当前位置:文档之家› 工业互联网中的标识解析技术

工业互联网中的标识解析技术

工业互联网中的标识解析技术

分析

Technology Analysis

D

I G I T C W 技术

84DIGITCW

2019.09

物联网的通信技术与物联网物体的价值是目前物联网在发展的过程中遇到的两个基础问题。而物联网物体的价值问题是推动物联网发展的中心问题,主要是对为什么万物互联或是万物互联产生的价值进行分析。物联网是由许多部分组成,其中最重要的两个部分是智能制造以及工业互联网,在世界经济格局的变化下,各国对于这两个组成部分的发展越来越重视,特别是中国、美国等国家为代表,世界上的重要经济大国对于这个领域都在不断地增加研究和投入,希望能够通过先进的技术提高制造业的生产效率,以及加强国家自身制造业的竞争水平。每个国家都有自身的战略,我国的目标是希望将互联网与工业结合在一起进行创新,促进网络和工业结合的发展,利用新技术推动传统制造行业的发展。运用智能化制造所涉及到的各类割裂数据的理解和应用是未来工业互联网关键技术及应用方向之一,但是要想对各类数据掌握和理解并不是一件容易的事情,需要对数据的开始、过程以及用途都有认识并了解,目前能够达到这个要求的技术就是标识解析技术。所以,标识解析技术在现在工业互联网中的应用受到了很多关注。

1 标识解析技术的简介

(1)标识解析技术的分类。在各类的物体上或是客观对象所具有的差别于其他事物的名称标记,这就是标识的主要内容,标记的内容可以是数字、字母以及符号文字等。目前有几种技术都使用了标识解析技术,分别是Handle 、OID 、Ecode 和EPC 等技术。这几种技术是不同的机构研发出来的,并且适用的范围和功能等都是不一样的,但是这些技术主要都是对客观现象进行解读并做出标记,还能够有相对应信息的查询以及浏览信息的工作技术。目前最主要的三种标识解析技术主要是Handle 、Ecode 、OID 。(2)标识解析技术在工业互联网中的运用。标识解析技术之所以越来越被人们所重视,是因为其能够给企业生产的信息管理系统、资源控制系统和网络等系统提供所需要的数据,让企业能够更方便地进行运营,并且标识解析技术还能够管理和控制目标对象。标识解析技术除了在工业互联网中能够提供所需的数据解读之外,这项技术还有另外一个功能,那就是可以对项目对象进行解读以此搜索内容和查询信息,这也大大增加了数据解析结果的使用。工业互联网的标识解析技术在以前只能够对主机进行解读,使用范围非常小,并且主机在运行的过程中只有单一的功能,但是在信息技术与互联网的快速发展下,工业互联网的标识解析技术发展到了可以对各类物品、信息和有关的服务资源进行全面的查询,并且运行的过程中其他主机、其他机构等都能够支持完整性的功能,实现了真正智能化制造的目标。标识编码技术和标识载体技术是标识解析技术在工业互联网中的主要内容。

2 工业互联网背景下标识解析技术的发展趋势

以往人们对互联网进入工业前的理解,主要是理解数据的表

面内容,而所相关的物体中存在的大量信息和内容并没进行深刻

的了解。现在随着信息技术的快速发展,工业与互联网的联系越来越多,物联网的体系也逐渐形成,标识解析技术在工业互联网中的重要地位也逐渐被人们所重视,并且在加大了对这一技术的发掘。但是目前有两个问题是阻碍标识解析技术的发挥。虽然人们已经找到了措施,但依旧存在漏洞,对此,为了能够促进标识解析技术的发展,可从以下两个方面进行研究。

(1)面向标识解析技术的标准化研发思路。目前智能制造相关基础共性标准和关键技术的研发,在各个具体行业中的使用已经是非常重要的一个研发。标识解析技术的标准化研发可以将国内智能制造企业设备升级换代问题进行解决,加强企业智能制造水平,将互联网与制造业结合在一起,发展企业与互联网共同制造的方式。另外,在未来工业面对大数据的需求时,标识技术的应用是最实际的,标识技术不仅可以解决行业内部的需求和各类环境,还可以在不同行业中建立使行业间能够数据融合、理解的问题。因此研发标准化的标识解析技术可以对工业生产起到关键的作用,还能够保证我国的制造业不断地发展。制造企业在数据互联互通、互操作技术方面,需要针对同一个或一类物体在制造企业内部、行业内部、跨企业、跨行业信息应用过程中进行统一表达以及标识寻址,所以,有需要建设一套完整的数据解析及理解体系。

(2)数据的理解要求。能够将数据做到互通、共享和融合是目前发展工业互联网的主要目标,然而要想实现这一目标首先就要对数据进行理解。对数据的理解不仅全面的理解物体特征的描述,企业内部也要对数据进行统一的理解,这一的理解才能够具有存在的意义。但是,我国的工业发展以及企业内部,或是企业与企业之间大部分都没有对数据的理解有一个统一的标准,因此要想将互联网与工业结合在一起就必须要有完善的信息和处理技术。

3 结束语

要想互联网技术与工业的发展紧密的结合在一起,工业互联网要形成一个新的体系,并且促进工业技术的发展,除了需要每个网络之间实现联系,还需要网络之间互相传输的数据和信息能够被统一的理解和接受,从而真正的实现对数据的使用。要想做到真正的智能化制造,不紧要大量的搜集不同的信息,并且还要编制成一个统一的数据库。因此标识解析技术也成为了工业互联网的主要目标。参考文献

[1] 杜娟,王峰.互联网的内涵、服务体系及对制造业的作用路径[J].电信科学,2016,(1):98-104.

[2] 杨思维.升级版德国工业4.0平台经验对我国制造业的影响[J].电信科学,2016,(1):108-111.

