当前位置:文档之家› 基因检测概述

基因检测概述

基因检测概述
基因检测概述

基因检测(gene test)

基因是DNA分子上的一个功能片断,是遗传信息的基本单位,是决定一切生物物种最基本的因子;基因决定人的生老病死,是健康、靓丽、长寿之因,是生命的操纵者和调控者。因此,哪里有生命,哪里就有基因,一切生命的存在与衰亡的形式都是由基因决定的,包括您的长相、身高、体重、肤色、性格等均与基因密不可分。

基因检测是通过血液、其他体液、或细胞对DNA进行检测的技术。

了解基因

基因(Gene,Mendelian factor)是指携带有遗传信息的DNA或RNA序列(即基因是具有遗传效应的DNA或RNA片段),也称为遗传因子,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。

基因与健康

现代医学研究证明,除外伤外,几乎所有的疾病都和基因有关系。像血液分不同血型一样,人体中正常基因也分为不同的基因型,即基因多态型。不同的基因型对环境因素的敏感性不同,敏感基因型在环境因素的作用下可引起疾病。另外,单独由异常基因直接引起疾病,被称为为遗传病。

可以说,引发疾病的根本原因有三种:

(1)基因的后天突变;

(2)正常基因与环境之间的相互作用;

(3)遗传的基因缺陷。

绝大部分疾病,都可以在基因中发现病因。

基因通过其对蛋白质合成的指导,决定我们吸收食物,从身体中排除毒物和应对感染的效率。

第一类与遗传有关的疾病有四千多种,通过基因由父亲或母亲遗传获得。

第二类疾病是常见病,例如心脏病、糖尿病、多种癌症等,是多种基因和多种环境因素相互作用的结果。

基因是人类遗传信息的化学载体,决定我们与前辈的相似和不相似之处。在基因“工作”正常的时候,我们的身体能够发育正常,功能正常。如果一个基因不正常,甚至基因中一个非常小的片断不正常,则可以引起发育异常、疾病,甚至死亡。

健康的身体依赖身体不断的更新,保证蛋白质数量和质量的正常,这些蛋白质互相配合保证身体各种功能的正常执行。每一种蛋白质都是一种相应的基因的产物。

基因可以发生变化,有些变化不引起蛋白质数量或质量的改变,有些则引起。基因的这种改变叫做基因突变。蛋白质在数量或质量上发生变化,会引起身体功能的不正常以致造成疾病。

基因检测概念

基因检测是通过血液、其他体液或细胞对DNA进行检测的技术,是取被检测者脱落的口腔黏膜细胞或其他组织细胞,扩增其基因信息后,通过特定设备对被检测者细胞中的DNA分子信息作检测,预知身体患疾病的风险,分析它所含有的各种基因情况,从而使人们能了解自己的基因信息,从而通过改善自己的生活环境和生活习惯,避免或延缓疾病的发生。

基因检测可以诊断疾病,也可以用于疾病风险的预测。疾病诊断是用基因检测技术检测引起遗传性疾病的突变基因。目前应用最广泛的基因检测是新生儿遗传性疾病的检测、遗传疾病的诊断和某些常见病的辅助诊断。目前有1000多种遗传性疾病可以通过基因检测技术做出诊断。

预测性基因检测即利用基因检测技术在疾病发生前就发现疾病发生的风险,提早预防或采取有效的干预措施。目前已经有20多种疾病可以用基因检测的方法进行预测。

检测的时候,先把受检者的基因从血液或其他细胞中提取出来。然后用可以识别可能存在突变的基因的引物和PCR技术将这部分基因复制很多倍,用有特殊标记物的突变基因探针方法、酶切方法、基因序列检测方法等判断这部分基因是否存在突变或存在敏感基因型。

基因检测:指通过基因芯片等方法对被测者细胞中的DNA分子进行检测,并分析被检测者所含致病基因、疾病易感性基因等情况的一种技术。

目前基因检测的方法主要有:荧光定量PCR、基因芯片、液态生物芯片与微流控技术等。

传统检测的区别

我们通常的医疗检测手段是针对疾病的具体症状或已有病变进行检测。现代科学的发展促进了医疗检验手段的不断发展,可以深入细微之处对疾病进行纵向或横向的剖析。

大家都知道,人体的基本组成部分是细胞,如果可以对细胞展开一种实质的剖析,就可以找到疾病产生的根源。如癌症是人体细胞发生突变并大量复制的结果。一般医疗检测手段是要看你身体是否已经有癌细胞存在,而对于没有产生癌

变的细胞但已经具有的风险却无从得知。基因检测则不然,通过基因检测完全可以准确地告诉你,未来某个生命时段是否存在发生某种疾病的可能性或机率,给你一个预警通知,以便及早采取有效的防病措施。

基因检测与常规体检的区别?

疾病易感基因检测与常规体检都能起到预防的作用,但二者反映的是不同的阶段。一种疾病从开始到发病要经历很长的时间。基因检测是人在没发病时,预防将来会发生什么疾病,属于检测的第一阶段;而常规检测是发生疾病后,疾病到达什么程度。如:早期、中期等等,这属于检测的第二个阶段,是临床医学的范畴。所以说,基因检测是主动预防疾病的发生,而传统的体检手段则无法起到这样的预防作用。

传统体检主要针对人体已经出现的临床病变进行诊断和检查,它的主要任务是配合疾病的治疗,无法在病变之前预知,下更多、更深的结论。也就是说,在疾病的预防上,传统体检十分的被动和滞后。现实中很多疾病并无明显征兆,而一旦发病,现代医学往往束手无策,患者及其家人就可能一生痛苦和麻烦。

检测疾病类型

1.恶性肿瘤疾病31种:肺癌、胃癌、急性淋巴细胞白血病、慢性淋巴细胞白血病、直肠癌、喉癌、食管癌、鼻咽癌、膀胱癌、前列腺癌、乳腺癌、卵巢癌、宫颈癌、子宫肌瘤、原发性肝癌、胰腺癌、甲状腺癌、脑膜瘤、口腔癌、皮肤黑色素瘤、神经母细胞瘤、神经胶质瘤、多发性骨髓瘤、皮肤鳞状细胞癌、脑动脉瘤、肾癌、睾丸癌、皮肤基底细胞癌、胆囊癌、皮肤癌、滤泡性淋巴瘤、非霍奇金淋巴瘤、霍奇金淋巴瘤等。

2.心脑血管疾病18种:肥胖症、高血压、高胆固醇、腹主动脉瘤、冠心病、脑中风、瓜氨酸血症、范可尼贫血、酪氨酸血症酪氨酸血症、病窦综合症、深静脉血栓、周围动脉疾病、枫糖尿病、血色病、心肌梗死、高甲硫氨酸尿症、房颤、同型胱氨酸尿症等。

