当前位置:文档之家› 气动系统气缸(气缸的选择)

气动系统气缸(气缸的选择)

气动系统气缸(气缸的选择)
气动系统气缸(气缸的选择)

气缸

一:什么叫气缸

气缸是气压系统中的执行元件,它是将流体的压力能转变为机械能,输出作用力,推动工作机构实现往复直线,或者往复摆动运动。二:气缸的构造

三:气缸的使用环境和特点

1,使用环境:气缸使用于存在火灾和爆炸危险的场合,除几种特殊的气缸外,其结构类型与液压缸基本相同。

2,由于气体的压缩性大,气缸的速度和位置控制精度不高。同时气压系统的压力较低,气缸的输出功率较小。

四:气缸的分类

气缸可以分为三大类,分别为:单做用气缸,双作用气缸,特殊气缸。(具体分类,见EXCEL表格)。

五:气缸的计算公式(在此以双作用活塞杆气缸为例,活塞杆上的推

力F1以及拉力F2分别按照以下公式计算。

F1=1/4×π×D∧2×p×η

F2=1/4×π×(D∧2-d∧2)×p×η

式中F1——双作用单活塞杆气缸的输出推力(N)

F2——双作用单活塞杆的输出拉力(N)

D——活塞直径(m)

d——活塞杆直径(m)

p——气缸工作压力(pa)

η——载荷率,与气缸压力有关,且综合反映活塞的快速运动和气缸的效率。若气缸动态参数要求较高,且工作频率高,其载荷率一般取值为(0.3~0.5),速度高的时候取较小的数值,速度较低时取较大的数值;若气缸动态参数要求一般,且工作频率低,基本是匀速运动,可只考虑其总阻力,载荷率可取为(0.7~0.85)。

当气缸的动作有速度要求时,η值根据下表取值。

六,气缸选用的计算举例

举例:用气缸水平推动小车,小车负载质量为M=150KG,小车与接触面间的摩擦系数为μ=0.3,气缸行程L=300mm,要求气缸的动作时间t=0.8s,工作压力为P=0.5Mpa,请选择气缸的缸径大小!

解题:

1,气缸的轴向负载力F=μMg=0.3*150*9.8=450N

2,气缸的平均速度

v=行程/气缸动作时间=L/t=300/0.8=375mm/s,按上表动载荷的数值取值,负载率η=0.5

3,由此推出气缸的理论输出力

轴向负载力=气缸的输出力×载荷率——F=F0×η

F0=F/η=450/0.5=900N

4,由于上述中已经带入在载荷率,所以得气缸的缸径

D=√(4F0/πp)=47.9mm,根据气缸的标准缸径,我们选择缸径D=50mm。

七,气缸的选型步骤顺序

1,根据外部载荷确定气缸缸径的尺寸

2,根据设计的需要选择气缸的行程

3,根据实际的使用场合以及设计的要求来确定气缸的系列

4,根据实际设计的情况,来选择气缸的安装固定方式

5,根据实际工况选择气缸的缓冲形式

6,根据气动回路来选定方向控制阀(磁性开关)

7,选定气缸的其他配件

八,气缸缸径选择表

九,气缸的最低使用气压以及滑动阻力表

十,气缸缸径选择和理论处理表

注意:上述气缸出力值是指气缸运动速度在50~500mm/s内的理论输出力

气缸工作原理

气缸工作原理一、单作用气缸只有一腔可输入压缩空气,实现一个方向运动。其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。单作用气缸的特点是:1)仅一端进(排)气,结构简单,耗气量小 一、单作用气缸只有一腔可输入压缩空气,实现一个方向运动。其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。 单作用气缸的特点是: 1)仅一端进(排)气,结构简单,耗气量小。 2)用弹簧力或膜片力等复位,压缩空气能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输力。 3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。 4)气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。 由于以上特点,单作用活塞气缸多用于短行程。其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。单作用柱塞缸则不然,可用在长行程、高载荷的场合。 二、双作用气缸 工作原理图 双作用气缸指两腔可以分别输入压缩空气,实现双向运动的气缸。其结构可分为双活塞杆式、单活塞杆式、双活塞式、缓冲式和非缓冲式等。此类气缸使用最为广泛。

1)双活塞杆双作用气缸双活塞杆气缸有缸体固定和活塞杆固定两种。 缸体固定时,其所带载荷(如工作台)与气缸两活塞杆连成一体,压缩空气依次进入气缸两腔(一腔进气另一腔排气),活塞杆带动工作台左右运动,工作台运动范围等于其有效行程s的3倍。安装所占空间大,一般用于小型设备上。 活塞杆固定时,为管路连接方便,活塞杆制成空心,缸体与载荷(工作台)连成一体,压缩空气从空心活塞杆的左端或右端进入气缸两腔,使缸体带动工作台向左或向左运动,工作台的运动范围为其有效行程s的2倍。适用于中、大型设备。 三、缓冲气缸 图缓冲气缸 1—活塞杆;2—活塞;3—缓冲柱塞;4—柱塞孔;5—单向密封圈;6—节流阀;7—端盖;8—气孔 缓冲气缸对于接近行程末端时速度较高的气缸,不采取必要措施,活塞就会以很大的力(能量)撞击端盖,引起振动和损坏机件。为了使活塞在行程末端运动平稳,不产生冲击现象。在气缸两端加设缓冲装置,一般称为缓冲气缸。缓冲气缸见上图,主要由活塞杆1、活塞2、缓冲柱塞3、单向密封圈5、节流阀6、端盖7等组成。 其工作原理是:当活塞在压缩空气推动下向右运动时,缸右腔的气体经柱塞孔4及缸盖上的气孔8排出。在活塞运动接近行程末端时,活塞右侧的缓冲柱塞3将柱塞孔4堵死、活塞继续向右运动时,封在气缸右腔内的剩余气体被压缩,缓慢地通过节流阀6及气孔8 排出,被压缩的气体所产生的压力能如果与活塞运动所具有的全部能量相平衡,即会取得缓冲效果,使活塞在行程末端运动平稳,不产生冲击。调节节流阀6阀口开度的大小,即可控

