当前位置:文档之家› 大型汽轮机运行

大型汽轮机运行

大型汽轮机运行
大型汽轮机运行

大型汽轮机运行

摘要:随着我国国民经济的发展,工农业生产的需要和人民生活水平的提高,作为基础工业的电力工业也得到了迅速发展。一大批大﹑中型火电厂相继建成投产。在电力工业的发展过程中,单机容量不断增大,机组参数逐渐提高,从单机操作管理到机﹑炉﹑电协调控制,自动化水平迅速发展。这标志着我国电力工业的运行管理水平有了较大的提高。作为火力发电厂和原子能发电厂发电机的原动机,汽轮机是一种高速回转式动力机械。材料工业的发展,计算机技术的应用,自动化水平的提高,极大地促进了大型汽轮机机组的生产和使用。

关键词:汽轮机热力性能

目录:摘要

1.汽轮机的热力性能

2.汽轮机部件暂态工况下的热状态及寿命损耗

3.汽轮机的运行调整与可靠性

4.汽轮机调峰运行

5.特种汽轮机的运行

6.主要参考文献

1汽轮机的热力特性

汽轮机功率规范及基础热力性能保证

(1)汽轮机运行,就是要使现在服役的机组能够以最安全的方式﹑最经济的过程,达到该机组所能达到的出力。汽轮发电机组的规范已有国际电工委员会(IEC)制定。国际电工委员会对汽轮发电机组功率的术语的一般定义在(IEC 45-1,1991)说明了①发电机功率②净电功率③经济功率④保证最大连续功率⑤调节气阀全开工况的功率⑥最大过负荷能力

中国的相关规定,早期中国发电设备容量较小,技术落后,当时汽轮机出力的概念仅局限于额定出力(或铭牌出力,最大出力)和经济出力两种提法,它们均是以冷却水温20℃和0﹪补水率为基础,并且只要求在夏季33℃冷却水温下,仍能保证机组发额定出力。随着国民经济和电力工业迅猛发展,发电机组的容量日益增长,陆续从国外引进技术,开始出现最大连续出力,阀门全开出了力的一些新提法。

表1-1 汽轮机工况与功率的关系

牌出力是以33℃的冷却水温和3%补水率为基点,而额定出力以20℃冷却水温和0%补水率为基点,因此造成同一出力数字下机组实际发电能力的巨大差别。

(2)热耗率或汽耗率的保证值,按照IEC规定,保证的热耗率和汽耗率是与负荷相对应的因此应规定一个或几个负荷,而当保证值是用一系列负荷下的加权平均值表示时,则应明确计算方法。为了校验保证值,试验所测得的热耗率和汽耗率,应考虑试验工况与规定工况的差别。

(3)最高转速,每台汽轮机转子均需做超速试验。超速试验的试验转速应为:当调速器失灵而且最高转速只由超速脱扣装置的动作来限制所能出现的最大转速再加2%。超速试验的延续时间不得超过2min,超速试验只能进行一次。在任何情况下,超速试验不得超过额定转速20%。

(4)汽轮机振动可在轴承座或轴上测出。直接在轴上测出的振动,往往要比轴承座上测出的值大得多,这取决于中欧的节点﹑拾振器的轴向位置以及轴承设计等因素。汽轮机轴系的临界转速应避开额定转速并有一定的余量,以避免机组在斌率变化,超速脱扣和超速试验的转速范围内运行时影响到安全性。

(5)为了保证加工质量和材料强度,所有在工作时承受蒸汽压力的部件,当其工作压力超过大气压力是应做水压试验。试验时水压至少应超过该部件工作时最高压力的50%。

(6)额定汽压﹑汽温的变化限制,在任何12个月的运行周期内,汽轮机进口的平均压力不得超过额定压力。在保持此平均值的情况下,压力不得超过额定压力的110%.在例外情况下可允许达到额定压力的120%,但在任何12个月的运行周期内,这些压力波动的累计运行时间不得超过12H.额定温度在564℃及以下者,其允许的变化如下:在任何12个月的运行周期内,汽轮机的任何进口处平均蒸汽温度不得超过额定温度。在保证此平均值的情况下,温度一般不得超过额定温度8.3℃。在例外情况如温度超过额定温度8.3℃,温度瞬时值可在超过额定温度8.3-14℃的范围内变化,但在任何12个月的运行周期内,在此温度范围内的运行时间不得超过400h,在超过额定温度14-28℃的范围内运行也可允

许,但在任何12个月的运行周期内,在此温度范围总运行时间不得超过80h,任何情况下,温度不得超过额定温度28℃以上。

汽轮机的基本蒸汽参数及规律

(1)蒸汽参数的特点,中小型汽轮机采用的蒸汽参数较低,大多以中温中压机组为多,新蒸汽参数一般为3.43MPa﹑435℃,机组尺寸较小,运行时易于控制。现在打功率机组采用的心蒸汽参数越来越高,从高温高压机组,发展到超高压,亚参数机组﹑超临界和超超临界参数的机组。现在高参数汽轮机采用更高的蒸汽参数,有的将超过30MPa,700℃。值的提出的是,在蒸汽参数逐渐提高的过程中,再热蒸汽温度的提高往往早于主蒸汽温度的提高,也就是说,有些机组的再热蒸汽温度比主蒸汽温度还要高。这是因为从锅炉的角度提高主蒸汽温度容易实现,另外再热蒸汽温度对于发电厂初始投资成本的影响小。(2)蒸汽参数与经济性的关系。根据汽轮机原理和热力学理论,要提高整个机组的经济性,就要提高汽轮机的蒸汽初参数。一般的规律是:在提高蒸汽初压力的同时应提高蒸汽温度。由于温度提高受到材料强度等限制,故必须采用再热的方法以限制汽轮机的末级湿度。提高初参数,采用适当的再热参数,可以提高循环忍效率;提高末级干度后,既改善了末级的工况,又减少了湿汽损失,提高了汽轮机的相对内效率。现代大功率汽轮机均采用了这些措施,有些机组甚至采用了二级再热。

(3)亚临界以上蒸汽参数的特点,对于采用了亚临界或超临界参数的汽轮机组,由于蒸汽性质的特点,给运行带来一定的影响。如提高蒸汽温度,则由于高温区内的等温的下弯程度相对比低温区有所减少,故节流后温度值减小。基于这一特点,汽轮机启动时,应考虑这一蒸汽温度的变化,使蒸汽温度与金属温度达最佳匹配。另外在负荷变化时也应考虑这一现象的影响。

(4)汽轮机的主蒸汽参数与锅炉过热器出口处主蒸汽参数参数存在着匹配关系,这个匹配关系与蒸汽能量损失及投资费用有关,应进行技术比较才能确定。锅炉出口与汽轮机进口的蒸汽参数匹配关系与机炉间蒸汽压降数值有很大的关系。蒸汽压降主要取决于主蒸汽管道内蒸汽流速的选择,并与管道长度﹑走向﹑布置形式﹑管道上阀门型式和个数等因素有关。一般情况下,亚临界参数机组锅炉过热器出口至汽轮机进口的压降设计值在汽轮机额定进汽压力的5%以内。对于超临界参数机组,应考虑压降和蒸汽温度下降的关系。允许的压降越大,则产生的节流温度下降也大。当蒸汽压力小于28MPa时,可选主蒸汽温降为4℃,机炉间压降为3%-4%,以3.5%为宜;当蒸汽压力为28MPa及以上时,主蒸汽温降为5℃时,机炉压降选择为4%-5%,以4.5%为宜。

(5)提高蒸汽参数对于汽轮机设计的影响,蒸汽参数的提高,尤其是蒸汽初温度的提高,会给汽轮机设计带来以下影响:①耐高温金属材料的研制;②高参数蒸汽造成初期容积流量减小,汽轮机的二次流损失会增大;③高参数蒸汽带来的汽流激振;④蒸汽速度提高,会造成严重冲蚀;⑤对于汽轮机部件的冷却设计要求提高;⑥可能产生更高的热应力,更大的热膨胀和更严重的热变形;⑦漏气的可能性更大,对于汽封的性能要求更高。

1.3 汽轮机流量变化对于热力特征的影响

汽轮机不可能经常在设计的蒸汽流量下运行,因为它的输出功率不可能长期保持额定。供热式汽轮机的蒸汽流量更是时常变化,即使输出功率不变,由于热负荷的变动,也会带来各级蒸汽流量的变化。蒸汽流量的变化将使各级蒸汽压力和焓降重新分配,引起汽轮机输出功率,机组效率和通流部分应力的变化。

(1)对于蒸汽参数的影响,如果在给定级组的某一级中,蒸汽的速度等于或超过声速,即处于临界或者超临界状态,此时级后压力的变化对其前面各级的参数不会产生影响,而在通流截面面积不变的情况下,蒸汽流量将仅与级前参数有关。