3.代谢与免疫系统疾病19种:2 型糖尿病、Iga系肾病、选择性Iga系膜增值性肾炎、哮喘、类风湿性关节结炎、过敏性鼻炎、牙周炎、白塞氏病、慢性荨麻疹、视神经炎、干燥综合症、过敏性鼻炎、尿毒症、慢性重型肝炎、原发性胆汁肝硬化、1型糖尿病、肝炎后肝硬化等。

4.呼吸、消化与泌尿生殖系统疾病17种:妊娠性肝内胆汁淤积症、支气管哮喘、胎盘早剥、克罗恩病、溃疡性结肠炎、先兆子痫、α-1抗胰蛋白酶缺陷、胆结石、结节病、呼吸暂停综合征、多囊性卵巢综合症、慢性阻塞性肺病(COPD)、非酒精性脂肪性肝病、子宫内膜异位症、囊性纤维化、慢性肾病、乳糜泻等。

5.肌肉、骨骼关节及神经类疾病27种:佩吉特骨病、Gaucher病、Mucolipidosis 病、偏头痛、骨性关节炎、糖原累积病1a型、苯丙酮尿症、泰-萨克斯病、RCDP1

病、肌萎缩侧索硬化症、丛集性头痛、老年痴呆症、周期性头痛、肌扭转张力障碍、克雅氏病(CJD)、肢带型营养不良症、Canavan病、布卢姆氏综合症、第十一因子缺乏症、背痛、腰椎间盘突出症、帕金森氏症、进行性核上性麻痹、多发性硬化症、家族性自律神经失调、原发性震颤、不宁腿综合症等。

6.眼耳鼻喉科及皮肤科疾病12种:麻风、白癜风、硬皮病、屈光不正、剥脱性青光眼、红斑狼疮、瘢痕形成、耳硬化症、异位性皮炎、尿道下裂、老年性黄斑变性、牛皮癣等。

7.精神类疾病13种:酒精性成瘾、躁狂症、阅读障碍、精神分裂症、强迫症、学习行为失调、抑郁症、多动症、双相情感障碍、失读症、抽动性秽语综合症、迟发性运动障碍等。

基因体检

了解自身是否有家族性疾病的致病基因

具有癌症或多基因遗传病(如老年痴呆、高血压等)家族史的人是最需要做基因体检的对象,通过基因体检这些高危险群可以知道自己是不是带有疾病基因,以便及早发现和及早预防,并做好饮食保健与生活习惯的调整,来避免疾病发生的可能。

正确选择药物,避免药物浪费和药物不良反应

由于个体遗传基因上的差异,不同的人对外来物质(如药物)会产生的反映也会有所不同,因此部分病人使用正常剂量的药物时,可能会出现药物过敏、红肿发疹的现象,或者是在服用相同药物时,有人觉得神效,有人却不但无效还有毒副作用,基因检测是针对个人的基因做检测,根据每一个人的基因情况,制定特定的治疗方案,从而科学地指导患者使用药物的种类和剂量,进而达到合理用药,避免药物毒副作用,让患者走出用药盲区,用准药,用好药。把握最佳治疗时期。

提供健康风险管理最好的依据

目前的很多不良环境因子,如空气、水质及农药的污染加上不良生活习惯像抽烟、饮酒等,都会容易使体内的基因受到破坏而产生疾病。长期暴露在这些高度污染环境或有不良生活习惯的人以及目前身体健康的民众都可以通过基因体检了解个人在不同疾病上的发生倾向,进行全面的生活调整或干预,以期降低风险延缓疾病发生,达到基康所倡导的“个性医疗,解码健康”的目的。人类疾病的发生是基因、环境共同作用的结果,若检测出某种疾病的风险,那么可以针对性的避开不良的环境,从而让疾病不能表达,做到真正的预防疾病。

1生物制药工艺学习题集生物药物概述

生物制药工艺学习题集 第一章生物药物概述 一、填空: 1、我国药物的三大药源指的是____________ 、___________ 2、现代生物药物已形成四大类型,包括__________________ 3、请写出下列药物英文的中文全称:IFN ( In terfero n ) _________________________________ 、IL(lnterleukin) 、CSF( Colony Stimulating Factor) 、EPO (Erythropoietin ) _________________________________ 、EGF ( Epidermal Growth Factor ) _______________ 、NGF ( Nerve Growth Factor ) ________________________ 、rhGH (Recomb inant Huma n Growth Hormone ) ______________________________________ 、Ins (Insulin ) __________ 、HCG ( Human Choriogonadotrophin ) ______________________ 、LH _______________ 、SOD _____________ 、tPA _____________________ 4、常用的3-内酰胺类抗生素有____________________ 、 _____________ ;氨基糖苷类抗生素 有___________ ;大环内酯类抗生素有________________ ;四环类抗生素有 _______________ ;多肽类抗生素有_____________ ;多烯类抗生素有_______________ ; 蒽环类抗生素有______________ 5、嵌合抗体是指用__________________ 替换___________________ ,保留___________________ ; 人源化抗体是指抗体可变区中仅______________________ 为鼠源,其___________________ 及恒定区均来自人源。