工业互联网中的标识解析技术

李旭娇

(中通服咨询设计研究院有限公司,南京 210019)

摘要:工业互联网的应用中有一项重要的技术是标识解析技术,这项技术的操作要具有规范性和标准性。能够对不同的数据价值进行更深层次的探讨和使用是标识解析技术的作用,这个过程是对数据的开始到结束变化可能产生的作用进行统计与理解。工业互联网中的一项基础技术就是标识解析技术,本文主要对工业互联网中的标识解析技术进行简要分析。

关键词:工业互联网;标识解析doi :10.3969/J.ISSN.1672-7274.2019.09.061中图分类号:TN92,TP393.4 文献标示码:A 文章编码:1672-7274(2019)09-0084-01

物联网导论习题解答

物联网导论习题解答 第1章概述 一、本章学习目标 本章主要了解物联网的起源、物联网关键技术及其应用进展;掌握物联网的概念与定义、物联网的特征、信息处理流程与物联网框架结构、物联网的基本结构、物联网的层次框架。 二、本章知识点 ●物联网的概念与定义 ●物联网的特征 ●信息处理流程与物联网框架结构 ●物联网的基本结构、物联网的层次框架 三、习题及解答 1. 物联网的含义包含哪些方面? 答:“物联网”或“The Internet of Things”具有以下含义: (1)“物联网”依然是一个网,是一个在现有互联网基础上的网,应具有互联网的共性,这些共性应包括信息传输、信息交换、信息存储与信息的应用。 (2)物联网中的“物”应具有英特网中的终端或端点的特性,即“物”可以被寻址,“物”可以“产生”信息、交换信息。 (3)物联网中的“物”“所产生”的信息可以加以应用,或者说,人们可以应用“物”的信息。 (4)物联网应为人服务,能满足人的某些方面的需求,如果不能为人服务,它是没有意义的。 2. 学术界、我国及国际组织对物联网是如何定义的? 答:学术界对物联网的定义有以下几个: (1)面向互联网的定义:“全球化的基础设施,连接物理与虚拟的对象,以应用其捕获的数据和通信功能。这个基础设施包括了现存的和演进的英特网和网络,它将提供特殊的对象识别、感知和连接能力,以作为开发独立的、协作的、服务和应用基础。这些将是由高度自治的数据捕获、事件传输、网络互联和交互为特征的”。该定义是由CASAGRAS(Coordination and Support Action for Global RFID-related Activities and Standardisation,全球RFID运作及标准化协调支持行动)提出的。 (2)面向物的定义:在智能空间,被辨识的、拟人化操作的物,通过界面连接,与社区、环境和用户进行交互。 (3)面向语义的定义:“利用适当的建模解决方案,对物体进行描述、对物联网产生的数据进行推理、适应物联网需求的语义执行环境和架构、可扩展性存储和通信基础设施。”。面向语义的定义来源于IPSO (IP for Smart Objects)联盟。 我国及国际组织对物联网的定义为: (1)我国的定义:物联网是指通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。它是在互联网基础上延伸和扩展的网络。

最新基于工业互联网平台的创新应用案例(框架)

附件2 基于工业互联网平台的创新应用案例(框架) 填写说明:工业互联网平台解决方案服务商需和应用企业一起填报;允许提交多个案例,每个案例均需按框架要求撰写。 一、基本信息

二、工业互联网平台解决方案(4000字,建议平台服务商填写) (一)解决方案概述(1000字以内) 1.解决方案能解决哪些问题 针对的应用场景,能解决的痛点问题 2.解决方案服务范围 首先从哪个行业入手,目前已在哪些行业部署实施 3.解决方案的特征/优势 (1)与传统方案相比有何优势 (2)同类型解决方案服务商还有哪些,与之相比有何优势 (二)解决方案技术实现(2000字以内)

按照通用型解决方案描述,不需要针对特定案例 (三)应用效果(500字以内) 1.理论上可实现的效果 2.在企业实际落地的效果 (四)创新点及推广价值(500字以内) 1.创新点 应用什么新技术;带来什么新价值、新效果;拓展什么新业务; 形成什么新模式、新业态等 2.推广价值 区域、行业、领域等可复制性、规模化应用价值 三、工业互联网平台创新应用案例(建议应用企业填写,5000字) (一)工业互联网平台应用的背景和诉求(1000字内) 工业企业为何选择工业互联网平台应用,是否能解决当前问题。内容包括但不限于: 1.企业面临的挑战 梳理企业发展面临的内外部挑战,分析企业现有竞争力有哪些 不足,总结企业基于工业互联网平台提升或重塑核心竞争力的主要

诉求。 2.工业互联网平台应用思路 一是总体规划。介绍企业基于工业互联网平台开展数字化转型的整体战略、目标和规划等。 二是分步实施。现阶段哪些关键业务环节开展了平台应用。 (二)工业互联网平台创新应用(2500字以内) 1.拟解决的痛点 2.选择服务商的主要考虑因素: (如:服务商是知名品牌、部署成本低、技术领先、安全性高、长期合作伙伴、政府推荐等方面) 3.技术方案 结合应用企业信息化基础、业务特点、设备设施改造、系统集成情况、数据开发利用情况等实际描述。 4.应用成效 (1)在优化已有业务方面,形成的可量化效果 (2)在业务创新方面,形成的新产品、新模式、新价值 (3)其他可量化的经济效益和社会效益 ……

物联网体系与标准重点内容(1)

物联网体系与标准重点内容 一、选择题(15*2=30分) 1、国际标准组织:(各国家成员体、每个国家只有l票投票权) 国际标准组织是指得到国际贸易组织( WTO )认可的,并按照WTO TBT 协议所开展标准化工作的三大标准化组织,包括国际标准化组织(International Organization for Standardization, ISO)、国际电工委员会(International Electrotechnical Commission, IEC)、国际电信联盟(International Telecommunication Union, ITU)。 2、区域标准化组织(欧洲三大):欧洲电工标准化委员会(CENELEC)、欧洲标准化委员会(CEN)、欧洲电信联盟(ETSI)。 3、协会和联盟组织: 电气与电子工程师学会(Institute of Electrical and Electronics Engineers, IEEE)、互联网工程任务组(Internet Engineering Task Force, IETF)、国际自动化学会(International Society of Automation,ISA )。(2、3均由公司、企业、单位或个人组成,组成方式相对松散,任何参会成员只要具备了投票的资格,则可行使投票权利。) 4、感知层(由数据采集子层及短距离通信技术和协同信息处理子层组成): 数据采集子层通过各种类型的传感器获取物理世界中发生的物理事件和数据信息,涉及:传感器、RFID、多媒体信息采集、二维条码和实时定位等技术。短距离通信技术和协同信息处理子层将采集到的数据在局部范围内进行协同处理。 5、网络层(将来自感知层的各类信息通过基础承载网络传输到应用层): 可作为透明传输的网络层,也可升级以满足未来不同内容传输的要求。涉及智能路由器、不同网络传输协议的互通、自组织通信等多种网络技术。其中,全局范围内的标识解析将在该层完成。该部分除全局标识解析外,其它技术较为成熟,以采用现有标准为主。 6、应用层(对信息资源进行采集、开发和利用(物联网的核心功能)): (1)服务支撑子层的主要功能是根据底层采集的数据,形成与业务需求相适应、实时更新的动态数据资源库。(2)各业务应用领域可以针对业务类型进行细分,包括绿色农业、工业监控、公共安全、城市管理、远程医疗、智能家居、智能交通、智能电力和环境监测等各类不同的业务服务。 7、物联网标识(标识+解析,标识完成编码标识符注册分配功能,解析完成对分布式数据库元数据的查询功能): (1)、物联网标识主要用于在一定范围内唯一识别物联网中的物理和逻辑实体,并基于此对目标对象进行相关控制和管理,以及相关信息的获取、处理、传送与交换。标识是指按一定规则赋予物品易于机器和人识别、处理的标识符/代码,它是物联网对象在信息网络中的身份标识,是一个物理编码,它实现了物的数字化。标识符应满足以下要求:可用于不同的应用、可用来分配给现实世界的实体、被非营利性机构、政府或个人用户发布、全球唯一、能够支持多种标识方案。标识的分类:对象标识、应用标识、节点标识、通信地址。解析的类型:对象标识→服务标识→通信地址、服务标识→通信地址、节点标识→通信地址。(2)、OID:(编码结构为树形结构——分布式数据库)一种应用范围广泛的标识机制标准,OID是与对象相关联的用来无歧义地标识对象的全局唯一的值,可保