(2)当蒸汽流量改变时,不仅会影响到汽轮机级前后的压力,因而会影响到各级的焓降变化。只要知道了变工况时各级间压力的分布规律,变工况下级中的焓降就可以确定。

1.4 汽轮机调节方式对于热力特性的影响

蒸汽量改变时对汽轮机热力过程的影响还取决于汽轮机的调节方式,即采用节流调节还是喷嘴调节。节流调节时,进入汽轮机的全部蒸汽由一个或几个同时开启的阀门来调节,阀门后的蒸汽进入所有阀门公用的喷嘴组。喷嘴调节时,蒸汽流过几个调节阀门,每个调节汽门对应于一组喷嘴,各个阀门的开启时依次进行的。

(1)在节流调节的情况下,负荷降低时进入汽轮机的全部蒸汽量都要受到节流。这一过程可以认为是压力降低而节流前后焓值不变的过程,伴随着压力的降低,产生熵增,因而产生损失。这一损失就是节流损失。蒸汽流量减少时,汽轮机通流部分的理想焓降将减少,汽轮机的相对内效率也会变小。

(2)喷嘴调节时进入汽轮机的蒸汽由按规定顺序开启几个调节阀门所控制。蒸汽从每个阀门通向各自的喷嘴弧段。因此负荷减小时的节流损失不像节流调节那样,波及全部蒸汽量,而只是涉及流过部分开启阀门的那部分蒸汽。当所有的调节阀门全开或几个阀门全开而剩下的阀门全关时,一般说来就没有节流损失。所以负荷变动时,具有喷嘴调节方式的汽轮机的经济性比具有节流调节的汽轮机高。对于喷嘴调节,应区别两股汽流:流经全开调节阀门的主汽流几乎无节流地进入调节级的喷嘴段,扣除全开进汽机构中的损失之

后,初压力接近新蒸汽压力P;第二股汽流流经部分开启的阀门,节流损失与阀门开启的程度有关。阀门开度越小,汽流受到的节流就越大,所以喷嘴前的蒸汽压力Pn比新蒸汽压力P要低得多。因此,第一股汽流的焓降和蒸汽从喷嘴叶栅流出的绝对速度要比第二股汽流大。

(3)对于旁通汽室以后的各级,以凝汽式机组的分析方法相同,各中间级的效率在很宽的蒸汽流量变化范围内可以认为是恒定的。通过汽轮机的蒸汽流量变化时,末级的焓降最大,效率变化也最大。被旁通的级数越多,由蒸汽节流引起的经济性越低,然而可以达到的额外功率越大。为了减小由于旁通蒸汽的节流而引起的损失,有时采用双重,甚至三重旁通调节,即在汽轮机通流部分的两个或三个汽室中有新蒸汽的流入。应当指出,旁通调节方式在亚临界参数机组,超临界参数机组中已经很少使用,但是西门子公司的机组,尤其是近几年发展的超超临界参数1000MW机组,就是采用了这种方式,又称之为过载补汽,用于机组的过负荷。

1.5 汽轮机蒸汽参数变化对于热力特性的影响

(1)汽轮机经常处于变工况运行状态,除蒸汽流量变化外,蒸汽参数也经常偏离设计值。运行时对汽轮机蒸汽参数的变化有严格的要求,运行规定了这些参数允许的变化范围。①当主气压力上升时可降低汽耗率,只要排汽湿度末超过规定值,流量,功率末超过设计最大值,并能避开第一个调节阀全开,第二个调节阀即将开启的危险工况,汽机运行一般还是安全的,但会增加承压部件和紧固件的寿命损耗。运行中通常规定主汽压上限为额定汽压的103%-105%,当主汽压力超限时,应通过对锅炉的控制尽快恢复主汽压力。在主汽压力,排汽压力不变时,如果主汽压力下降,则整机理想焓降下降,排汽湿度减少。在调速汽门开度不变的条件下,主汽流量,机组功率降低,汽耗率增加,经济性降低。调节级和各中间级理想焓降基本不变,末几级的理想焓降减少,则部件应力低于设计值,机组运行偏于安全。②在调节汽门全开的情况下,若主蒸汽压力升高,除调节级外,汽轮机其他各级均会于理想焓降的增大而过负荷,末级过负荷为最大。因为该级排气压力保持不变,而且由于末级叶片较长,蒸汽作用在动叶片上的弯矩较大,故较为危险。但是根据前面的分析如果保持汽轮机的负荷不变,主蒸汽的压力的升高,对于汽轮机部件的安全运行不会产生危害。

(2)主蒸汽温度变化对于热力特性的影响。对于经济性的影响,理论上,提高主蒸汽温度,将提高循环效率,也会提高汽轮机的内效率,因此可以提高机组的经济性。从设计的角度和机组参数发展的角度,火力发电循环一直在努力提高主蒸汽温度,从过去的中,

低参数机组,发展到目前的超临界参数机组,都是为了追求更高的经济性。但是就一个运行的机组而言,部件的材料一定,主蒸汽温度的提高就会危及机组安全性。所有大机组都对主蒸汽温度的升高进行严格的限制,规定了容许的极限温度。运行中绝对不能超过这一容许的极限温度。

2 汽轮机部件暂态工况下的热状态及寿命损耗

2.1暂态工况下的传热现象

汽轮机在蒸汽参数不随时间变化的稳定工况下运行时,汽缸,转子等金属部件内的温度分布时不随时间变化的。对于汽缸来说,蒸汽以对流方式传递给汽缸内壁的热量就等于汽缸从内壁传导到外壁的热量,即等于最终从保温层扩散到大气中的热量。这种热量的传递方式时稳定的。因此称为稳态传热过程。同样,对于汽轮机转子,在汽轮机蒸汽工况稳定条件下,其温度分布也是不随时间而改变的。汽轮机启动、停机以及负荷变化,会导致部分金属温度的变化均属于汽轮机的暂态工况。在暂态工况下,由于蒸汽参数的变化,汽轮机部件内部的传热过程是不稳定的。这些传热过程包括凝结换热、对流传热、导热等过程。不稳定的换热过程会导致金属内部不均匀的温度分布,从而引起金属内部的热应力、热膨胀和热变形,更进一步会影响到汽轮机不见得寿命。实际上,为了控制暂态过程中的汽轮机部件的寿命消耗,必须控制热应力、热膨胀和热变形,也就是要控制启动的蒸汽参数的变化速度。

汽轮机的启动和停机过程,就是汽轮机部件的热力、应力和机械状态的逐渐变化过程。在这一阶段,启动不当最易发生事故。因此,必须对设备的各个环节和部件所产生的热状态变化过程以及表现出来的热力性质具有明确的概念。

蒸汽进入汽轮机,首先对汽轮机的汽、转子等金属部件进行加热,这是一个非稳态传热过程;随着启动的进行,真气温度逐渐升高,由于金属部件的传热有一定的速度,所以蒸汽温升速度大于金属部件的温升速度,时金属部件产生内卫温差,如汽缸壁内外温差、转子表面与中心孔温差大。这种温差的存在,使金属部件产生很复杂的传热现象和因此产生的机械能变化,如热应力、热膨胀和热变化等等,再加上部件原有的机械应力,这是某些部件所受应力将达到很大的数值。

(1)汽轮机部件的凝结换热,一般来说,当蒸汽与温度低于蒸汽压力对应的饱和温度的金属表面接触时,在金属表面将发生凝结换热现象,蒸汽放出汽化潜能,凝结成液体。这一过程伴随着相变,有很高的放热系数。因此发生凝结过程时,会有剧烈的加热。汽轮机冷态启动时,汽缸、转子等金属部件的温度很低,蒸汽容易在金属表面凝结。由于凝结

换热非常剧烈,很容易在汽轮机金属部件内形成很大的温差。为了减少这个温差,大型汽轮机在冲转前多采用盘车预热的方式,即在汽轮机启动前盘车时,通入低压低温蒸汽,预热汽缸和转子,然后再通入较高参数的蒸汽,冲动转子。

(2)在汽轮机中进行的对流换热包括启动过程中蒸汽对于汽缸、转子等部件的加热,停机过程中蒸汽对于汽缸、转子等部件的冷却,汽缸和外界之间的自由对流换热,停机之后转子在汽缸内部的自由对流换热等。在换热过程中金属的温度分布规律取决于蒸汽参数的变化速率、金属的物性参数、金属部件的结构及几何尺寸以及蒸汽与金属之间的对流换热系数。对于实际存在的汽轮机汽缸而言,金属的物性参数、几何尺寸、结构等都是不变的量,所有温度分布仅取决于蒸汽参数的变化率和对流换热系数。不同的启动方式和不同的启动要求,具有不同的蒸汽参数的变化速率。