基因诊断和治疗的医学应用

基因诊断和治疗的医学应用 郭龙飞 (保山学院资源环境学院云南保山678000) 摘要:各种癌症和恶性肿瘤是目前危害人类健康最为严重的疾病之一,且死亡率很高,现在还没有一种有效的治疗方法。传统的手术、放疗和化疗等方法对中晚期的患者治疗疗效已经明显不足。因此。找到一种新的治疗癌症和恶性肿瘤的治疗方法对人类健康发展是意义重大的。而基因治疗则是用各种手段从基因水平上来治疗各种疾病。于是,基因治疗为众多患者提供了希望,成为了现在医学界的热门话题。本文就是依据前人的研究成果,以基因治疗癌症和恶性肿瘤为主来论述基因治疗在医学上的应用。 关键词:基因诊断基因治疗癌症恶性肿瘤 1基因治疗概述 基因治疗的基本含义是通过遗传或分子生物学技术在基因水平上治疗各种疾病[1]。它是指将人的正常基因或有治疗作用的基因通过一定方式导入人体靶细胞,以纠正基因缺陷或者发挥治疗作用,从而达到治疗疾病的目的。广义的基因治疗是指利用基因药物的治疗,而通常所称狭义的基因治疗是指用完整的基因进行基因替代治疗,一般用DNA序列[2]。它是运用基因工程技术直接纠正肿肿瘤细胞基因的结构及(或)功能缺陷,或者间接通过增强宿主对肿瘤的杀伤力和机体的防御功能来治疗肿瘤。通过外源基因的导入,激活机体抗瘤免疫,增强对肿瘤细胞的识别能力、抑制或阻断肿瘤相关基因的异常表达或增加肿瘤细胞对药物的敏感性,这些基因主要包括细胞因子基因、抗肿瘤基因、肿瘤药物相关基因和病毒基因等[3]。 目前基因治疗的方式(type of gene therapy)主要有3种:①基因矫正或置换:即对缺陷基因的异常序列进行矫正,对缺陷基因精确地原位修复,或以正常基因原位置换异常基因,因此不涉及基因组的任何改变。②基因增补:不去除异常基因,而是通过外源基因的导人,使其表达正常产物,从而补偿缺陷基因的功能。③基因封闭:有些基因异常过度表达,如癌基因或病毒基因可导致疾病,可用反义核酸技术、核酶或诱饵转录因子来封闭或消除这些有害基因的表达[4]。 2基因诊断应用 2.1基因诊断新生儿脊髓性肌萎缩 目前报道有一些较严重的SMA I型患儿会出现关节挛缩、骨折、呼吸困难和感觉神经元受损的表现,但机制还不清楚,可能与5ql3缺失大小有关。SMA尚无特异的治疗方法,临床主要是对症治疗,如早期发现SMA患儿呼吸系统受累并干预性通气治疗可以延长疾病的病程、改善患儿生活质量、减少肺部继发性感染及呼吸衰竭发生。本例患儿经抗炎、吸氧、吸痰、补充维生素、给予丙种球蛋白等对症治疗和支持治疗,呼吸困难逐渐缓解,双肺痰鸣音减少,但最终家长考虑远期预后不良而放弃治疗[5]。 最近,在体外实验研究中发现丁酸纳、丙戊酸和Htra—ISl的调节因子可以增加SMN2基蛋白的作用,而且对细胞几乎没有毒性作用,但研究工作还处于动物实验阶段,没有正式应用于临床,该类药物可能为SMA的治疗开辟了新的途径[5]。 2.2早期胰腺藩的基因诊断 近年来,胰腺癌的发病率和死亡率呈逐渐上升趋势,每年有新发病例约20万人,占全部恶性肿瘤发病的2%。其发病匿,早期缺乏特异表现,恶性程度高,极易出现转移,80%-90%的胰腺癌病人就诊时,已经到了晚期,手术切除率只有15%,年生存率为1%-5%。而早期胰腺癌的手术切除率为90-100%,5年生存率可达70%- 100%。另有研究表明,肿瘤的大小是重要的生存率预测因子,如果直径

苏教版选修三1.1基因工程概述教案(2)

(2)原理:PCF是利用双链DNA复制的原理,将基因的核苷酸序列不断地加以复制,使其数量呈指数方式增加。利用PCR技术扩增目的基因的前提,是要有一段已知目的基因的核苷酸序列,以便根据这一序列合成引物。 (3 )过程:目的基因DNA受热变性后解旋形成DNA单链,引物与单链相应互补序列结合,然后在DNA聚合酶作用下进行延伸,如此重复循环多次。 教3?此外,如果基因片段比较小,核苷酸序列又已知,也可以利用DNA合成仪用 化学方法直接人工合成。 二、基因表达载体(重组DNA分子或重组质粒)的构建: 【讲述】基因表达载体的构建是实施基因工程的第二步,也是基因工程的核心。 其目的是使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,冋时使目的基因能够表达和发挥作用。 学 fl 表达建体 n 越止子 墓固黑这IS悴樓衣as思考2 : 【拓展】一个基因表达载体的组成,除了目的基因夕卜,还必须有启动子、终止阅读课本第12页 子以及标记基因等。图1 —4,讨论如何将启动子是一段有特殊结构的DNA片段,位于基因的首段,它是RNA聚合酶 识别和结合的部位,有了它才能驱动基因转录出mRNA最终获得所需要的蛋白 目的基因与载体构建 成重组DNA分子? 过质。 终止子相当于一盏红色信号灯,使转录在需要的地方停止下来。终止子位于基因的末端,也是一段有特殊结构的DNA片段。 标记基因的作用是为了鉴别受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来,如抗生素抗性基因就可以作为这种基因。学生活动: 【分析】构建重组DNA分子的方法是用冋种限制酶分别切割目的基因与载体, 阅读课本第13页图1 —6,总结土壤农 程使它们露岀的黏性末端通过碱基互补配对而黏合起来,再用DNA连接酶将两个杆菌转化法的过程。 DNA片段缝合起来。 三、将目的基因导入受体细胞: 1.将目的基因导入植物细胞:一般采用农杆菌转化法。其操作的方法是将目的思考3: 基因插入到土壤农杆菌的Ti质粒的T —DNA上,通过农杆菌的转化作用,使在将目的基因导目的基因进入植物细胞,并将其插入到植物细胞中染色体的DNA上,使目的基入动物细胞时,一般因的遗传特性得以稳定维持和表达(如图所示)。为什么米用受精卵作 为受体细胞?