物联网体系架构知识总结.pdf

物联网体系架构知识总结 最初的物联网概念,国内普遍认为的是MIT Auto-ID中心Ashton教授1999年在研究RFID时最早提出来的,当时还被称之为传感网,其定义是:通过射频识别(RFID)、红外线感应、全球定位系统、激光扫描器等信息传感设备,按照约定的协议,任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。 在2005年国际电信联盟(ITU)发布的同名报告中,物联网的定义发生了变化,覆盖范围有了较大的拓展,不再只是指基于RFID技术的物联网,提出任何时刻、任何地点、任何物体之间的互联,无所不在的网络和无所不在计算的发展愿景,初RFID技术外、传感器技术、纳米技术、智能终端等技术到今天也得到了更加广泛的应用。 在我国,物联网的概念经过政府与企业的大力扶持已经深入人心。现在的物联网已经被贴上了“中国式”的标签,其含义为:物联网是将无处不在的末端设备和设施,包括具备“内在智能”的传感器、移动终端、工业系统、楼控系统、家庭智能设施、视频监控系统等,和“外在使能”的,如贴上RFID的各种资产、携带无线终端的个人与车辆的等等的“智能化物件或动物”或“智能尘埃”,通过各种无线和有限的长距离和短距离通讯网络实现互联互通(M2M)、应用大集成、以及基于计算机的SaaS营运等模式,在内网、专网、互联网的环境下,采用时适当的信息安全保障机制,提供安全可控乃至个性化的实时在线监测、定位追溯、报警联动、调度指挥、预案管理、远程控制、安全防范、远程维保、在线升级、统计报表、决策支持等管理和服务功能,实现对“万物”的高效、节能、安全、环保的“管、控、营”一体化。 物联网体系

工业互联网标准体系白皮书

工业互联网标准体系 白皮书

目录 编写说明 一、工业互联网产业发展情况 (1) 二、工业互联网标准体系建设的思路及原则 (3) (一)总体思路 (3) (二)基本原则 (3) 三、工业互联网标准体系框架 (4) (一)工业互联网标准体系框架 (4) (二)重点标准化领域和方向 (6) 四、工业互联网标准化推进建议 (14) (一)统筹部署协同推进工业互联网标准化 (14) (二)推进工业互联网标准验证和标准推广 (14) (三)加强国际标准化合作与交流 (15)

工业互联网是满足工业智能化发展的关键网络基础设施,是新一代信息技术与现代工业全方位深度融合所形成的新兴业态与应用模式。加快发展具有中国特色的工业互联网,既是我国实现工业大国向工业强国转变的重要基础,也是我国互联网发展的重大机遇,对推进我国工业转型升级具有重要的意义。 一、工业互联网产业发展情况 工业互联网产业生态系统主要指制造体系中与数据采集、传送、处理、反馈等相关的产业环节,涉及制造环节中的设备智能化使能、系统集成、网络互联、工业互联网平台、应用、安全等方面。目前,全球工业互联网产业生态正在加快构建,随着跨系统、跨企业互联交互需求的增加,对工业互联网的标准化的需求也在不断提升。 1.设备改造及系统集成 我国已经具备一定的设备、产品的研发能力和基础,但联网程度较低,数据没有得到充分利用,亟需加强设备和产品的数字化、网络化、智能化改造。系统集成大多采用定制化解决方案,可复制性较低,且大多面临核心技术薄弱、应用领域单一等问题,亟需提升系统开放性,提高互联互通及互操作能力。 2.工业互联网网络互联 工业互联网网络互联包含工厂外部网络和工厂内部网 — 1—

工业互联网标识解析二级节点建设导则

工业互联网标识解析二级节点 建设导则

编写说明 工业互联网标识解析体系类似于互联网域名系统(DNS),为全球制造业发展和工业互联网普及提供关键资源和基础服务,以及跨国家、跨地域、跨行业、跨企业的全球信息互联互通能力,是整个工业互联网网络实现互联互通的关键基础设施。2017 年11 月27 日,国务院印发了《关于深化“互联网+先进制造业”发展工业互联网的指导意见》,将“推进标识解析体系建设”列为主要任务之一。2018 年,工业和信息化部发布了《工业互联网发展行动计划(2018-2020 年)》,提出“标识解析体系构建行动”。其中,工业互联网标识解析二级节点是工业互联网标识解析体系的重要组成部分,向上对接标识解析国家顶级节点,向下对接企业标识节点及应用系统,提供标识注册服务、标识解析服务、标识数据服务、运行监测等功能,是推动标识解析体系建设、应用发展和产业生态构建的重要环节。目前,工业互联网标识解析二级节点受到业界的高度关注,一批二级节点正在各地快速展开建设和应用探索。为规范工业互联网标识解析二级节点的建设、运营和发展,工业互联网产业联盟组织编写了本导则。 本导则共包含六个部分,第一部分简要阐述了工业互联网标识解析体系的内涵和架构,其中二级节点是整个工业互