(3)①汽缸壁的导热,启动过程中,通过导热作用把热量从汽缸的内壁导向外壁,使得汽缸内外壁温度均匀,减少温差,从而减少热应力。蒸汽在汽轮机中做功时沿着轴向温度降低,所以汽缸在轴向也存在温度梯度,也有一个轴向导热的问题,尤其是低压缸为重要。轴向温差的增大使得汽缸的轴向热应力增加。②③

汽轮机本体疏放水系统运行方式

汽轮机本体疏放水系统运行方式 本体疏水运行 汽轮机本体疏水分为高压疏水、中压疏水、低压疏水,并通过DCS实现自动控制。机组在启动之前,所有疏水阀全部在开启位,当机组负荷到额定负荷的10%时,高压段疏水阀自动关闭;当负荷达到额定负荷的20%时,中压段疏水阀自动关闭;当负荷达到额定负荷的30%时,低压段疏水阀自动关闭。机组停机时,当机组负荷降至额定负荷的30%、20%、10%时,自动依次开启低压段、中压段、高压段各疏水阀。 当机组各疏水阀自动控制失灵时,应及时手动控制。在机 组热态停机时,在确认汽缸疏水疏尽后,需关闭本体疏水闷缸,防止上下缸温差大,弓I起动静部分摩擦。如果发生严重事故破坏真空紧急停机时,压力高的疏水应禁止开启,避免损坏设备。 主再热蒸汽管道疏水及本体疏水在启机之前真空正常后均应开启,充分疏水,防止汽轮机进水,且在启机之前要确认疏水阀可动作正常。 辅助系统疏水运行 辅汽疏水系统、除氧器加热系统、轴封疏放水系统等辅助系统疏水在其相应系统机组启动之前真空正常后开启,设备启动前必须开启,进行充分的疏水、暖管,以防止发生汽水冲击,造成管道的振动以及其他的事故。待暖管结束后应及时关闭各疏水阀。操作时严格执行运行规程及安全规程的规定。注意在主机未建立

真空之前禁止向排汽装置排入蒸汽和热水,避免排汽装置超温损坏,防爆膜鼓开。 汽轮机为防止机组运行及停机时汽缸进水,造成水击和上下缸温差大,大轴弯曲等事故的发生而设有防进水保护系统。河曲二期工程疏水系统设计遵照ASME标准TDP-1要 求设计,在各主要蒸汽管道的疏水口设置疏水袋,在每个疏水袋上设置两个水位开关,用于自动联锁开关疏水阀和在DCS报警。在再热冷段以及各段抽汽逆止阀前管道上、下方均设置了热电偶,以便根据该管道上下温差来检测管内是否积水,同时发出报警信号,以便尽早发现并及时采取措施。汽机抽汽管路系统和加热器设计有独立的防进水自动保护手段,包括加热器壳体的自动疏水系统、汽轮机与加热器之间抽汽管道上的自动关段阀以及各抽汽逆止阀、各加热器水侧的关断阀等。在机组跳闸或各加热器水位达危险值时自动关闭相应关断阀,确保机组不进水、不超速。

汽轮机原理及运行课程

汽轮机原理及运行课程自学辅导资料 二○○八年十月

汽轮机原理及运行课程自学进度表教材:汽轮机原理教材编者:沈士一康松庆贺庆庞立云 出版社:中国电力出版社出版时间:1992

接交给任课教师。总成绩中,作业占15分。

汽轮机原理及运行课程自学指导书 第1章汽轮机级的工作原理 一、本章的核心、重点及前后联系 (一)本章的核心 掌握蒸汽在汽轮机各种级内的流动过程和能量转换规律及计算,蒸汽在汽轮机级内能量转换过程中各种损失和各种级效率的物理概念及减少损失的措施,熟悉各种损失的计算;熟悉汽轮机级的热力设计原则和方法,扭叶片级;了解叶栅的气动特性。 (二)本章重点 级的概念,级的工作过程,级的反动度,动叶进出口速度三角形,蒸汽在喷嘴的膨胀过程,蒸汽在动叶中的流动和能量转换过程;蒸汽作用在动叶栅上的力和轮周功率,级的轮周效率,级的轮周效率与速比的关系,蒸汽在复速级内的能量转换特点;级内损失,级的相对内效率。 (三)本章前后联系 在前面学习完成工程热力学和流体力学的基础上,对级的工作原理进行学习;学习本章内容为后面分析多级汽轮机的工作原理打下基础。 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 级,反动度,压比,速比,最佳速比,轮周效率,轮周功率,级的相对内效率,扭叶片(二)本章难点及学习方法指导 级的轮周效率和速比的关系 学习方法:理论联系实际,熟悉汽轮机结构,多看书, 三、典型例题分析 1.汽轮机按工作原理分类可分为哪几种类型? 答:冲动式汽轮机和反动式汽轮机。 2.按热力性质分类,汽轮机可分为哪几种类型? 答:凝汽式汽轮机,背压式汽轮机,调节抽汽式汽轮机,抽汽背压式汽轮机,中间再热式汽轮机

汽轮机的运行维护

汽轮机的运行维护 运行中对汽轮机设备进行正确的维护、监视和调整,是实现安全、经济运行的必要条件。为此,机组正常运行时要经常监视主要参数的变化情况,并能分析其产生变化的原因。对于危害设备安全经济运行的参数变化,根据原因采取相应措施调整,并控制在允许的范围内。 汽轮机运行中的主要监视项目,除汽温、汽压及真空外,还有监视段压力、轴向位移、热膨胀、转子(轴承)振动以及油系统等。 在正常运行过程中,为保证机组经济性,运行人员必须保持:规定的主蒸汽参数和再热蒸汽参数、凝汽器的最佳真空、给定的给水温度、凝结水最小过冷度、汽水损失最小、机组间负荷的最佳分配等。 一、汽轮机运行中的监视 1.负荷与主蒸汽流量的监视 机组负荷变化的原因有两种:一种是根据负荷曲线或调度要求由值班员或调度员主动操作;另一种是由于电网频率变化或调速系统故障等原因引起。 负荷变化与主蒸汽流量变化的不对应一般由主蒸汽参数变化、真空变化、抽汽量变化等引起。遇到对外供给抽汽量增大较多时,应注意该段抽汽与上一段抽汽的压差是否过大,避免因隔板应力超限及隔板挠度增大而造成动静部件相碰的故障。 当机组负荷变化时,对给水箱水位和凝汽器水位应及时检查和调整。随着负荷的变化,各段抽汽压力也相应地变化,由此影响到除氧器、加热器、轴封供汽压力的变化,所以对这些设备也要及时调整。轴封压力不能维持时,应切换汽源,必要时对轴封加热器的负压要及时调整。负压过小,可能使油中进水;负压过大,会影响真空。增减负荷时,还需调整循环水泵运行台数,注意给水泵再循环门的开关或调速泵转速的变化、高压加热器疏水的切换、低压加热器疏水泵的启停等。 2.主蒸汽参数的变化 一般主蒸汽压力的变化是锅炉出力与汽机负荷不相适应的结果,而主蒸汽温度的变化,则是锅炉燃烧调整、减温水调整、直流炉燃水比不当、汽包炉给水温度因高压加热器运行不正常发生变化等所致;主蒸汽参数发生变化时,将引起汽轮机功率和效率的变化,并且使汽轮机通流部分的某些部件的应力和机组的轴向推力发生变化。汽轮机运行人员虽然不能控制汽压、汽温,但应充分认识到保持主蒸汽初参数合格的重要性,当汽压、汽温的变化幅度超 过制造厂允许的范围时,应要求锅炉恢复正常的蒸汽参数。 3.再热蒸汽参数的监视 再热蒸汽压力是随着蒸汽流量的变化而变化的。再热蒸汽压力的不正常升高,一般由中压调速汽门脱落或调节系统发生故障而使中压调速汽门或自动主汽门误关引起的,应迅速处理,设法使其恢复正常。 再热蒸汽的温度主要取决于锅炉的特性和工况。再热蒸汽温度变化对中压缸和低压缸的影响,类似于主蒸汽温度的变化,在此不再赘述。 4.真空的监视 真空是影响汽轮机经济性的主要参数之一,运行中应保持真空在最有利值。真空降低,即排汽压力升高时,汽轮机总的比焓降将减少,在进汽量不变时,机组的功率将下降。如果真空下降时继续维持满负荷运行,蒸汽量必然增大,可能引起汽轮机前几级过负荷。真空严重恶化时,排汽室温度升高,还会引起机组中心变化,从而产生较大的振动。所以,运行中发现真空降低时,要千方百计找到