基因工程药物发展进程

基因工程药物发展进程 药剂3班张楠 07106330 学习了药学分子生物学后,我对基因工程药物产生了浓厚的兴趣,通过生物化学和分子生物学的学习以及课下翻阅相关资料,让我对基因工程药物有了新的认识: 1 基因工程药物 基因工程药物是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,经过一系列基因操作,最后将该基因放入可以大量生产的受体细胞中去,这些受体细胞包括细菌、酵母菌、动物或动物细胞、植物或植物细胞,在受体细胞不断繁殖过程中,大规模生产具有预防和治疗这些疾病的蛋白质,即基因疫苗或药物。在医学和兽医学中应用正逐步推广。 以乙型病毒性肝炎(以下简称乙肝)疫苗为例,像其他蛋白质一样,乙肝表面抗原(HBSAg)的产生也受DNA调控。利用基因剪切技术,用一种"基因剪刀"将调控HBSAg的那段DNA剪裁下来,装到一个表达载体中,所谓表达载体,是因为它可以把这段DNA的功能发挥出来;再把这种表达载体转移到受体细胞内,如大肠杆菌或酵母菌等;最后再通过这些大肠杆菌或酵母菌的快速繁殖,生产出大量我们所需要的HBSAg(乙肝疫苗)。 目前有很多基因工程对人类的贡献典例。长期以来,医学工作者在防治乙肝方面做了大量工作,但曾一度陷于困境。乙肝病毒(HBV)主要由两部分组成,内部为DNA,外部有一层外壳蛋白质,称为HBSAg。把一定量的HBSAg注射入人体,就使机体产生对HBV抗衡的抗体。机体依靠这种抗体,可以清除入侵机体内的HBV。过去,乙肝疫苗的来源,主要是从HBV 携带者的血液中分离出来的HBSAg,这种血液是不安全的,可能混有其他病原体[其他型的肝炎病毒,特别是艾滋病病毒(HIV)]的污染。此外,血液来源也是极有限的,使乙肝疫苗的供应犹如杯水车薪,远不能满足全国的需要。基因工程疫苗解决了这一难题。与上述的血源乙肝疫苗相比,基因工程生产的乙肝疫苗,取材方便,利用的是资源丰富的大肠杆菌或酵母菌,它们有极强的繁殖能力,并借助于高科技手段,可以大规模生产出质量好、纯度高、免疫原性好、价格便宜的药物。在小孩出生后,按计划实施新生儿到六个月龄内先后注射三次乙肝疫苗的免疫程序,就可获得终身免疫,免受乙型肝炎之害。正是基于1996年我国已有能力生产大量的基因工程乙肝疫苗,我国才有信心遏制这一威胁人类健康最严重、流行最广泛的病种。这是基因工程药物对人类的贡献典例之一。 基因工程药物另一个重要应用就是干扰素的生产。当人或动物受到某种病毒感染时,体内会产生一种物质,它会阻止或干扰人体再次受到病毒感染,故人们把此种物质称为干扰素(Interfero,简称IFN),是1957年英国科学家多萨克斯(Lossaacs)和林德曼(Lindenmann)在研究流感病毒干扰现象时发现的。干扰素具有广谱抗病毒的效能,是一种治疗乙肝的有效药物,国际上批准治疗丙型病毒性肝炎的药物只有它。但是,通常情况下人体内干扰素基因处于"睡眠"状态,因而血中一般测不到干扰素。只有在发生病毒感染或受到干扰素诱导物的诱导时,人体内的干扰素基因才会"苏醒",开始产生干扰素,但其数量微乎其微。即使经过诱导,从人血中提取1mg干扰素,需要人血8000ml,其成本高得惊人。据计算:要获取1磅(453g)纯干扰素,其成本高达200亿美元。使大多数病人没有使用干扰素的能力。1980

高二生物基因工程概述

第1节基因工程概述 【学习目标】 1、说出基因工程的概念(A) 2、简述基因工程的诞生历程(A) 3、说出DNA重组技术所需的三种基因工具的作用(A) 4、简述基因工程基本操作程序的四个步骤(B) 【基础梳理】 一、基因工程的概念 是指在体外通过人工“剪切”和“拼接”等方法,对生物的基因进行改造和重新组合,然后导入受体细胞并使重组基因在受体细胞中表达,产生人类所需的基因产物的技术。(1)操作环境:生物体外 (2)操作对象:基因 (3)操作水平:DNA分子水平 (4)基本过程:剪切→拼接→导入→表达 (5)结果:人类需要的基因产物 二、基因工程的工具及作用 (一)限制性核酸内切酶(简称限制酶)“分子手术刀” 1、来源:主要是从原核生物中分离纯化出来的。 2、作用:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。 3、特点:具有专一性,表现在两个方面: ①识别双链DNA分子的某种特定的核苷酸序列。 ②切割特定序列中的特定位点。 4、结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 例1、下列有关基因工程中限制内切酶的描述,错误的是() A.一种限制性内切酶只能识别一种特定的脱氧核苷酸序列 B.限制性内切酶的活性受温度的影响 C.限制性内切酶能别和切割RNA D.限制性内切酶可从原核生物中提取 (二)DNA连接酶“分子针线” 1、分类:根据酶的来源不同,可分为E·coliDNA连接酶和T4DNA连接酶两类 2、作用:恢复被限制酶切开了的两个核苷酸之间的磷酸二酯键。 【疑难解析】 1、两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较:

生物信息学概论

2013/5/23
生物信息学概论
2013-5
提纲
1. 发展简史 2. 主要研究领域 3. 软件和工具
1. 发展简史
1946年 1946 年
美国生产出第一台全自动电子数字计算机“埃尼阿克”
1

2013/5/23
1. 发展简史
1955年 1955 年
Frederick Sanger determined the complete amino acid sequence of insulin in 1955 and earned him his first Nobel prize in Chemistry in 1958.
1. 发展简史
1965年 1965 年
The first Atlas of Protein Sequence and Structure contained sequence information on 65 proteins.
Dr. Margaret Oakley Dayhoff (1925-1983) was a pioneer in the use of computers in chemistry and biology, beginning with her PhD thesis project in 1948. Her work was multi-disciplinary, and used her knowledge of chemistry, mathematics, biology and computer science to develop an entirely new field. She is credited today as a founder of the field of Bioinformatics.
1. 发展简史
1965年 1965 年
First use of molecular sequences for evolutionary studies
One of the founding fathers of the field of molecular evolution
Zuckerkandl, E. and Pauling, L. (1965). "Molecules as documents of evolutionary history." Journal of theoretical biology 8(2): 357.
2

高中生物第一章基因工程第一节基因工程概述第1课时基因工程的发展历程和工具知能演练轻巧夺冠苏教版选修3

第1课时基因工程的发展历程和工具 [随堂检测] 知识点一基因工程的发展历程 1.下列有关基因工程诞生的说法,不正确的是( ) A.基因工程是在生物化学、分子生物学和微生物学等学科的基础上发展起来的 B.工具酶和载体的发现使基因工程的实施成为可能 C.遗传密码的破译为基因的分离和合成提供了理论依据 D.基因工程必须在同物种间进行 解析:选D。基因工程可在不同物种间进行,它可打破生殖隔离的界限,定向改造生物遗传性状。 知识点二基因工程的工具 2.下面是3种限制性核酸内切酶对DNA分子的识别序列和剪切位点图(箭头表示切点,切出的断面为黏性末端)。相关叙述错误的是( ) 限制酶1:↓GATC 限制酶2:CCC↓GGG 限制酶3:G↓GATCC A.不同的限制酶有不同的识别序列和切割位点,体现了酶的专一性 B.限制酶2和3识别的序列都包含6个碱基对 C.限制酶1和酶3剪出的黏性末端相同 D.能够识别和切割RNA分子内一小段核苷酸序列的酶只有限制酶2 解析:选D。酶具有专一性,不同的限制酶有不同的识别序列和切割位点,A项正确;据图可知,限制酶2和3识别的序列分别是CCCGGG和GGATCC,均为6个碱基对,故B项正确;限制酶1和酶3剪出的黏性末端相同,均为GATC,C项正确;限制酶只能识别特定的DNA序列,因此三种限制酶均不能识别和切割RNA中核糖核苷酸序列,故D项错误。 3.对DNA连接酶的功能描述,正确的是( ) A.将碱基、脱氧核糖、磷酸之间的化学键连接起来 B.在基因工程中只作用于一个切口处的两个黏性末端 C.用于DNA复制时母链与子链间形成氢键 D.与DNA聚合酶作用的部位相同,作用对象不同