联网标识解析体系的重要组成;第二部分描述了二级节点的定位和作用;第三部分给出了二级节点的类型和命名规则;第四部分归纳了二级节点建设的核心内容,包括总体框架以及管理体系、功能体系、应用体系和接口规范;第五部分给出了二级节点的建设模式;第六部分给出了二级节点运营要求。 本导则在编制过程中,得到了目前国内各种主要标识体系(GS1、Handle、OID、Ecode 等)管理机构的大力支持,也充分参考了其他标识解析服务机构、标识解析应用企业、标识解析解决方案提供商的宝贵意见和建议。这些单位围绕标识解析系统建设、运营管理、应用推广所开展的实践与探索,都为本导则编制提供了重要的支撑。

物联网标识白皮书 (1)

物联网标识白皮书 (2013年) 工业和信息化部电信研究院 2013年5月

版权声明 本白皮书版权属于工业和信息化部电信研究院,并受法律保护。转载、摘编或利用其它方式使用本白皮书文字或者观点的,应注明“来源:工业和信息化部电信研究院”。违反上述声明者,本院将追究其相关法律责任。

工业和信息化部电信研究院发表《物联网标识白皮书》旨在与业 界同仁分享在物联网标识领域的研究成果。 近年来,物联网的相关技术、应用与产业发展引起了全球范围的广泛关注,已经成为当前世界新一轮经济和科技发展的战略制高点。物联网突破了人与人之间的通信模式,引入对物理世界的感知和控制,使得人与物、物与物间的通信与协作成为可能。而作为用于识别和区分不同物理和逻辑实体以及信息资源的物联网标识则是实现以上通信与应用的基础和前提。目前,物联网标识研究已经成为国际和国内的研究热点之一,各领域出现了成熟程度不一、应用范围不等的多种标识体系,也呈现了众多标识技术共存且应用现状复杂的状态。 本白皮书对物联网标识的概念、标识的解析以及标识的管理进行 了分析,总结提出了物联网标识体系。在对标识发展现状和趋势进行 研究的基础上,分析了我国物联网标识发展面临的挑战,提出了我国 物联网标识发展思考与建议,希望能为业界提供有价值的参考。

一、物联网标识概述 物联网是通信网和互联网的网络延伸和应用拓展,是新一代信息技术的高度集成和综合运用,它利用感知技术与智能装置对物理世界进行感知识别,通过网络传输互联,进行计算、处理和知识挖掘,实现人与物、物与物的信息交互和无缝链接,以达到对物理世界实时控制、精确管理和科学决策的目的。 在物联网中,为了实现人与物、物与物的通信以及各类应用,需要利用标识来对人和物等对象、终端和设备等网络节点以及各类业务应用进行识别,并通过标识解析与寻址等技术进行翻译、映射和转换,以获取相应的地址或关联信息。 (一) 物联网标识概念 物联网标识用于在一定范围内唯一识别物联网中的物理和逻辑 实体、资源、服务,使网络、应用能够基于其对目标对象进行控制和管理,以及进行相关信息的获取、处理、传送与交换。 (二) 物联网标识体系 基于识别目标、应用场景、技术特点等不同,物联网标识可以分成对象标识、通信标识和应用标识三类。一套完整的物联网应用流程需由这三类标识共同配合完成。 结合物联网分层体系架构、标识分类、标识形态和配套分配管理要求,可总结规划物联网标识体系如图1 所示。

工业互联网标识解析-产品追溯白皮书

工业互联网标识解析产品追溯白皮书

目录 一、工业互联网为产品追溯开启新篇章 (1) (一) 产品追溯的内涵 (1) (二) 产品追溯的变革 (2) (三) 产品追溯的整体视图 (3) 二、全球产品追溯体系发展状况 (6) (一) 全球发展态势 (6) (二) 我国政府策略 (8) (三) 网络基础设施 (10) (四) 技术标准体系 (11) 三、产品追溯体系发展面临的问题 (13) (一) 缺乏顶层设计,体系不够健全 (13) (二) 数据开放不足,无法有效利用 (15) (三) 开放主导空位,缺失链条效应 (16) (四) 开放缺乏途径,基础设施不足 (17) (五) 数据规范匮乏,信息孤岛割裂 (19) (六) 存在信任危机,需要保障安全 (20) (七) 价值体现不足,商业模式质疑 (21) 四、产品追溯体系发展的趋势和方向 (23) (一) 逐步构建完善的产品追溯体系 (23) (二) 有序推进产品追溯数据开放 (24) (三) 构建产品追溯体系基础设施 (26) (四) 制定产品数据规范及融合机制 (27) (五) 夯实可信认证公共服务体系 (28) (六) 挖掘数据附加值及衍生服务 (30) 五、推动我国产品追溯体系发展的措施建议 (34) (一) 政策引导 (34) (二) 实施路径 (36) (三) 生态环境 (36)

(四) 试验示范 (37) (五) 标准体系 (38) (六) 国际合作 (39)

一、工业互联网为产品追溯开启新篇章 (一) 产品追溯的内涵 近年来,随着互联网和新一代信息技术与传统行业的加速融合, 全球新一轮科技革命和产业变革正蓬勃兴起,一系列新的生产方式、 组织方式和商业模式不断涌现,工业互联网应运而生,正在推动全球工 业体系的深刻变革。工业互联网的本质是以机器、原材料、控制系统、 信息系统、产品以及人之间的网络互联为基础,通过对工业数据的全面 深度感知、实时传输交换、快速计算处理和高级建模分析,实现智能控制、运营优化和生产组织方式变革。 产品追溯将成为工业互联网驱动产业变革的一个典型应用场景。 它是指产品从制造、流通、消费到回收的整个生命周期过程中,利用标 识技术记录和查询产品状态、属性、位置等信息的过程,其目的是全方 位记录产品信息数据,促进企业内部信息系统之间、企业之间、企业和 用户之间信息的有效共享,提高工业企业网络化、智能化水平。 标识及标识解析技术是实现产品追溯的核心关键。其中,工业互 联网标识,就类似于互联网域名,赋予每一个产品、零部件、机器设备 唯一的“身份证”,实现资源区分和管理;工业互联网标识解析,类似 于互联网域名解析,可以通过产品标识查询存储产品信息的服务器地址,或者直接查询产品信息以及相关服务。 如图1 所示,以某企业生产一台空调为例。从原材料供应、生产制造、物流运输、分发销售到使用,产品(空调)具有唯一的标识,