完整启动汽轮机过程

启动汽轮机必须经过的程序 其顺序为 1、启动前的检查项。 2、辅助油泵及调节系统试,保护投入。 3、暖管。 4、辅助设备的启动与投入。 5、启动与升速。 6、并网与带负荷。 熟记汽轮机有哪些保护,所有这些保护是什么时候投入。 汽轮机具有下列保护装置 1、超速保护 DEH中设计了103%超速(OPC)、110%电气超速跳闸(AST)和112%机械超速跳闸。 103%超速保护:汽机任何情况下转速超过3090RPM时OPC电磁阀动作,所有调门立刻关闭,保持数秒或转速降低到3000RPM后重新打开。103%超速保护动作只关调门。 110%AST超速跳闸保护:汽轮机转速超过3300RPM时,AST电磁阀动作,主汽门、调门关闭,汽机跳闸。 112%机械超速跳闸保护:转速超过3360RPM时,机械撞击子在离心力的作用下飞出,使保安系统动作,关闭主汽门、调门,汽机跳闸。 2、低油压保护 ①调速油压低于1.76MPa时联调速油泵;润滑油压低于0.07MPa时联交流润滑油泵。 ②润滑油压低于0.06MPa时联直流润滑油泵;润滑油压低于0.04MPa时跳机。 ③润滑油压低于0.03MPa时联跳盘车。 ④顶轴油泵进口油压≤0.049MPa时联备用泵。 ⑤顶轴油泵进口油压≤0.0196MPa时联跳顶轴油泵。 ⑥DEH控制油压低于0.7MPa时跳机。 3、轴向位移大保护 当轴向位移达-1.0mm或0.8mm时,发出报警信号;当轴向位移达-1.2mm 或1.0mm时,保护动作。 4、轴承温度高保护 轴承回油温度达65℃时,发出报警信号;轴承回油温度达75℃时,保护动作。 5、相对差胀保护 当相对差胀达-1.6mm或2.5mm时,发出报警信号;当相对差胀达-1.8mm 或3.2mm时,保护动作。 6、低真空保护 当排汽真空低于-0.087MPa时,发出报警信号;当排汽真空低于-0.067MPa 时,跳机。 7、危急遮断器手柄

汽轮机设备及系统安全运行常识通用版

安全管理编号:YTO-FS-PD178 汽轮机设备及系统安全运行常识通用 版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

汽轮机设备及系统安全运行常识通 用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 对于汽轮机组除机组本身外,大部分转动机械是离心式水泵,如锅炉给水泵、凝结水泵、循环水泵、工业水泵、热网泵、疏水泵和油泵等。离心式水泵是电厂不可缺少的重要辅助设备,它的安全经济运行将直接影响发电供热的安全和经济效益。转动机械运行中应注意以下几点事项: (I)泵体、电机及周围地面清洁,电机出入口风道无杂物。 (2)轴承内润滑油合格,油温、油压、油位在规定值范围内。 (3)搬动对轮轻快,对轮罩完好,牢固无刮碰。水泵盘根压盖不斜,冷却水畅通,水量合适。 (4)转动机械运行值班人员上岗前,必须经过专业培训,并经上岗考试合格后方可上岗。 (5)转动机械的运行值班人员必须熟悉所管辖的设备的工作原理、设备结构、性能和各种运行参数指标。

汽轮机原理及运行.

汽轮机原理及运行 随着工业生产的蓬勃发展,工业污染物的排放,对大气、自然环境的影响和危害越来越大。国家为保护环境,加大了对工业生产污染物排放的监管力度,国务院专门召开会议部署全国节能降耗减排的工作。我省焦化、炭黑、水泥等高温冶炼企业比较多,这些企业在生产过程中必然产生大量焦煤气、热量,而这些能源和热能大都没有被再利用,而以不同的排放方式,白白地浪费掉了,还造成了大气环境污染。事实上,要做到脱硫除尘、净化排放,必须将余热温度降到250゜C以下才能实现,而排放的余热全都在250゜C上,是根本无法脱硫除尘的。那么,唯一的办法就是将余热再利用,首选发电,实现能量再利用,既提高了原材料利用率,又净化了排放物,大大减少CO2、SO2排放量。 一直以来,这样的好事为什麽没有企业做呢?原因就在于,利用余热、余气进行发电的机组功率较小,不易并入大电网,或是地处与系统弱联系的区域,根本无网可并。自发自用,单独运行,又苦于发电机组不能稳定运行。故而形成目前不能不生产、可排放又超标的困难局面。 余热减排发供电微电网稳定运行综合控制系统的研发,是针对利用余热发电、热电联产的自备电厂运行不稳定、耗能高的问题而进行的。主要应用于焦化、炭黑、水泥等高温冶炼企业,利用余热发电、热电联产的自备电厂的微电网设

备在线数字化状态检测与监控的工艺改造,彻底改造通过气门排放蒸汽调节负荷的传统方法,实现了既稳定运行,又节能降耗减排。其适用范围和区域主要是产生余热、余气的高温冶炼企业,电网覆盖薄弱地区、电网末端或电网未到达区域,自建的供、用电微电网。 针对这种状况,山西博赛克电力技术有限公司潜心研究开发余热减排发供电微电网稳定运行综合控制系统技术,彻底解决了这些发电机组的运行不稳定问题,真正实现了无网支撑、无忧运行,被称为“自备电厂的革命性技术”,具有国内领先水平。是一项电力、电网节能降耗技术。 其社会经济意义主要是:能为上述状况提供完整的工艺改造解决方案,可使这些企业的余热自备电厂的发电设施充分发挥效能,既节能又高效,净化污染物排放,而且用电用户可以使用到与大电网等质的电能,满足生产、生活需求。山西省长治地区沁新公司2×6000KW煤矸石自备电厂的工艺改造和2×12MW焦化余热自备电厂建设,都是采用了余热减排发供电微电网自稳定综合控制系统技术。 事实雄辩地说明,应用该技术改造余热自备电厂通过气门排空进行负荷调节的传统方法,彻底解决了自备电厂运行的弊端,使之高效节能、安全稳定运行。肯定可以带动一大批焦化、炭黑、水泥等高温冶炼企业,充分利用余热、余气进行发电。一是由于余热、余气的充分利用,提高了原材料

汽轮机的运行和维护

汽轮机的运行和维护 第一节汽轮机正常运行维护 20.1.1 汽轮机正常运行维护工作 1. 各岗位运行人员应认真监盘及操作、调整,随时注意各参数、各仪表的变化,发现情况及时处理及时汇报,并采取措施处理; 2. 操作员、巡检员按要求定时、正确抄表,对各参数进行分析比较,如发现有参数偏离正常值,应查明原因,采取相应的措施,并汇报主值班员或值长;将值班中机组发生的异常及操作情况完整记录在运行日志内,并做好交接班及各项记录; 3. 应定时、定线对设备进行巡回检查。巡检时应带必要的工器具及防护用具,认真做到看、摸、嗅、听,仔细核实各运行及备用设备所处的状况正常与否,发现异常情况应找出原因,采取措施,保证机组正常运行; 4. 发现缺陷,及时联系消缺并做好必要的防范措施,对于有可能影响机组或设备、系统安全、经济运行的缺陷,还应作好记录,做好事故预想,并汇报主值班员、单元长值长; 5. 机组保护必须正常、正确、可靠投入; 6. 按照定期工作制度要求完成设备定期切换、定期试验工作; 7. 经常检查辅助各辅机无异常振动、无异常声音,转机轴承油位、油温正常,油质良好,并及时监督有关人员添加或更换; 8. 配合化学,监督凝结水、给水、炉水、蒸汽、发电机定子冷却水、润滑油、EH油品质; 9. 进入电子间、6kV开关室、380V开关室、网控室,禁止无线通信设备的使用,若有携入者,必须呈关机状态; 10. 在接班前、交班前、巡回检查、工况变化应对设备进行听音检查; 11. 对油系统重点检查,严防漏油着火事故的发生。发现问题及时汇报联系相关部门进行处理,做隔离措施时,应注意不要影响热工信号,必要时,由热工确认、解除可能误动的保护; 12. 经常检查机组运行情况和监视表计指示。当发现表计指示和正常值有差异时,应查明原因。设备出现故障时,应及时联系、汇报,并采取必要措施;备用设备应处于良好的备用状态,联锁在投入位置,备用设备进、出口门应处于相关位置; 13. 异常情况下应特别注意机组运行情况: 1) 负荷急剧变化; 2) 蒸汽参数或真空急剧变化; 3) 汽轮机内部有不正常的声音; 4) 系统发生故障; 5) 自动不能投入时。 14. 设备运行中应严密监视其运行参数和运行状态,检查各运行设备的电流、声音、温度、振动、轴承油位等应正常。除事故处理外,严禁设备超出力运行; 15. 新投入运行或异常运行的设备要加强巡检和监视;