基因治疗在疾病防治中的应用

基因治疗在疾病防治中的应用 120311102 张宇鑫 [摘要] 传染病是目前人类所面临的一类重大疾病,在某些疾病状态下,人类还未寻找到理想的治疗方法,如病毒感染等。现代基因治疗是一种应用基因工程技术和分子遗传学原理,对人类疾病进行治疗的新疗法。主要是指对致病基因的修正和基因增强及采用外源性细胞因子基因、核酶、基因药物进行疾病治疗的方法。经过多年的发展,技术逐步走向成熟,在传染性疾病的防治中显示了重大的临床应用前景。传染性疾病的基因治疗包括:基因疫苗、RNA干扰、反义技术、药物靶向治疗等。 [关键词] 基因疫苗反义技术药物靶向治疗 一、现状 1.1我国传染病预防现状 21世纪人类依然面临着传染病的挑战,就全球而言,艾滋病是当前首恶,由于其病毒极易发生变异,所以到目前为止疫苗仍在试验阶段,缺乏理想的特效药物,免疫损伤治疗难度大。我国2003年比2002年发病率上升44.39%,人类免疫缺陷病毒检出率提高了55%。并且防治工作面临来自传统传染病和新发传染病的双重压力:传统传染病威胁持续存在,新发传染病不断出现。近10年来,我国几乎每一两年就有1种新发传染病出现,许多新发传染病起病急,早期发现及诊断较为困难,缺乏特异性防治手段,早期病死率较高。其次,人口大规模流动增加了防治难度,预防接种等防控措施难于落实。三是环境和生产生活方式的变化增加了传染病防治工作的复杂性。一些地区令人堪忧的城乡环境卫生状况,以及传统的生产生活方式,使一些人畜共患病持续发生。 1.2基因治疗研究的现状 (1) 复合免疫缺陷综合征的基因治疗 1991年美国批准了人类第一个对遗传病进行体细胞基因治疗的方案,即将腺苷脱氨酶(ADA)采用反转录病毒介导的间接法导入一个4岁患有严重复合免疫缺陷综合征(SCID)的女孩,大约1-2月治疗一次,8个月后,患儿体内ADA水平达到正常值的25%,未见明显副作用。此后又进行第2例治疗获得类似的效果。 (2)黑色素瘤的基因治疗 对肿瘤进行基因治疗是人们早已期望的事,在进行了多方面探索的基础上,发现了肿瘤浸润淋巴细胞(即能在肿瘤部位持续存在而无副作用的一种淋巴细胞)在肿瘤治疗中的作用。于1992年实施了TNF/肿瘤细胞和IL-2/肿瘤细胞方案,即分别将IL-2基因肿瘤坏死细胞(TNF)基因导入取自患者自身并经培养的肿瘤细胞,再将这些培养后的肿瘤细胞注射至病人臀部,3周后切除注射部位与其引流的淋巴结,在适合条件下培养T细胞,将扩增的T细胞与IL-2合并用于病人,结果5名黑色素瘤病人中1名肿瘤完全消退,2名90%的肿瘤消退,另2人在治疗后9个月死亡。由于携有TNF的TIL可积于肿瘤处,因而TIL的应用提高了对肿瘤的杀伤作用。

宏基因组学概述

宏基因组学概述

————————————————————————————————作者: ————————————————————————————————日期: ?

宏基因组学概述 王莹,马伊鸣 (北京交通大学土木建筑工程学院环境1402班) 摘要:随着分子生物学技术的快速发展及其在微生物生态学和环境微生物学研究中的广泛应用,促进了以环境中未培养微生物为研究对象的新兴学科——微生物环境基因组学(又叫宏基因组学、元基因组学,英文名Metagenomics)的产生和快速发展。宏基因组学通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能.在短短几年内,宏基因组学研究已渗透到各个领域,包括海洋、土壤、热液口、热泉、人体口腔及胃肠道等,并在医药、替代能源、环境修复、生物技术,农业、生物防御及伦理学等各方面显示了重要的价值。本文对宏基因组学的主要研究方法、热点内容及发展趋势进行了综述 关键词:宏基因组宏基因组学环境基因组学基因文库的构建 Macro summary of Metagenomics WangYing,Ma Yi-Ming (BeijingJiaotongUniversity, Institute of civil engineering,)Key words:Metagenome; Metagenomics;The environmental genomics 宏基因组学(Metagenomics)又叫微生物环境基因组学、元基因组学。它通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能。它是在微生物基因组学的基础上发展起来的一种研究微生物多样性、开发新的生理活性物质(或获得新基因)的新理念和新方法。其主要含义是:对特定环境中全部微生物的总DNA(也称宏基因组,metagenomic)进行克隆,并通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息。 1.起源 宏基因组学这一概念最早是在1998年由威斯康辛大学植物病理学部门的Jo Handelsman等提出的,是源于将来自环境中基因集可以在某种程度上当成一个单个基因组研究分析的想法,而宏的英文是"meta-",具有更高层组织结构和动态变化的含义。后来伯克利分校的研究人员Kevin Chen和LiorPachter将宏基因组定义为"应用现代基因组学的技术直接研究自然状态下的微生物的有机群落,而不需要在实验室中分离单一的菌株"的科学。 2 研究对象 宏基因组学(Metagenomics)是将环境中全部微生物的遗传信息看作一个整体自上而下地研究微生物与自然环境或生物体之间的关系。宏基因组学不仅克服了微生物难以培养的困难, 而且还可以结合生物信息学的方法, 揭示微生物之间、微生物与环境之间相互作用的规律, 大大拓展了微生物学的研究思路与方法, 为从群落结构水平上全面认识微生物的生态特征和功能开辟了新的途径。目前, 微生物宏基因组学已经成为微生物研究的热点和前沿, 广泛应用于气候变化、水处理工程系统、极端环境、人体肠道、石油污染、生物冶金等领域, 取得了一系列引人瞩目的重要成果。 3 研究方法