工业互联网发展概述

工业互联网发展概述

把握工业互联网平台发展的战略机遇 工业互联网是新一代信息通信技术与现代工业技术深度融合的产物,是制造业数字化、网络化、智能化的重要载体,也是全球新一轮产业竞争的制高点。党的十九大报告指出,“加快建设制造强国,加快发展先进制造业,推动互联网、大数据、人工智能和实体经济深度融合。”2017 年 10 月 30 日,国务院常务会审议通过《深化“互联网+先进制造业”发展工业互联网的指导意见》,促进实 体经济振兴,加快转型升级。工业互联网通过构建连接机器、物料、人、信息系统的基础网络,实现工业数据的全面感知、动态传输、实时分析,形成科学决 策与智能控制,提高制造资源配置效率,正成为领军企业竞争的新赛道、全球产业布局的新方向、制造大国竞争的新焦点。作为工业互联网三大要素,工业互 联网平台是工业全要素链接的枢纽,是工业资源配置的核心,对于振兴我国实体经济、推动制造业向中高端迈进具有重要意义。 工业互联网平台是面向制造业数字化、网络化、智能化需求,构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在连接、弹性供给、高效配置的工业云平台。其本质是通过构建精准、实时、高效的数据采集互联体系, 建立面向工业大数据存储、集成、访问、分析、管理的开发环境,实现工业技术、经验、知识的模型化、标准化、软件化、复用化,不断优化研发设计、生产制造、运营管理等资源配置效率,形成资源富集、多方参与、合作共赢、协同演进的制

造业新生态。关于工业互联网平台有四个定位: 第一,工业互联网平台是传统工业云平台的迭代升级。 从工业云平台到工业互联网平台演进包括成本驱动导向、集成应用导向、能力交易导向、创新引领导向、生态构建导向五个阶段,工业互联网平台在传统工业云平台的软件工具共享、业务系统集成基础上,叠加了制造能力开放、知识经验复用与开发者集聚的功能,大幅提升工业知识生产、传播、利用效率,形成海量开放 APP 应用与工业用户之间相互促进、双向迭代的生态体系。第二,工业互联网平台是新工业体系的“操作系统”。工业互联网的兴起与发展将打破原有封闭、隔离又固化的工业系统,扁平、灵活而高效的组织架构将成为新工业体系的基本形态。工业互联网平台依托高效的设备集成模块、强大的数据处理引擎、开放的开发环境工具、组件化的工业知识微服务,向下对接海量工业装备、仪器、产品,向上支撑工业智能化应用的快速开发与部署,发挥着类似于微软Windows、谷歌 Android 系统和苹果 iOS 系统的重要作用,支撑构建了基于软件定义的高度灵活与智能的工业体系。第三,工业互联网平台是资源集聚共享的有效载体。工业互联网平台将信息流、资金流、人才创意、制造工具和制造能力在云端汇聚,将工业企业、信息通信企业、互联网企业、第三方开发者等主体在云端集聚,将数据科学、工业科学、管理科学、信息科学、计算机科学在云端融合,推动资源、主体、知识集聚共享,形成社会化的协同生产方式和组织模式。

工业互联网标识解析-集装箱标识编码规范

工业互联网标识解析集装箱 标识编码规范 Identification and Resolution System for the Industrial Internet—Freight Containers —Identification Coding Specification

目次 前言.............................................................................. I 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 编码的组成 (1) 4.1编码原则 (1) 4.2编码结构 (1) 5 标识前缀 (2) 6 标识后缀 (2) 6.1编码结构 (2) 6.2物品类别代码 (3) 6.3物品名称代码 (3) 6.4物品型号规格代码 (3) 6.5物品序列号代码 (4) 6.6日期代码 (4) 6.7企业内部物品编码 (4) 6.8其他(可选项) (4) 附录A (5)

T11/AII 003-2020 工业互联网标识解析集装箱标识编码规范 1 范围 本文件规定了集装箱行业工业互联网标识编码的组成、编码结构、各部分的编码规则以及对应代码表。 本文件适用于集装箱行业工业互联网标识编码体系建设以及标识对象信息的处理与交换。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 1836-2017 集装箱代码、识别和标记(ISO 6346:1995,IDT) GB/T 1992 集装箱术语(ISO 830,MOD) GB/T 12418-2001 钢质通用集装箱修理技术要求 GB/T 33574-2017 集装箱生产序列号编码 3 术语和定义 GB/T 1992中界定的术语和定义以及下列术语和定义适用于本文件。 3.1 标识编码 Identification code 能够唯一识别机器、产品等物理资源和算法、工序等虚拟资源的身份符号。 3.2 标识解析 Identifier resolution 根据标识编码查询目标对象网络位置或者相关信息。 4 编码的组成 4.1 编码原则 4.1.1 唯一性 在工业互联网领域内,标识编码应保证不重复,每一个编码仅对应一个对象。 4.1.2 兼容性 与国内已有的本行业相关编码标准应协调一致,保持继承性和实际使用的延续性。 满足相关信息系统之间进行数据交换的要求。 4.1.3 实用性 以满足本行业资源管理和信息交换为目标,编码规则应符合该行业的普遍认识,考虑企业信息化系统建设和标识实际应用现状,设计相对全面、合理、有用的编码结构。 4.1.4 可扩展性 应根据本行业工业互联网应用需求,规划合理的编码容量并预留适当空间,以保证可在本编码体系下进行扩展、细化。 4.1.5 科学性 编码结构应简洁明确,必要时设置校验码位、安全码,以保证编码的正确性和安全性。编码结构一旦确定,应保持相对稳定。 4.2 编码结构 集装箱行业工业互联网标识编码由标识前缀和标识后缀两部分组成,前缀与后缀之间以UTF-8字符“/”分隔,其中标识前缀由国家代码、行业代码、企业代码组成,用于唯一标识企业主体;标识后缀 1

物联网与物品标签(整理的)