提高汽轮机性能及运行特性分析

提高汽轮机性能及运行特性分析 发表时间:2018-11-02T21:44:21.237Z 来源:《电力设备》2018年第17期作者:梁柯 [导读] 摘要:汽轮机是能够将蒸汽热能转化成机械能的外燃回转式机械,它的主要运行功能就是对来自锅炉的蒸汽进行处理,使之转化成其他形式的能量。 (呼和浩特热电厂内蒙古呼和浩特 010080) 摘要:汽轮机是能够将蒸汽热能转化成机械能的外燃回转式机械,它的主要运行功能就是对来自锅炉的蒸汽进行处理,使之转化成其他形式的能量。汽轮机在人们日常生产中的应用十分广泛,例如压缩机、船舶螺旋桨等机器的工作都需要汽轮机的驱动。汽轮机常规热力试验和性能监测对电厂生产管理和节能有重要意义,一般通过热力性能的试验可以找到汽轮机热力系统中对机组整体运行性能影响最大且有较大改进空间的环节,基于此,本文作者就哈尔滨有限责任公司制造的CZK350/320-24.2/0.4/566/566型超临界、中间再热、单轴、双缸双排汽、直接空冷、采暖供热抽汽式汽轮发电机组进行分析,其中不足之处,希望同行多加指正。 关键词:汽轮机;性能;技术 1高载荷静叶的开发 在相同叶弦长度条件下,高载荷静叶的数量比以往静叶少了约14%,且性能得到提高。由于减少了叶片数量,叶片表面的摩擦损失和产生于叶片后缘的尾流损失减少,使提高行性能得以实现。高负荷静叶的特征是:(1)由于叶片头部大头化,因此叶片上游侧也承担负荷,均衡了叶片整体负荷;(2)利用反映叶片背面喉部下游位置曲率分布的曲线和紊流分析等详细的设计方法,设计出最佳的叶片数量和叶型。另外,在叶片头部的圆化时还考虑到了入射角特性和强度方面。 2高载荷动叶的开发 高载荷动叶和高载荷静叶一样,也是削减了叶片数量、增大了每枚叶片的载荷。高载荷动叶的开发目标是:与以动叶相比,降低约15%的叶片数量。与高载荷静叶一样,叶片数量减少,叶片负荷增大,因此叶片负压侧的流动就易于脱流。尤其是冲动式叶片,由于叶片根部附近的背弧曲率大,此倾向很明显。 因此在开发高负荷动叶时,条件是需将叶片强度控制在允许值以内,重点放在其根部附近的叶型设计上:(1)为了控制脱流和边界层的发展,降低二次流损失,设计出增大叶片后缘附近负荷的后加载叶型;(2)在动叶叶片根部设计阶段中,想通过前置静叶的侧壁损失预测正确的入射角是很困难的,因此采取了将叶片前缘部位椭圆化,增大曲率半径和改善入射角特性等措施。特别是,使用了二维叶片紊流分析技术和规定喉部长度的反问题设计法,以及曲线进行叶型设计。使用这些设计手段,设计出沿叶高方向多个基本截面的叶型,并通过积叠面形成叶片。 3优化反动式叶片的开发 3.1开发背景 本次使用的是呼和浩特热电厂2×350MW供热机组,汽轮机采用哈尔滨有限责任公司制造的CZK350/320-24.2/0.4/566/566型超临界、中间再热、单轴、双缸双排汽、直接空冷、采暖供热抽汽式汽轮发电机组。为了进一步提高效率,谋求通过级数、转子直径、反动度等设计参数来优化汽轮机结构,并开发适用于此结构的优化叶型。另一方面,在汽轮机高压级中,叶片长度相对较短,沿叶高方向的边界层和二次流领域所占的比例变大,因此必需考虑到这些流场特性的高性能叶片。根据静叶出口的绝对速度和旋转动叶的周向速度,蒸汽将以相对速度流入动叶。由此可见,此相对速度方向离动叶几何入口角越远,叶型损失也交越大。另外,实际中必须考虑边界层和二次流的影响,故想将动叶相对流入角设计成预想的高精度是困难的。如今,在叶型设计中综合应用了基于实验的强化设计法,反问题设计法和二维紊流分析技术,针对流入角的变化,开发出损失特性变化缓慢的圆头动叶。 3.2强化设计的应用 3.2.1测量特性和信号因子 将叶栅视为系统,利用系统输入与输出的理想关系(通过原点的直线),选择信号因子(输入)和测量特性(输出)。 3.2.2误差因子和控制因子 误差因子是可能阻碍理想功能的因子,进行此研究时,选定流入角作为误差因子,考虑到下面叙述的设计叶型时的几何入角,采用了现实的3种流入角(30°,50°,70°)。另一方面,在此研究中,控制因子是决定叶型的参数,由于数值实验时利用了计算机,从计算机环境和设计期间的观点出发,采用选定与流入角特性和损失特性有密切关系的叶片转向角、前缘曲率半径、节弦比和最大叶片负荷部位这4个参数作为控制因子,分别设定了三种方案。在强化设计中,由流入角特性和损失特性对应于比特性和灵敏度特性。 3.2.3叶型设计 四个控制因子进行叶型设计时,仅用这些控制因子不能完全定义叶型形状。因此需预先根据二维紊流分析,将损失评价反映到叶型设计中。再用反问题设计法移动叶片的最大载荷部位,对叶型进行修正。通过用这种反问题设计法进行修正,已足以确定喉部长度。叶片载荷分布的修正范围仅限最大载荷部位附近。 3.2.4SN比和灵敏度特性 针对9种计算方案,进行二维紊流分析,根据此计算结果在三种情况下4个控制因子(A―D),对SN比和灵敏度平均值的因果图。在此研究中,目标是不公将离散度变小(SN比变大),最终还要开发出损失小的叶片。 3.2.5根据最优条件的研究 按照上述两种最佳条件进行叶型设计时,通过二维紊流分析和损失评价可决定叶型。通过积叠沿叶高方向的多个截面,即形成1枚动叶。同以往叶片相比,最佳叶片的数量减少了约33%。 3.3利用二维叶栅风洞进行性能确认试验 通过二维叶栅风洞中,用5孔探针所进行的逐点测量,计算出能量损失系统数。从此结果中,相当于广泛范围汽流入角,损失特性平坦化,而与以往叶片相比,损失自身也大幅降低。 3.4利用空气透平进行级效率的确认试验 为了确认汽轮机的级效率,针对以往叶片和最佳叶片,时行了模型透平试验。用内置热电偶的5孔探针,沿级的出入口径向,对压

汽轮机在运行中的维护常识(新编版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 汽轮机在运行中的维护常识(新 编版)

汽轮机在运行中的维护常识(新编版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 汽轮机正常运行中的维护,是保护汽轮机的安全与经济运行的重要环节之一。汽轮机的维护是汽轮机运行人员的职责,勤于检查分析情况,防止事故发生,并尽可能提高运行的经济性。 一、汽轮机运行人员基本工作 配备必要的操作、维护人员后必须进行专门训练,务必使他们熟悉机组的结构、运转特性和操作要领。运行人员的基本工作有以下几个方面: 1、通过监盘,定时抄表(一般每小时抄录一次或按特殊规定时间抄录),对各种表计的指示进行观察,对比、分析,并做必要的调整,保持各项数值在允许变化范围内。 2、定时巡回检查各设备、系统的严密性,各转动设备(泵、风机)的电流,出口压力,轴承温度,润滑油量、油质及汽轮机振动状况,各种信号显示、自动调节装置的工作,调节系统动作是否平稳和灵活,各设备系统就地表计指示是否正常。保持所管辖区域的环境清洁,设

《汽轮机原理及运行》第1阶段在线作业

?A) 级的相对内效率小于轮周效率 ?B) 级的相对内效率的最佳速度比大于轮周效率最高时的最佳速度比?C) 级的相对内效率的最佳速度比等于轮周效率最高时的最佳速度比?D) 级的相对内效率的最佳速度比小于轮周效率最高时的最佳速度比 ?A) 压力降低 ?B) 温度降低 ?C) 比体积增大

?D) 相对速度增加 ?A) 隔板型结构,隔板用来安装喷嘴,并将各级叶轮隔开?B) 转鼓型结构 ?C) 汽缸上有固定静叶的隔板及支承隔板的隔板套 ?D) 汽缸上有静叶环及支承静叶环的静叶持环 ?A) 定压运行 ?B) 滑压运行 参考答案:A B 收起解析 解析:

