) ( 2 1 c b a p+ + = (6)l r S ABC ? = ?2 1 (r是内切圆的半径,l是三角形的周长)

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

相关主题
文本预览
相关文档 最新文档