物品标识和物联网 摘要:文章探讨了物联网应用中的标识等问题,并分析了物联网的物联网在以后的生活中的重要性。 关键词:物联网,物品标识 1 引言 物联网是将传感器、执行器、智能装置以及通过标签标识的各种物体以一定的通信技术连接所组成的网络。 物联网要真正实现全球的互联互通,标准化是亟需解决的重要问题,而要将各种物体连接到网络中,并实现物与物、物与系统、物与人之间的通信以及基于此的各种应用,首先必须对物联网涉及的各种实体进行高效、唯一的标识。因此,目前国际国内相关标准化组织都在积极推进物联网的编码、标识以及寻址相关技术的研究工作。迄今为止,各标准组织还未形成统一的国际标准。当前主要的相关技术标准体系有EPCglobal的EPC(Electric Product Code,电子产品代码)系列规范、UID Center(Ubiquitous ID Center,泛在识别中心)的UID系列规范、ISO/IEC的相关系列标准、IETF的ESDS(Extensible Supply-chain Discovery Service,可扩展的应用链发现服务)标准等。 由于物品标识的标准直接与物品息息相关,涉及到各国家、各行业以及各企业的切身利益,尤其当物品编码和标识在物联网中流通后将进一步增强物品编码管理权的重要性,因此各标准组织、各国家、各行业也还在进一步酝酿各自的物品编码与标识标准。可见,遵循不同标准的物品编码将共存于物联网之中,并且伴随着物联网的发展,不断会有新的物品编码标准出现。如何解决不同标准之间物品编码、标识以及在物联网中的寻址问题,已成为未来物联网大规模应用时不可回避的关键问题之一。 2 物联网时代对标识的需要 标识是一种自动识别各种物联网物理和逻辑实体的方法,识别之后才可以实现对物体信息的整合和共享、对物体的管理和控制、对相关数据的正确路由和定位,并以此为基础实现各种各样的物联网应用。 物联网主要采用赋予性标识。賦予性标识是为了识别方便而人为分配的标识,如物品编码、手机号、Ip地址等,通常由数字、字母等符号按照一定编码规则组合而成,相对基于自然属性的本质性标识,賦予性标识形式简单易于保存、读取和处理.是现阶段物联网中标识的主要形式。物联网中有物理实体、通信实体和应用实体三种类型的对象需要标识。 物理实体:是指在实现对信息的获取、传递和处理以及对物的控制等各种物联网应用和管理的过程中,要与网络发生联系的任何物体。如各种传感器、执行器、贴有标签的物体(如动物、货物、食品)以及各种智能装置(如数码产品、家用电器)等。

工业互联网标识解析应用研究

工业互联网标识解析应用研究 作者:毕可骏 来源:《数字技术与应用》2020年第09期 摘要:从工业1.0到工业4.0发展过程中,生产制造管理从纸质标签逐步过渡到数字标签管理。因标签管理多样化、标签规范不统一,导致工业协同生产过程效率低、时延长、成本高、难度大、易出错等特征。本文首先讨论了现有工业领域标识管理及协同生产现状,其次对现有标识解析技术及标识模型进行了概述和分析,再次阐述了基于工业协同化需求条件下工业互联网标识解析与标识模型在工业协同领域的应用研究,最后对未来发展趋势进行了展望。 关键词:工业互联网;标识解析;工业生产;制造协同;标识应用 中图分类号:TP311 文献标识码:A 文章编号:1007-9416(2020)09-0072-03 0 引言 随着2020年新冠疫情突然来袭,对全球经济社会发展产生了重大冲击和影响。作为生产制造业主力军的制造型企业在此次疫情中面临着严峻考验,高效的生产、品质管控、快速协同、精细化管理、供应链全链路标识统一等成为制约制造企业快速响应市场需求、生产协同无缝对接、企业高质量发展的决定因素。 随着近年来物联网、云计算、区块链、大数据、5G等新兴技术不断发展,工业互联网作为IT(Information Technology)与OT(Operational Technology)深度融合的产物应运而生。在工业制造过程中,覆盖工厂OT网络的大量生产数据、分析数据、运营数据等与IT网络中的管理数据、研发数据、工艺设计数据等异类系统间的数据互通互用需求日益增加。标识解析作为工业互联网网络建设重要组成之一,针对工业协同领域业务需求,利用标识载体的主动标识载体、通信模组、MCU等、被动标识载体、NFC、一维条形码、二维码等作为系统数据采集的主要来源,覆盖生产协同制造过程的采购、物料、生产设备、工艺流程、品质检验、零部件、产品信息等海量要素数据、异构数据,通过统一规范标识、数据分类、数据管理、数据共享,将工业互联网标识解析与工业制造过程深度融合,形成标识信息可识别、可互联、可理解、可协同、可互用、可共享,实现跨系统、跨领域、跨企业的标识数据管理新模式、应用新方向。 1 工业领域协同生产现状分析 生产制造过程是工业企业重点关注环节之一,也是供应链全链路不可或缺的重要部分。从蒸汽时代到智能化生产,从工业1.0到工业4.0,工业制造企业不断在发展中积累经验,不断从市场变化中探索新模式。