?A) 便于拆装 ?B) 可使级间距离不受或少受汽缸上抽汽口的影响,从而可以减小汽轮机的轴向 尺寸,简化汽缸形状,有利于启停及负荷变化 ?C) 为汽轮机实现模块式通用设计创造了条件 ?D) 隔板套的采用会增大汽缸的径向尺寸,相应的法兰厚度也将增大,延长了汽 轮机的启动时间 ?A) 可分为轮式和鼓式两种基本型式 ?B) 轮式转子具有安装动叶片的叶轮,鼓式转子则没有叶轮,动叶片直接装在转 鼓上 ?C) 通常反动式汽轮机转子采用轮式结构 ?D) 通常冲动式汽轮机转子采用轮式结构 参考答案:A B D

?A) 纯冲动机 ?B) 反动级 ?C) 带反动度的冲动级 ?D) 复速级 ?A) 因高速转动和汽流作用而承受较高的静应力和动应力 ?B) 因处在高温过热蒸汽区而承受高温作用 ?C) 因处在湿蒸汽区内工作而承受腐蚀和冲蚀作用 ?D) 作用是将蒸汽的热能转换为动能,再将动能转换为汽轮机转子旋转机械能 参考答案:A B C D 收起解析

浅谈提高汽轮机性能及运行特性分析研究

浅谈提高汽轮机性能及运行特性分析研究 发表时间:2019-03-25T16:03:20.293Z 来源:《基层建设》2018年第35期作者:纪震[导读] 摘要:汽轮机是能够将蒸汽热能转化成机械能的外燃回转式机械,它的主要运行功能就是对来自锅炉的蒸汽进行处理,使之转化成其他形式的能量。 哈尔滨汽轮机厂有限责任公司哈尔滨 150001 摘要:汽轮机是能够将蒸汽热能转化成机械能的外燃回转式机械,它的主要运行功能就是对来自锅炉的蒸汽进行处理,使之转化成其他形式的能量。汽轮机在人们日常生产中的应用十分广泛,例如压缩机、船舶螺旋桨等机器的工作都需要汽轮机的驱动。汽轮机常规热力试验和性能监测对电厂生产管理和节能有重要意义,一般通过热力性能的试验可以找到汽轮机热力系统中对机组整体运行性能影响最大且 有较大改进空间的环节,本文就应用于实机的各种提高性能的技术中,摘出与叶片开发有关的技术,尤以高载荷静叶的开发,并详细介绍了优化反动式叶片的开发,从而对汽轮机性能控制进行总结,其中不足之处,希望予以指正。关键词:汽轮机;性能;运行特性一、高载荷静叶的开发 在相同叶弦长度条件下,高载荷静叶的数量比以往静叶少了约14%,且性能得到提高。由于减少了叶片数量,叶片表面的摩擦损失和产生于叶片后缘的尾流损失减少,使提高行性能得以实现。高负荷静叶的特征是:(1)由于叶片头部大头化,因此叶片上游侧也承担负荷,均衡了叶片整体负荷;(2)利用反映叶片背面喉部下游位置曲率分布的曲线和紊流分析等详细的设计方法,设计出最佳的叶片数量和叶型。另外,在叶片头部的圆化时还考虑到了入射角特性和强度方面。 二、高载荷动叶的开发 高载荷动叶和高载荷静叶一样,也是削减了叶片数量、增大了每枚叶片的载荷。高载荷动叶的开发目标是:与以动叶相比,降低约15%的叶片数量。与高载荷静叶一样,叶片数量减少,叶片负荷增大,因此叶片负压侧的流动就易于脱流。尤其是冲动式叶片,由于叶片根部附近的背弧曲率大,此倾向很明显。因此在开发高负荷动叶时,条件是需将叶片强度控制在允许值以内,重点放在其根部附近的叶型设计上:(1)为了控制脱流和边界层的发展,降低二次流损失,设计出增大叶片后缘附近负荷的后加载叶型;(2)在动叶叶片根部设计阶段中,想通过前置静叶的侧壁损失预测正确的入射角是很困难的,因此采取了将叶片前缘部位椭圆化,增大曲率半径和改善入射角特性等措施。特别是,使用了二维叶片紊流分析技术和规定喉部长度的反问题设计法,以及曲线进行叶型设计。使用这些设计手段,设计出沿叶高方向多个基本截面的叶型,并通过积叠面形成叶片。 三、优化反动式叶片的开发 1、开发背景 为了进一步提高效率,谋求通过级数、转子直径、反动度等设计参数来优化汽轮机结构,并开发适用于此结构的优化叶型。另一方面,在汽轮机高压级中,叶片长度相对较短,沿叶高方向的边界层和二次流领域所占的比例变大,因此必需考虑到这些流场特性的高性能叶片。根据静叶出口的绝对速度和旋转动叶的周向速度,蒸汽将以相对速度流入动叶。由此可见,此相对速度方向离动叶几何入口角越远,叶型损失也交越大。另外,实际中必须考虑边界层和二次流的影响,故想将动叶相对流入角设计成预想的高精度是困难的。如今,在叶型设计中综合应用了基于实验的强化设计法,反问题设计法和二维紊流分析技术,针对流入角的变化,开发出损失特性变化缓慢的圆头动叶。 2、强化设计的应用 (1)测量特性和信号因子将叶栅视为系统,利用系统输入与输出的理想关系(通过原点的直线),选择信号因子(输入)和测量特性(输出)。(2)误差因子和控制因子误差因子是可能阻碍理想功能的因子,进行此研究时,选定流入角作为误差因子,考虑到下面叙述的设计叶型时的几何入角,采用了现实的3种流入角(30°,50°,70°)。另一方面,在此研究中,控制因子是决定叶型的参数,由于数值实验时利用了计算机,从计算机环境和设计期间的观点出发,采用选定与流入角特性和损失特性有密切关系的叶片转向角、前缘曲率半径、节弦比和最大叶片负荷部位这4个参数作为控制因子,分别设定了三种方案。在强化设计中,由流入角特性和损失特性对应于比特性和灵敏度特性。(3)叶型设计 四个控制因子进行叶型设计时,仅用这些控制因子不能完全定义叶型形状。因此需预先根据二维紊流分析,将损失评价反映到叶型设计中。再用反问题设计法移动叶片的最大载荷部位,对叶型进行修正。通过用这种反问题设计法进行修正,已足以确定喉部长度。叶片载荷分布的修正范围仅限最大载荷部位附近。(4)根据最优条件的研究按照上述两种最佳条件进行叶型设计时,通过二维紊流分析和损失评价可决定叶型。通过积叠沿叶高方向的多个截面,即形成1枚动叶。同以往叶片相比,最佳叶片的数量减少了约33%。 3、利用二维叶栅风洞进行性能确认试验通过二维叶栅风洞中,用5孔探针所进行的逐点测量,计算出能量损失系统数。从此结果中,相当于广泛范围汽流入角,损失特性平坦化,而与以往叶片相比,损失自身也大幅降低。 4、利用空气透平进行级效率的确认试验为了确认汽轮机的级效率,针对以往叶片和最佳叶片,时行了模型透平试验。用内置热电偶的5孔探针,沿级的出入口径向,对压力、温度和流角进行了逐点测量。然后根据流量孔扳的测量、测功器的出力和探针测量计算出级效率。以顶部的汽封结构也不一样。与以往动叶片相比,效率提高了1.5%。经确认:由于动叶顶部反动度与密封结构的不同,考虑到漏流影响的话,叶片自身的效率可提高3%。此优化反动叶片已应用于实机。 四、汽轮机的控制方式研究

汽轮机DEH系统运行基本知识

1.什么是DEH?为什么要采用DEH控制? 所谓DEH就是汽轮机数字式电液控制系统,由计算机控制部分和EH液压执行机构组成。采用DEH控制可以提高高、中压调门的控制精度,为实现CCS协调控制及提高整个机组的控制水平提供了基本保障,更有利于汽轮机的运行。 2.DEH系统有哪些主要功能? 汽轮机转数控制;自动同期控制;负荷控制;参与一次调頻;机、炉协调控制;快速减负荷;主汽压控制;单阀、多阀控制;阀门试验;轮机程控启动;OPC控制;甩负荷及失磁工况控制;双机容错;与DCS系统实现数据共享;手动控制。 3.DEH系统仿真器有何作用? DEH仿真器可以在实际机组不启动的情况下,用仿真器与控制机相连,形成闭环系统,可以对系统进行闭环,静态和动态调试,包括整定系统参数,检查各控制功能,进行模拟操作培训操作人员等。 4.EH系统为什么采用高压抗燃油做为工质? 随着汽轮机机组容量的不断增大,蒸汽参数不断提高,控制系统为了提高动态响应而采用高压控制油,在这种情况下,电厂为防止火灾而不能采用传统的透平油作为控制系统的介质。所以EH系统设计的液压油为磷酸酯型高压抗燃油。 5.DEH系统由哪几部分组成? 1)01柜—基本控制计算机柜,完成对汽轮机的基本控制功能,即转速控制、负荷控制及超速保护功能; 2)02柜—基本控制端子柜,在控制实际汽轮机时,信号连到实际设备,进行仿真超作时,信号连到仿真器; 3)手动操作盘,当一对DPU均故障时或操作员站故障时,对DEH进行手动操作; 4)EH油液压部分。 6.DEH系统技术性能指标都有哪些? 1)控制范围0~3600r/min,精度±1r/min; 2)负荷控制范围0~115%,负荷控制精度0.5%; 3)转速不等率3~6%可调;