苏教版专题一第1节基因工程概述教案

“基因工程概述”公开课教案” 一、设计说明 建构主义者认为学习环境是开放的、充满着意义解释和建构的情境,该学习环境由情境、协作、会话和意义建构四大要素构成,其中情境是意义建构的基本条件,教师与学生之间、学生与学生之间协作和会话是意义建构的过程,本节课结合基因工程药物胰岛素的生产过程创设学习情境进行教学,充分发挥学生的主观能动性,让学生主动地参与到教学的全过程,教师适当的点拔,形成一个师生互动的教学氛围,让学生们心驰神往地投入到本节课的学习中来。 [ (5) 二、教学目标 知识目标说出基因工程的概念,三种工具酶的作用,简述基因工程基本操作程序的四个步骤。 能力目标通过对多媒体、动画观察,学会科学的观察方法,培养观察能力。通过对基本概念、基本原理、的理解掌握,逐步形成比较、判断、推理、分析、综合等思维能力。 情感态度与价值观关注基因工程的发展,认同基因工程的应用促进了生产力的提咼。W"" 三、教学重点和难点 教学重点举例说出基因工程的工具,简述基因工程的一般过程与技术。 教学难点简述基因工程的一般过程与技术。 四、教学过程 1、情境导入多媒体展示:一般临床上给病人注射用的胰岛素主要从猪、牛等家畜的胰腺中提取,每1OOkg胰腺只能提取出4?5g胰岛素。用这种方法生产的胰岛素产量低,价格昂贵,远远不能满足社会的需要。 学生思考:胰岛素是如何产生的? 教师总结:胰岛B细胞中胰岛素基因特异性表达产生胰岛素。 但是人类能不能改造基因呢?能不能使本身没有某个性状的生物具有某个特定性状呢?如,让微生物生产出人的胰岛素。这样既节省了人力,又简化了生产,同时还不会对环境造成污染。回答是可以的。通过科学家们的不断努力,在

遗传学概论考试完整试题及答案

名词: 1.性状:生物体或其组成部分所表现的形态特征和生理特征称为性状 2.相对性状:不同生物个体在单位性状上存在不同的表现,这种同一单位性状的相对差 异称为相对性状 3.遗传学:遗传学是生命科学领域中一门新兴的学科,主要是研究遗传与变异的规律和 机制的一门科学。 4.遗传病携带者: 5.基因组:一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中 的全部基因为一个基因组。 6.产前诊断:产前诊断是在遗传咨询的基础上,主要通过遗传学检测和影像学检查,对 高风险胎儿进行明确诊断,通过对患胎的选择性流产达到胎儿选择的目的,从而降低出生缺陷率,提高优生质量和人口素质。 7.完全连锁控制不同性状的非等位基因位于一对同源染色体的不同位置上,子一代杂合 体在产生配子时,连锁基因连在一起不分离,随配子共同传递后代,从而导致不同性状之间表现出完全连锁 8.基因工程:也称遗传操作,从广义上讲指把一种生物的遗传物质转移到另一种生物的细 胞中去,并使这种遗传物质所携带的遗传信息在受体细胞中表达。它包括细胞水平、染色体水平、分子水平等几个方面的遗传操作。即细胞工程、染色体工程、细胞器工程、基因工程等。狭义的就是指基因工程。 9.遗传病:是指由于遗传物质结构或功能改变所导致的疾病。 1.免疫:是机体防御细菌、病毒或异体大分子等抗原性异物侵害的一种保护性生理应, 其作用是识别并排除抗原性微生物及其产物、体衰老和病变细胞及突变细胞等,以维持体内环境的衡和稳定。免疫包括特异性免疫和非特异性免疫两类. 2.先天畸形 3.杂种优势 4.复等位基因:复等位基因是指位于同一基因座位中,一组等位基因的数目在两个以上, 作用类似,都影响同一器官的形状和性质,在遗传上称复等位基因,如A→a1,a2,a3,…就构成一个复等位基因系列。对这一复等位基因系列来讲,每一个体只可能有其中的两个基因。 5.基因型:指生物个体基因组合,表示生物个体的遗传组成,又称遗传型; 6.纯合体:具有一对相同基因的基因型称为纯合基因型如CC和cc;这类生物个体称为纯 合体杂合体:具有一对不同基因的基因型称为杂合基因型如Cc; 7.分离定律定义:一对基因在杂合状态中保持相对的独立性,而在配子形成时,又按原 样分离到不同配子中去的现象。. 解释:生物性状是由遗传因子决定,且每对相对性状由一对遗传因子控制; 2. 显性性状受显性因子(dominant ~)控制,而隐性性状由隐性因子(recessive ~) 控制;只要成对遗传因子中有一个显性因子,生物个体就表现显性性状; 3. 遗传因子在体细胞内成对存在,而在配子中成单存在。体细胞中成对遗传因子分 别来自父本和母本。4. 遗传因子在世代间的传递遵循分离规律(the law of segregation): 5. (性母细胞中)成对的遗传因子在形成配子时彼此分离、分配到配子中,配子只含 有成对因子中的一个。 而杂种体细胞中,分别来自父母本的成对遗传因子也各自独立,互不混杂;在形成配子时彼此分离、互不影响。 6. 杂种产生含两种不同因子(分别来自父母本)的配子,并且数目相等;各种雌雄配 子受精结合是随机的,即两种遗传因子是随机结合到子代中。 意义:孟德尔的分离规律和自由组合规律是遗传学中最基本、最重要的规律,后来发现的许多遗传学规律都是在它们的基础上产生并建立起来的,它犹如一盏明灯,照亮了近代遗传学发展的前途。自由组合定律一、不同对的等位基因——非等位基因的遗传行为杂合

高中生物 第一章 基因工程 1.1.1 基因工程概述导学案苏教版选修3

高中生物第一章基因工程 1.1.1 基因工程概 述导学案苏教版选修3 【课标要求】 简述基因工程的诞生简述基因工程的原理及技术举例说出基因工程的应用 【教学目标】 1、简述基因工程所需3种基本工具的使用。 2、学习运用知识解决相关问题的能力。 3、认同基因工程的诞生和发展离不开理论研究和技术创新。 【教学过程】 知识点 一、基因工程的诞生和发展 (一)诞生和发展理论铺垫:艾弗里证明了;沃森和克里克阐明了;尼伦贝格等 (二)基因工程的概念基因工程是指在通过人工“ ”和“ ”等方法,对生物的基因进行改造和重新组合,然后导入并使重组基因在中表达,产生。包括、以及。基因工程的别名操作环境操作对象操作水平基本过程结果 二、基因工程的工具“分子手术刀”(1)这类酶在生物体内能将外来的DNA切断,即能够限制异源DNA的侵入并使之失去活

力,但对自己的DNA却无损害作用,这样可以保持细胞原有的遗传信息。(2)由于这种切割作用是在DNA分子内部进行的,故名限制性核酸内切酶(简称_______)。(3)DNA分子经限制酶切割产生的DNA片段,末端通常有两种形式,即和。 【例1】 下列关于限制酶的说法正确的是() A、限制酶广泛存在于各种生物中,但微生物中很少 B、一种限制酶只能识别一种特定的核苷酸序列 C、不同的限制酶切割DNA后都会形成黏性末端 D、限制酶的作用部位是特定核苷酸形成的氢键 2、DNA连接酶“分子缝合针”拓展:根据DNA连接酶的来源不同,可以将它分为两类:一类是从大肠杆菌中分离得到的,称为Ecoli DNA连接酶。Ecoli DNA连接酶只能将双链DNA片段互补的黏性末端之间连接起来,不能将双链DNA片段平口末端之间进行连接。另一类是从T4噬菌体中分离出来的,称为T4DNA连接酶。T4DNA连接酶既可以“缝合”双链DNA片段互补的黏性末端,又可以“缝合”双链DNA片段的平口末端,但连接平口末端之间的效率比较低。 【例2】 下图为DNA分子的切割和连接过程。(1)EcoRI是一种酶,其识别序列是,切割位点是与之间的键。切割结果产生的DNA片段末端形式为。(2)不同来源DNA片段结合,在这里需要的酶应是连