物联网感知与控制技术复习

物联网感知与控制技术复习 1、2009年10月(IBM)提出了“智慧地球”。 2、智慧地球是(美国)提出来的。 3、2003年11月4日,沃尔玛宣布:他将采用RFID技术追踪其供应链系统中的商品,并要求其前100大供应商从(2005年1月)起将所有发送到沃尔玛的货盘和外包装箱贴上电子标签。 4、我国开始传感网的研究是在(1999)年。 5、2009年8月7日,温家宝考察中科院无锡高新微纳传感网工程技术研发中心。强调“在传感网发展中,要早一点谋划未来,早一点攻破核心技术,把传感系统和3G 中的TD技术结合起来”。 6、2010年1月,传感(物联)网技术产业联盟在无锡成立。 7、感知中国中心设在(无锡)。 8、物联网已被明确列入《国家中长期科学技术发展规划(2006-2020年)》和2050年国家产业路线图。 9、物联网的中国标准组织有那些(电子标签国家标准工作组、传感网络标准工作组、泛在网技术工作委员会、中国物联网标准联合工作组)。 10、物联网技术体系主要包括(感知延伸层技术、网络层技术、应用层技术)。 11、三层结构类型的物联网不包括(会话层)。 12、物联网网络层技术主要用于实现物联网信息的双向传递和控制,重点在于适应物物通信需求的无线接入网和核心网的网络改造和优化,以及满足低功耗、低速率等物物通信特点的感知层通信和组网技术。 13、物联网应用层主要包含应用支撑子层和应用服务子层,在技术方面主要用于支撑信息的智能处理和开放的业务环境,以及各种行业和公众的具体应用。 14、物联网信息开放平台:将各种信息和数据进行统一汇聚、整合、分类和交换,并在安全范围内开放给各种应用服务。 15、物联网中间件平台:用于支撑泛在应用的其他平台,例如封装和抽象网络和业务能力,向应用提供统一开放的接口等。 16、物联网服务可以划分为行业服务和公众服务。 17、物联网行业服务通常是面向行业自身特有的需求,由行业系统内企业提供的服务。如智能电力、智能交通、智能环境等。 18、物联网公共服务则是面向公众的普遍需求,由跨行业的企业主体提供的综合性服务,如智能家居等。 19、物联网共性支撑技术是不属于网络某个特定的层面,而是与网络的每层都有关系,主要包括:网络架构、标识解析、网络管理、安全、QoS等。 20、物联网的主要特征(全面感知、功能强大、可靠传送)。 21、物联网的工作原理。 ①、对物体属性进行标识(静态、动态),静态属性可以直接存储在标签中,动态属性要先由传感网实时进行探测 ②、需要识别设备完成对物体属性的读取,并将信息转换为适合网络传输的数据格式 ③、物体的信息通过网络传输到信息处理中心 ④、处理中心完成对物体通信的相关计算 22、运用云计算、数据挖掘以及模糊识别等人工智能技术,对海量的数据和信息进行分析和处理,对物体实施智能化的控制,指的是(可靠传递)。 23、物联网的核心是(应用)。 24、物联网(Internet of things)被称为是信息技术的一次革命性创新,成为国内外IT 业界和社会关注的焦点之一。它可以分为标识、感知、处理、信息传送四个环节。 25、物联网的服务应用层主要功能:信息处理、应用集成、云计算、解析服务、网络管理、智能控制和Web服务等。 原理部分 1、IBM智能地球战略的主要构成部分(RFID标签、实时信息处理软件、传感器)。 2、数据采集和感知用于采集物理世界中发生的物理事件和数据,主要包括(传感器、RFID 、二维码、多媒体信息采集)。 3、传感器的组成:传感器一般由敏感元件、变换元件和其他辅助元件组成。 4、按转换原理分类:物理传感器和化学传感器 5、自动识别技术根据识别对象的特征可以分为两大类,分别是数据采集技术和特征提取技术。 6、传感器(Sensor / Transducer)是指能把物理、化学量转变成便于利用和输出的电信号,用于获取被测信息,完成信号的检测和转换的器件。 7、力敏传感器接受力信息,并转化为电信号。 10、声敏传感器接受声信息,并转化为电信号。 11、OCR的三个重要的应用领域是:办公室自动化中的文本输入、邮件自动处理、与自动获取文本过程相关的其他领域。 12、二维码目前不能表示的数据类型(视频)。

工业互联网平台技术白皮书

工业互联网平台技术白皮书

目录 一、工业互联网平台的整体态势 (1) (一)全球工业互联网平台保持活跃创新态势 (1) (二)我国工业互联网平台呈现蓬勃发展良好局面 (1) (三)工业互联网平台整体仍处于发展初期 (2) 二、工业互联网平台的应用路径 (3) (一)平台应用场景逐步聚焦,国内外呈现不同发展特点 (3) (二)我国平台应用进展迅速,大中小企业协同推进 (5) 1.平台应用全面开展,模式创新与跨界融合成为我国特色.5 2.我国大中小企业基于平台并行推进创新应用与能力普及.7 (三)平台应用发展层次与价值机理逐步清晰 (9) 1.由单点信息化走向跨域智能化,应用呈现三大发展层次.9 2.数据分析深度与工业机理复杂度决定平台应用优化价值和 发展热度 (12) (四)垂直行业平台应用走向纵深 (13) 1.高端装备行业重点围绕产品全生命周期开展平台应用.. 13 2.流程行业以资产、生产、价值链的复杂与系统性优化为应用 重点 (15) 3.家电、汽车等行业侧重于规模化定制、质量管理与产品后服 务应用 (17)

4.制药、食品等行业的平台应用以产品溯源与经营管理优化为 重点 (18) 5.电子信息制造业重点关注质量管理与生产效率提升 (19) 三、工业互联网平台的技术进展 (20) (一)边缘功能重心由接入数据向用好数据演进 (22) 1.数据接入由定制化方案走向平台通用服务 (22) 2.边缘数据分析从简单规则向复杂分析延伸 (23) 3.通用IT 软硬件架构向边缘侧下沉,为边缘应用创新提供更 好载体和环境 (24) (二)模型的沉淀、集成与管理成平台工业赋能的核心能力. 26 1.信息模型规范统一成为平台提升工业要素管理水平的关键 (26) 2.机理模型、数据模型、业务模型加速沉淀,工业服务能力不 断强化 (27) 3.多类模型融合集成,推动数字孪生由概念走向落地 (28) (三)数据管理与分析从定制开发走向成熟商业方案 (29) 1.平台聚焦工业特色需求,强化工业数据管控能力 (29) 2.实时分析与人工智能成为平台数据分析技术的创新热点. 30 3.平台贴近工业实际,完善工具不断提高工业数据易用性. 31 (四)平台架构向资源灵活组织、功能封装复用、开发敏捷高效加速演进 (32) 1.容器、微服务技术演进大幅提升平台基础架构灵活性.. 32

I0T物联网框架

物联网(IOT)笔记 物联网概论 基本含义:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网通过有线或无线方式与互联网连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。 应用范围:交通、医疗、农业、环境保护、政府工作、公共安全、智能家具、智能消防、工业监测等。 问题:技术标准问题、协议与安全问题、商业模式与产业链问题、政策法规问题等 技术体系: 感知延伸层技术: 数据采集和感知:传感器、RFID、二维码、多媒体信息采集 无线传输(略) 延伸网:传感器网、家庭网、个域网、车域网等。 网络层技术: 电信网增强、下一代承载网、网络资源虚拟化、物物通信无线接入、环境感知、异构网融合等 应用层技术: 应用支撑子层:信息开放平台,环境支撑平台,服务支撑平台,其他中间件平台。 应用服务子层(略) 共性支撑技术 包括:网络架构、标识解析、网络管理、安全、QoS等 RFID技术:利用射频信号及其空间耦合和传输特性进行的非接触双向通信,实现对静止或