汽轮机理论简答题全解

汽轮机理论简答题 1.什么叫工质?火力发电厂采用什么作为工质? 答:工质是热机中热能转变为机械能的一种媒介物质(如燃气、蒸汽等),依靠它在热机中的状态变化(如膨胀)才能获得功。 为了在工质膨胀中获得较多的功,工质应具有良好的膨胀性。在热机的不断工作中,为了方便工质流入与排出,还要求工质具有良好的流动性。因此,在物质的固、液、气三态中,气态物质是较为理想的工质。目前火力发电厂主要以水蒸气作为工质。 2. 什么叫动态平衡?什么叫饱和状态、饱和温度、饱和压力、饱和水、饱和蒸汽? 答:一定压力下汽水共存的密封容器内,液体和蒸汽的分子在不停地运动,有的跑出液面,有的返回液面,当从水中飞出的分子数目等于因相互碰撞而返回水中的分子数时,这种状态称为动态平衡。 处于动态平衡的汽、液共存的状态叫饱和状态。 在饱和状态时,液体和蒸汽的温度相同,这个温度称为饱和温度;液体和蒸汽的压力也相同,该压力称为饱和压力。饱和状态的水称为饱和水;饱和状态下的蒸汽称为饱和蒸汽。 3.为何饱和压力随饱和温度升高而增高? 答:温度升高,分子的平均动能增大,从水中飞出的分子数目越多,因而使汽侧分子密度增大。同时蒸汽分子的平均运动速度也随着增加,这样就使得蒸汽分子对器壁的碰撞增强,其结果使得压力增大,所以说:饱和压力随饱和温度升高而增高。 4. 什么叫喷管?电厂中常用哪几种喷管? 答:凡用来使气流降压增速的管道叫喷管。电厂中常用的喷管有渐缩喷管和缩放喷管两种。渐缩喷管的截面是逐渐缩小的;而缩放喷管的截面先收缩后扩大。 5. 什么叫节流?什么叫绝热节流? 答:工质在管内流动时,由于通道截面突然缩小,使工质流速突然增加,压力降低的现象称为节流。

汽轮机运行技术问答

汽轮机运行技术问答(关于油系统问题) 1.汽轮机油系统的作用是什么? 汽轮机油系统作用如下: (1)向机组各轴承供油,以便润滑和冷却轴承。 (2)供给调节系统和保护装置稳定充足的压力油,使它们正常工作。 (3)供应各传动机构润滑用油。 根据汽轮机油系统的作用,一般将油系统分为润滑油系统和调节(保护)油系统两个部分。 2.汽轮机供油系统主要由哪些设备组成?它们分别起什么作用? 汽轮机供油系统主要由主油泵、注油器、汽动油泵、冷油器、滤油器、减压阀、油箱等组成,它们的作用如下: 主油泵是油系统的动力,正常运行时连续不断地将油送到润滑油和调节油系统。 汽动油泵或高压电动油泵(调速油泵)也称辅助油泵。当汽轮机起动或停机过程中主油泵没有正常工作时,用来供给动力油和润滑油。也供停机后调节系统静态特性试验时使用。 低压电动油泵、直流电动油泵一般在汽轮机盘车状态下或事故情况下,供汽轮机润滑油。 注油器也称射油器是一种喷射泵,它利用少量高压油作动力,把大量油吸出来变成压力较低的油流,分别供给离心式主油泵进油和轴承润滑油。 油箱用采储油,同时起分离气泡、水分、杂质和沉淀物的作用。 冷油器的作用是冷却进入汽轮机各轴承的润滑油。 高压过压阀(减压阀)是在机组润滑油由主油泵出油经过减压阀供油时,通过减压阀油来调节进入润滑油系统的油压。 低压过压阀(安全门)是在当润滑油压力过高时,过压阀动作将一部分油排到油箱,保证润滑油压力一定。 滤油器装在润滑油和调速油管道上,主要是防止油中的杂物进入轴承和调节油系统。 3.对汽轮机的油系统有哪些基本要求? 汽轮机的油系统供油必须安全可靠,为此油系统应满足如下基本要求。 (1)设计、安装合理,容量和强度足够,支吊牢靠,表计齐全以及运行中管路不振动。(2)系统中不许采用暗杆阀门,且阀门应采用细牙门杆,逆止门动作灵活,关闭要严密。阀门水平安装或倒装,防止阀芯掉下断油。 (3)管路应尽量少用法兰连接,必须采用法兰时,其法兰势应选用耐油耐高温垫料,且法兰应装铁皮盒罩;油管应尽量远离热体,热体上应有坚固完整的保温,且外包铁皮。(4)油系统必须设置事故油箱,事故油箱应在主厂房外,事故排油门应装在远离主油箱便于操作的地方。 (5)整个系统的管路、设备、部件、仪表等应保证清洁无杂物,并有防止进汽、进水及进灰尘的装置。 (6)各轴承的油量分配应合理,保证轴承的润滑。 4.汽轮机油箱的主要构造是怎样的? 汽轮机油箱一般由钢板焊成,油箱内装有两层滤网和净段滤网,过滤油中杂质并降低油的流速。底部倾斜以便能很快地将已分离开来的水、沉淀物或其它杂质由最底部的放水管放掉。在油箱上设有油位计,用以指示油位的高低。在油位计上还装有最高、最低油位的电气接点,当油位超过最高或最低油位时,这些接点接通,发出音响和灯光信号。稍大

汽轮机运行操作规程

N4.5-1.25汽轮机 运行操作规程 汽轮机是在高温、高压下高速旋转的动力设备,是一个由许多零件、部件组成的复杂整体。除了优良的设计、制造、安装工作以外,正确地启动和运行极为重要。保证它的正常运行是一项复杂而细致的工作,操作人员必须熟悉汽轮机本体及相关的附属设备,掌握汽轮机的性能和要求。如操作不当,就会发生故障,甚至造成重大设备事故。因此必须建立正确的启动、运行和停机等操作程序。(根据冬季或夏季空气气温,结合停机、停窑时间长短以及汽轮机排汽温度等参数,确定汽轮机管道系统是冷态还是热态。) 一、启动前的准备 1、启动前必须进行周密严格的检查工作 a.检查清水箱、软水箱水位是否在2.0米以上,除氧器水位在+250mm以上,AQC、SP 锅炉汽包水位在±0mm以上,热水井水位100-150 mm左右,循环水池水位在3.7m以上;检查油箱油位是否在30以上,油泵进出油管道上阀门是否开启;检查窑头、窑尾锅炉紧急放气阀、给水电动阀、给水电动调节阀、主汽阀开关是否灵活;锅炉给水泵、清水泵、软水泵、凝结水泵进出阀门是否开启,系统正常。 b.检查各仪表测点必须正确且正常。发电机转子碳刷接触良好,滑环表面无积灰。 c.检查各部件应完整无缺,转动部分动作灵活,无卡涩现象。各紧固螺钉均须拧紧。开动盘车装置仔细倾听,应无金属摩擦声。 d.检查凝汽系统处于正常状况。 e.检查调速系统位置正确性,危急遮断油门处于脱扣位置。 f.检查窑头、窑尾锅炉辅助设备,现场确认FU下料管畅通无堵塞,设备无异常后按顺序起动FU、分格轮及振打装置。 f. 当水泥窑投料窑况稳定后,即通知窑中控开启SZZ03百叶阀。 g. 做静态停机试验,手拍危急遮断器及紧急停机按钮,检查速关阀动作及505报警情况,确认无误后可进行下一步操作。

汽轮机原理及运行考试题.