基因工程药物发展的历史及启示

基因工程药物发展的历史及启示 吴岚晓1,郭坤元1,秦 煜2 (11第一军医大学珠江医院血液科,广东广州510282;21第一军医大学南方医院创伤骨科,广东广州510282) 摘要:基因工程诞生20余年,运用于医药行业,研制和开发基因工程药物,已取得长足进展。迄今为止,已有近100 个基因工程新药上市,并有数百种正在研制和开发中。可以预计,基因工程药物的发展具有无比强大的生命力。 就基因工程药物发展史进行概述,会从中得到许多启示。 关键词:基因工程;药物;科学;技术 中图分类号:R-02 文献标识码:A 文章编号:1002-0772(2002)12-0011-03 Developing History and the E nlightenment of G enetic E ngineering Drug W U L an-xiao,GUO Kun-yuan,QIN Y u (1.Depart ment of Hem atology,Zhujiang Hospital,First Military Medical U niversity,Guangz hou510282,China;2. N anf ang Hospital,First Military U niversity,Guangz hou510282,China) Abstract:G enetic engineering has made remarkable development in the area of drug production and research since it ap2 peared twenty years ago.More than100new geneitc engineering drugs have been used in clinic,and more drug-projects are undergoing.It can be predicted that genetic engineering drug will make more and more influence in people’s life.A perspective view about genetic engineering drug developing history was made in this article and some philosophic opinions inspired from it were discussed. K ey Words:genetic engineering;drug;science;technology 1 基因工程原理和技术 基因工程是在分子水平上人工改造生物遗传性,创造世间新的生物物种技术,亦称DNA重组或分子克隆,包括基因和载体的制备、切割和连接,重组DNA的转移、表达及产物分离等。基因的制备方法有,多聚酶链反应、互补文库、基因组文库、染色体DNA的酶切分离、酶合成法和化学合成法等,迄今为止,已制备人胰岛素、人尿激酶、人生长激素、人α-干扰素及生长因子等多种药物的基因。载体是能将外源性目的基因运输至宿主细胞的小分子DNA,目前大抵有细菌质粒、嗜菌体DNA及病毒DNA构建人工载体,如pBR322、Charon系列、Cos2 mid、反转录病毒、腺病毒及其相关病毒的DNA,此外,尚有酵母人工染色体DNA,及哺乳动物人工染色体DNA等。载体和含目的基因的DNA分别经限制性内切酶切割后,两者混合通过连接酶连接构成重组DNA,经转化、转导、转染、激光打孔、微注射或基因枪等技术,可转移至宿主内,获得基因工程细胞,后者经培养和表达,即可产生相应的基因工程药物。近年来还发现不用载体也不重组,将编码完整的DNA片段或mRNA直接注射内实现完全表达,表明非重组DNA和mRNA可被细胞直接吸收和表达,既简化了基因操作程序,也修正了基因工程基本概念,又促进了基因工程药物的发展,同时还为基因治疗提供了新理论和新途径。 2 基因工程药物发展的历史 应用基因工程技术,研制和开发的药物称为基因工程药物。它是通过重组DNA技术将治疗疾病的蛋白质、肽类激素、酶、核酸和其他药物基因转移至宿主细胞进行繁殖和表达,最终获得相应药物。包括蛋白质类生物大分子、初级代谢产物,如苯丙氨酸及丝氨酸等以及次生代谢产物抗生素等。自20世纪70年代初基因工程药物诞生以来,基因工程药物发展十分迅速。 ? 1 1 ? 医学与哲学2002年12月第23卷第12期总第259期

基因工程药物

基因工程药物 周长征 第一部分概述 一、基因工程药物 (一)基因工程药物的概念 基因工程药物是以基因组学研究中发现的功能性基因或基因的产物为起始材料,通过生物学、分子生物学或生物化学、生物工程等相应技术制成的、并以相应分析技术控制中间产物和成品质量的生物活性物质产品,临床上可用于某些疾病的诊断和治疗。基因药物类型广泛,包括重组蛋白质药物、人源化单克隆抗体、基因治疗药物、重组蛋白质疫苗、核酸药物等10多种类型。 生产基因工程药物的基本方法是:将目的基因用DNA重组的方法连接在载体上,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质提纯及做成制剂,从而成为蛋白类药物或疫苗。若目的基因直接在人体组织靶细胞内表达,就称为基因治疗。 例如,乙肝表面抗原(HBSAg)的产生也受DNA 调控。利用基因剪切技术,用一种“基因剪刀”将调控HBSAg的那段DNA剪裁下来,装到一个表达载体中(所谓表达载体,是因为它可以把这段DNA的功能发挥出来)再把这种表达载体转移到受体细胞内,如大肠杆菌或酵母菌等;最后再通过这些大肠杆菌或酵母菌的快速繁殖,生产出大量我们所需要的HBSAg(乙肝疫苗)。把一定量的HBSAg注射入人体,就使机体产生对HBV抗衡的抗体。机体依靠这种抗体,可以清除入侵机体内的HBV。过去,乙肝疫苗的来源,主要是从HBV 携带者的血液中分离出来的HBSAg,这种血液是不安全的,可能混有其他病原体的污染。此外,血液来源也是极有限的,使乙肝疫苗的供应犹如杯水车薪,远不能满足全国的需要。基因工程疫苗解决了这一难题。 干扰素具有广谱抗病毒的效能,是一种治疗乙肝的有效药物,国际上批准唯一一种治疗丙型病毒性肝炎的药物。通常情况下人体内干扰素基因处于休眠状态,血中一般检测不到。只有在发生病毒感染或受到干扰素诱导物的诱导时,人体内的干扰素基因才会产生干扰素,但其数量微乎其微。即使经过诱导,从人血中提取1mg 干扰素,需要人血8000ml,其成本高得惊人。获取1磅(453g)纯干扰素,其成本高达200亿美元。1980年后,采用基因工程进行生产,其基本原理及操作流程与乙肝疫苗十分类似。现在要获取1磅纯干扰素,其成本不到1亿美元。 (二)基因工程药物的发展 1973年,Cohen等人首次将带有Tet r基因和链霉素抗性基因(Str r)的两种大肠杆菌质粒成功地进行了重组,获得了可以复制并只有双亲质粒遗传信息的重组质粒,拉开了基因工程研究的序幕。1974年他们对具有Amp r和红霉素抗性基因(Emp r)的金黄色葡萄球菌质粒