移动物体的自动识别,并进行数据交换的一种识别技术。包括射频标签和识读器两部分。 无线传感网(WSN ):一种自动感知、采集和处理其覆盖区域中被感知对象的各种变化的技术。 嵌入式技术:一种将硬件和软件结合、组成嵌入式系统的技术。 纳米与微机电技术:为让所有对象都具备联网及数据处理能力,运算芯片的微型化和精准度的重要性与日俱增。 分布式信息管理技术:每个传感节点都是数据源和处理点,都有数据库存取、识别、处理、通讯和响应等作业,需要用分布式信息管理技术来操纵这些节点。 (人工智能、云计算) 逻辑结构划分: 感知层:实现物体的感知、识别、监测、数据或数据变化采集,以及反应与控制等。包括自主识别技术产品和传感器(条码、RFID 、传感器等),无线传输技术(WLAN 、Biuetooth 、ZigBee/UWB ),自组织组网技术和中间件技术。 网络层:实现更加广泛的互联功能,能够把感知到的信息无障碍、高可靠性、高安全性地进行传送,需要传感器网络与移动通信技术、互联网技术相融合。 应用层:应用层主要包含应用支撑平台子层和应用服务子层。 其中应用支撑平台子层用于支撑跨行业、跨应用、跨系统之间的信息协同、共享、互通的功能。应用服务子层包括智能交通、智能医疗、智能家居、智能物流、智能电力等行业应用。 物联网产业链:

工业互联网标准体系(版本2.0)

工业互联网标准体系 (版本2.0) 工业互联网产业联盟(AII) 2019年2月

指导单位:工业和信息化部 联合牵头编写单位:中国航天科工集团有限公司、中国信息通信研究院 参与编写单位:中国科学院沈阳自动化研究所、华为技术有限公司、海尔集团、三一集团有限公司、中国电信集团股份有限公司、北京奇安信科技有限公司、中国联合网络通信有限公司、中国移动通信集团有限公司、阿里云计算有限公司、清华大学、北京索为系统技术股份有限公司、中兴通讯股份有限公司、潍柴动力股份有限公司、用友网络科技股份有限公司、智能云科信息科技有限公司、富士康科技集团、工业和信息化部电子第一研究所、机械工业仪器仪表综合技术经济研究所、北京机械工业自动化研究所、浙江中控技术股份有限公司、江苏徐工信息技术股份有限公司、上海威派格智慧水务股份有限公司、中国物品编码中心、北京和利时智能技术有限公司、万向集团公司研究院、上海宝信软件股份有限公司、中国电子信息产业集团电子六所、树根互联技术有限公司、比亚迪股份有限公司、北京六方云科技有限公司、网神信息技术(北京)股份有限公司 编写组成员: 中国航天科工集团有限公司:魏毅寅、李曙春、张萍、柴旭东、侯宝存、王飞、李国栋、朱虹、秦鹏、李云鹏、于文涛、邹萍、姜海森、谷牧、孙博雅、黄健、石伟、黄羿清

中国信息通信研究院:续合元、石友康、李海花、黄颖、沈彬、张恒升、罗松、刘默、刘棣斐、田慧荣、李艺、杜霖、李南、刘棣斐、池程、田娟、陈洁、林欢 中国科学院沈阳自动化研究所:曾鹏、李栋、刘意杨、刘阳、张华良 华为技术有限公司:秦尧、李汉涛、张朝辉、王雨晨、彭炎、周亚灵、赵黎黎 海尔集团:陈录城、张维杰、王晓虎、任涛林、张海港三一集团有限公司:贺东东、王锦霞 中国电信集团股份有限公司:杨震、孙健、王志宏、张东、李洁、龚晟、张建雄、徐敏捷、程涛 北京奇安信科技有限公司:陶耀东 中国联合网络通信集团有限公司:陈晓天、许冬勇、巫灵珊 中国移动通信集团有限公司:陈维、王荣、张峰 阿里云计算有限公司:刘松、张大江、刘欢、李俊平、胡鑫、杨国彦、刘宇航 清华大学:王建民、王晨 北京索为系统技术股份有限公司:王战 中兴通讯股份有限公司:楚俊生、张博山、李斌、王继刚 潍柴动力股份有限公司:曹志月、陆成长、高庆

工业互联网服务平台方案

工业互联网服务平台方案

一、项目概况
1. 项目背景
传化深耕制造业 32 年,深知中国制造转型之痛,除了缺乏智能化、数字化的基础 设施与生产装备外,本质是缺乏服务中国制造的一揽子供应链系统解决方案, 物 流、信息技术、金融服务、业务协同无法有效连接,供应链缺乏组织化管理, 带 来运行效率低、综合成本高。为此,传化智联聚焦工业制造供应链服务体系的 痛 点,开展了基于智能供应链服务打造“互联网+先进制造”服务体系的实践探索, 服务工 业生产及上下游资料高效流转,支撑实体经济发展。
2. 项目目的
围绕生产制造的供应链服务,聚焦于生产企业原材料、半成品、产成品等资 料的流通服务,通过平台化资源集聚、智能调度、智能监控,为生产制造企业打 造协同、高效、低成本的供应链服务体系。
3. 项目目标
依托于传化遍布全国的城市物流中心网络及业务能力,构建面向生产制造企 业提供一体化供应链协同服务的工业互联网(服务)平台,实现:

平台应用云服务:实现企业物流供应链仓储、配送、运输、园区数字化、智 能化;
平台云服务:实现业务及技术 PaaS 服务,提供智能分拨、配载、路由等 服务;
平台基础设施服务:计算、存储、网络基础设施服务;物联网络、设备 数据采集终端等。
二、项目实施概况
1. 传化工业互联网(服务)平台总体架构
(1) 平台功能构架 传化工业互联网(服务)平台构建起了面向生产制造企业端到端的智能供应 链服务体系,初步已形成由“工业制造智能供应链服务”、“工业数字化服务”、“城市 物流中心服务”、“供应链金融服务”、“生态创新服务”五大服务生态体系。
图 1:平台功能架构 工业制造智能供应链服务: 为跨行业生产制造企业、原材料供应商、运
输服务企业、政府、配套企业提供灵活组合、一体化的工业制造供应链 服务,实现与智能工厂、智能化生产线的充分融合,对原材料、成品的 全过程实现智能化、精细化管控,支撑柔性生产、大规模定制、高端生 产制造。 工业数字化服务:为生产制造企业、行业及政府提供数字化服务。基于 平台沉淀的原材料供应、仓储、干线运输、配送、业务交易等海量的生

相关主题
文本预览
相关文档 最新文档