、填空题 1. 蒸汽轮机发电厂的三大核心设备为:、及。 2. 工质的基本状态参数有:、和。 3. 热能传递和转化的方式有:和。 4. 当M<1时,要想使气流膨胀,通流截面应;要想扩压通流截面应。 当M>1时,要想使气流膨胀,通流截面应;要想扩压通流截面应。 5. 汽轮机按热力过程可分为:①汽轮机;②汽轮机; ③汽轮机;④汽轮机等。 6. 汽轮机是一种将的转变为的旋转式原动机。 7. 根据级所采用的反动度的大小不同,可将级分为:,,三种。 8. 蒸汽在动叶中的与这一级之比,称为汽轮机的反动度。 9. 动叶片中理想焓降的大小,通常用级的来衡量,动叶中的焓降越大,级的反动度就。 10. 级内损失除了蒸汽在通流部分中流动时所引起的损失、损失、损失外,还有 损失、损失、损失、损失,损失以及等损失。 11. 汽轮机的损失可分为损失和损失。外部损失包括:损失、损失。 12. 汽轮机转子主要包括、、、以及其他转动零件。 13. 汽轮机的轴承分轴承和轴承两大类。 14. 蒸汽在多级汽轮机中工作时,除存在各种级内损失外,还要产生损失和损

失。 15. 汽轮机米用中间再热,可以提咼;又能减小 16. 高压轴封用来防止蒸汽汽缸,避免工质损失并保护运行现场环境,减轻加热或冲进使润滑油质劣化;低压轴封则用来防止空气汽缸使升高,以及减轻的负担。 17. 危急遮断器的动作转速应在额定转速的范围内。 18. 汽轮机处在临界转速下振动增大的现象称为现象。 19. 影响调节系统动态特性的主要因素,除了机组方面的转子飞升时间,中间容积时间外,还有调节系统方面的、和。 20. DEH控制系统要实现对汽轮机组转速和负荷的控制,必须获得的反馈信号是信号、信号以及信号。 21. DEH调节系统的四种运行方式为:、、和。 22. 汽轮机凝汽设备由、、和凝结水泵等组成。 23. 抽汽器的作用是抽出凝汽器中的,凝汽器真空。 24. 高加保护装置的作用是:当高加发生事故时,能及时切断高加与的联系,同时打开管路,以保证。 25. 调节系统动态特性的质量指标主要有:、和。 26. 调节系统的静态试验包括:、和。 二、名词解释 1?工质一一 2?热力系统——

(完整word版)汽轮机原理沈士一

汽轮机原理沈士一 作者:沈士一等编 出版社:中国电力出版社 出版时间:1992-6-1 内容简介: 本书对“汽轮机原理”课程的三大部分内容,即汽轮机热力工作原理、汽轮机零件强度和汽轮机调节都作了介绍,主要内容有汽轮机级的工作原理、多级汽轮机、汽轮机变工况特性、凝汽设备、汽轮机零件强度及汽轮机调节。并结合大型汽轮机的运行特点,介绍了有关内容。本书为高等学校热能动力类专业本科“汽轮机原理”课程的基本教材,也可供有关专业的师生与工程技术人员参考。 目录: 前言 绪论 第一章汽轮机级的工作原理 第一节概述 第二节蒸汽在喷嘴和动叶通道中的流动过程。 第三节级的轮周功率和轮周效率 第四节叶栅的气动特性 第五节级内损失和级的相对内效率 第六节级的热力设计原理 第七节级的热力计算示例 第八节扭叶片级 第二章多级汽轮机 第一节多级汽轮机的优越性及其特点 第二节进汽阻力损失和排汽阻力损失 第三节汽轮机及其装置的评价指标 第四节轴封及其系统 第五节多级汽轮机的轴向推力及其平衡 第六节单排汽口凝汽式汽轮机的极限功率 第三章汽轮机的变工况特性 第一节喷嘴的变工况特性 第二节级与级组的变工况特性 第三节配汽方式及其对定压运行机组变工况的影响 第四节滑压运行的经济性与安全性 第五节小容积流量工况与叶片颤振 第六节变工况下汽轮机的热力核算 第七节初终参数变化对汽轮机工作的影响 第八节汽轮机的工况图与热电联产汽轮机 第四章汽轮机的凝汽设备 第一节凝汽设备的工作原理、任务和类型 第二节凝汽器的真空与传热 第三节凝汽器的管束布置与真空除氧 第四节抽气器 第五节凝汽器的变工况

第六节多压式凝汽器 第五章汽轮机零件的强度校核 第一节汽轮机零件强度校核概述 第二节汽轮机叶片静强度计算 第三节汽轮机叶轮静强度概念 第四节汽轮机转子零件材料及静强度条件 第五节汽轮机静子零件的静强度 第六节汽轮机叶片的动强度 第七节叶轮振动 第八节汽轮发电机组的振动 第九节汽轮机主要零件的热应力及汽轮机寿命管理第六章汽轮机调节系统 第一节汽轮机自动调节和保护的基本原理 第二节液压调节系统 第三节中间再热式汽轮机的调节 第四节调节系统的试验和调整 第五节汽轮机功频电液调节 第六节背压式和抽汽式汽轮机的调节 参考文献

科普 汽轮机的性能

汽轮机,到底能达到什么效率呢? 1汽轮机常识 将蒸汽的能量转换成为机械功的旋转式动力机械。又称蒸汽透平。主要用作发电用的原动机,也可直接驱动各种泵、风机、压缩机和船舶螺旋桨等。还可以利用汽轮机的排汽或中间抽汽满足生产和生活上的供热需要。 汽轮机是将蒸汽的能量转换为机械功的旋转式动力机械,是蒸汽动力装置的主要设备之一。 汽轮机是能将蒸汽热能转化为机械功的外燃回转式机械,来自锅炉的蒸汽进入汽轮机后,依次经过一系列环形配置的喷嘴和动叶,将蒸汽的热能转化为汽轮机转子旋转的机械能。蒸汽在汽轮机中,以不同方式进行能量转换,便构成了不同工作原理的汽轮机。 按工作原理分类 有蒸汽主要在各级喷嘴(或静叶)中膨胀的冲动式汽轮机;蒸汽在静叶和动叶中都膨胀的反动式汽轮机;以及蒸汽在喷嘴中膨胀后的动能在几列动叶上加以利用的速度级汽轮机。 按热力特性分类

有凝汽式、供热式、背压式、抽汽式和饱和蒸汽汽轮机等类型。凝汽式汽轮机排出的蒸汽流入凝汽器,排汽压力低于大气压力,因此具有良好的热力性能,是最为常用的一种汽轮机;供热式汽轮机既提供动力驱动发电机或其他机械,又提供生产或生活用热,具有较高的热能利用率;背压式汽轮机的排汽压力大于大气压力的汽轮机;抽汽式汽轮机是能从中间级抽出蒸汽供热的汽轮机;饱和蒸汽轮机是以饱和状态的蒸汽作为新蒸汽的汽轮机。 按汽轮机的用途分 ?电站汽轮机:用来发电或热电联产的汽轮机 ?工业汽轮机:用来带动水泵、油泵、鼓风机等的汽轮机 ?船用汽轮机:作为船舶的动力装置,用以推动螺旋桨 按进气压力分 ?低压气轮机:新蒸汽压力 1.2—1.5MPa ?中压汽轮机:新蒸汽压力 2—4MPa ?次高压汽轮机:新蒸汽压力 5—6MPa ?高压汽轮机:新蒸汽压力 6—10MPa ?超高压汽轮机:新蒸汽压力 12—14MPa ?亚临界汽轮机:新蒸汽压力 16—18MPa ?超亚临界汽轮机:新蒸汽压力大于22.17MPa 根据热力学原理,新蒸汽参数越高,热力循环的热效率也越高。早期汽轮机所用新蒸汽压力和温度都较低,热效率低于20%。随着单机功率的提高,30年代初新蒸汽压力已提高到3~4兆帕,温度为400~450℃。随着高温材料的不断改进,蒸汽温度逐步提高到535℃,压力也提高到6~12.5兆帕,个别的已达16兆帕,热效率达30%以上。50年代初,已有采用新蒸汽温度为600℃的汽轮机。以后又有新蒸汽温度为650℃的汽轮机。 现代大型汽轮机通常采用新汽压力24兆帕,新汽温度和再热温度为535~565℃的超临界参数,或新汽压力为16.5兆帕、新汽温度和再热温度为535℃的亚临界参数。使用这些汽轮机的电站热效率约为40%。 另外,汽轮机的排汽压力越低,蒸汽循环的热效率就越高。不过排汽压力主要取决于冷却水的温度,如果采用过低的排汽压力,就需要增大冷却水流量或增大凝汽器冷却面积,同时末级叶片也较长。凝汽式汽轮机常用的排汽压力为0.005~0.008兆帕。船用汽轮机组为了减轻重量,减小尺寸,常用0.006~0.01兆帕的排汽压力。

相关主题
文本预览
相关文档 最新文档