1.1基因工程概述(第1课时)

1.1基因工程概述(第1课时) (一)DNA 重组技术的基本工具 编制:张统省 审核:秦磊 校对:王曼 【学习目标】 1.简述基因工程的诞生过程和发展历程; 2.简述基因工程的概念 3.举例说出基因工程的工具 【自学质疑】 一、回顾: 1.遗传的物质基础是什么? 2.生物体遗传的基本单位是什么? 3.为什么生物界的各种生物间的性状有如此大的差别呢?4.生物的性状是怎样表达的? 5.各种生物的性状都是基因特异性表达的结果,那么,人类能不能改造基因 呢?使原来本身没有某一性状的生物而具有某个特定的性状呢? 6.各种生物间的性状千差万别,这是为什么呢? 二、导学 1.基因工程的概念: 2. DNA 重组技术的基本工具 来源:主要从 中分离 功能:能够识别双链DNA 分子的某种特定核苷酸序列, 限制性内切酶 并使每一条链中特定部位的两个核苷酸之间的磷 (分子手术刀) 酸二酯键断开。 错位切 切割方式 平 切 黏性末端 切割后的DNA 末端: 平末端 功能:将切下来的DNA 片段拼接成新的DNA 分子 DNA 连接酶 T4 DNA 连接酶:既能“缝合”双链DNA 片段互补的黏性末端, (分子缝合针) 种类 也能“缝合”双链DNA 片段的平末端 E ·coli DNA 连接酶:只能将双链DNA 片段互补的黏性末端连接 ①能在宿主细胞中稳定地保存下来并大量复制 条件:②有一个至多个限制酶切点, 基因进入受体细胞的载体 ③有特殊的遗传标记基因,便于筛选。 (分子运输车) 质粒(常用) 种类: λ噬菌体的衍生物 动植物病毒 【质疑讨论】 1.什么是基因工程? 2.、基因工程的工具酶有几种?分别是什么? 3.基因的剪刀是什么?有什么作用特点?结果怎么样? 4.基因的针线是什么?其主要作用是什么? 5.基因的运输工具是什么?有什么作用? 6.运载体必须具备的条件是什么?最常用的运载体是什么? 7.质粒的结构是什么?质粒上会存在某些标记基因,这些标记基因有什么用途? 8.要想将某个特定基因与质粒相连,需要用几种限制性内切酶和几个DNA 连接酶处理? 质粒的特点: ①质粒是基因工程中最常用的运载体; 最常用的质粒是大肠杆菌的质粒; ②是细菌染色体外(即拟核DNA 外) 能自我复制的小型环状DNA 分子;质粒 的大小只有普通细菌染色体的1%左右; ③存在于许多细菌及酵母菌等微生物中; 质粒的存在对宿主细胞生存没有决定性 的作用; ④质粒的复制只能在宿主细胞内完成。 (自身细胞中也可) 【矫正反馈】 1.在基因工程中,科学家所用的“剪刀”、“针线”和“载体”分别是指( ) A.大肠杆菌病毒、质粒、DNA 连接酶 B.噬菌体、质粒、DNA 连接酶 C.DNA 限制酶、RNA 连接酶、质粒 D.DNA 限制酶、DNA 连接酶、质粒 2.不属于质粒被选为基因运载体的理由是 ( ) A .能复制 B.有多个限制酶切点 C .具有标记基因 D .它是环状DNA 3.质粒是基因工程中最常用的运载体,它的主要特点是 ①能自主复制 ②不能自主复制 ③结构很小 ④蛋白质 ⑤环状RNA ⑥环状DNA ⑦能“友好”地“借居” A .①③⑤⑦ B .①④⑥ C .①③⑥⑦ D .②③⑥⑦

我国基因工程药物的发展现状

我国基因工程药物的发展现状 以基因工程、细胞工程、酶工程、发酵工程为代表的现代生物技术在近几十年来的发展中受到了全球科技界和企业界的普遍关注,有许多专家认为21世纪将是生命科学的世纪。现代生物技术之所以能受到各界的重视,一方面是由于现代生物技术发展迅速,用途广泛,生物技术的应用范围已遍及医药、农业、食品、能源、环保等各个领域;另一方面是由于现代生物技术可以解决人类发展所面临的许多难题,如人口膨胀、粮食短缺、资源枯竭、环境污染等。人们越来越认识到了生物技术在全球经济进程中的重要性和必要性。由于生物技术是以生物(动物、植物、微生物、培养细胞等)为基本资源,因此其原料具有再生性,同时生物系统生产产品产生的污染物少,对环境的破坏性很小或几乎没有,重组微生物甚至还可以消除环境中的污染物。 基因工程(genetic engineering )又称基因拼接技术和DNA重组技术。所谓基因工程是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体 细胞内复制、转录、翻译表达的操作。 基因工程制药的出现是因为,许多药品的生产是从生物组织中提取的,受材料来源限制产量有限,其价格往往十分昂贵。微生物生长迅速,容易控制,适于大规模工业化生产。若利用基因工程将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物, 不但能解决产量问题,还能大大降低生产成本。

一、产业现状及地位 1989年,中国批准了第一个在中国生产的基因工程药物一一重组人干扰素,标志着中国生产的基因工程药物实现了零的突破。重组人干扰素是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个中国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,中国基因工程制药产业从无到有,不断发展壮大。1998年,中国基因工程制药产业销售额已达到了7.2 亿元人民币。截止1998年底,中国已批准上市的基因工程药物和疫苗产品共计15种。国内已有30余家生物制药企业取得了基因工程药物或疫苗试生产或正式生产批准文号。 根据1997年对全国452从个事生物技术研究、开发和生产的单位进行的通讯调查结果,截止1996年底,中国已有8种基因工程药物和疫苗商品化(包括试生产),1996年基因工程药物和疫苗销售额约为2.2亿元人民币,仅占同期全国医药生物技术产品年销售额21.16亿元人民的10.4%。然而可喜的是,中国基因工程制药产业发展迅猛,年销售额已从1996年的2.2亿元人民币增长到1998年的7.2亿元人民币,年均增长率高达80%预计2000年中国基因工程药物销售额将达到22.8亿元人民币。 基因工程在制药业中具有广阔的发展前景,中国的基因制药行业 已经初具规模,但与世界发达国家存在差距,主要表现在具有自主知识产权的产品较少,产业规模小、经济效益低。基因制药产业面临着历史性的机遇,主要表现在政府支持、资源丰富、基因信息公开、国际交流

相关主题
文本预览
相关文档 最新文档