气缸的工作原理

气缸的工作原理 图42.2-9 是又一种浮动联接气-液阻尼缸。与前者的区别在于:T形顶块和拉钩装设位置不同,前者设置在缸外部。后者设置在气缸活塞杆,结构紧凑但不易调整空行程s1(前者调节顶丝即可方便调节s1的大小)。 1 .2.4 特殊气缸 (1)冲击气缸 图42.2-9 浮动联接气-液阻尼缸 冲击气缸是把压缩空气的能量转化为活塞、活塞杆高速运动的能量,利用此动能去做 功。冲击气缸分普通型和快排型两种。 1)普通型冲击气缸普通型冲击气缸的结构见图42.2-10。与普通气缸相比,此种冲击气缸增设了蓄气缸1和带流线型喷气口4及具有排气孔3的中盖2。其工作原理及工作过程可简述为如下五个阶段(见图42.2-11): 第一阶段:复位段。见图42.2-10和图42.2-11a,接通气源,换向阀处复位状态,孔A进气,孔B排气,活塞5在压差的作用下,克服密封阻力及运动部件重量而上移,借助活塞上的密封胶垫封住中盖上的喷气口4。中盖和活塞之间的环形空间C经过排气小孔3与大气相通。最后,活塞有杆腔压力升高至气源压力,蓄气缸压力降至大气压力。 第二阶段:储能段。见图42.2-10和图42.2-11b,换向阀换向,B孔进气充入蓄气缸腔,A孔排气。由于蓄气缸腔压力作用在活塞上的面积只是喷气口4的面积,它比有杆腔压力作用在活塞上的面积要小得多,故只有待蓄气缸压力上升,有杆腔压力下降,直到下列力平衡方程成立时,活塞才开始移动。 式中 d——中盖喷气口直径(m); p30——活塞开始移动瞬时蓄气缸腔压力(绝对压力)(Pa); p20——活塞开始移动瞬时有杆腔压力(绝对压力)(Pa); G——运动部件(活塞、活塞杆及锤头号模具等)所受的重力(N); D——活塞直径(m); d1——活塞杆直径(m); F?0——活塞开始移动瞬时的密封摩擦力(N)。

气缸的耗气量计算公式

气缸的耗气量可以分成最大耗气量和平均耗气量。 最大耗气量是气缸以最大速度运动时所需要的空气浏览,可以表示成: qr=0.0462D^2*um(P+0.102) 例如缸径D为10cm,最大速度为300mm/s,使用压力为0.6Mpa,则 气缸的最大耗气量qr=0.046*10^2*300*(0.6+0.102)=968.76(L/min),因此选用cv值为1.0或有效截面积为18mm左右的电磁阀即可满足流量要求。 若气缸的使用压力为0.5Mpa,最大速度为200mm/s,则气缸的最大耗气量为qr=553.84。 如果缸径D为50cm,最大速度为300mm/s,使用压力为0.6Mpa,则气缸的最大耗气量为qr=242.19,因此选用cv值选用0.3左右的即可。 平均耗气量是气缸在气动系统的一个工作循环周期内所消耗的空气流量。可以表示成: qca=0.00157(D^2*L+d^2*ld)N(p+0.102) 上式中, qca:气缸的平均耗气量,L/min(ANR); N:气缸的工作频率,即每分钟内气缸的往复周数,一个往复为一周,周/min; L:气缸的行程,cm; d:换向阀与气缸之间的配管的内径;cm ld:配管的长度,cm。 例如,缸径D为100mm(10cm)、行程L为100mm(10cm)的气缸,动作频率N为60周/min,d=10mm(1cm),ld=60mm(6cm), qca=0.00157(D^2*L+d^2*ld) N(p+0.102)=0.00157*(10^2*10+1^2*6))*60*(0.6+0.102)=66.5251704L/min(ANR). 平均耗气量用于选用空压机、计算运转成本。最大耗气量用于选定空气处理原件、控制阀及配管尺寸等。最大耗气量与平均耗气量之差用于选定气罐的容积。

气缸选型与计算

气缸选型与计算 气缸的选型最全资料 气缸的理论输出力 普通双作用气缸的理论推力(N)为: F o - D2p 4 式中,D 一缸径(mm),p 一气缸的工作压力(MPa)。 理论拉力(N)为: F i (D2d2)p 4 式中,d 一活塞杆直径(mm )时,估算时可令d=0.3D。 气缸的负载率 气缸的负载率:是指气缸的实际负载力F与理论输出力F0之比。 负载力是选择气缸的重要因素。负载情况不同,作用在活塞轴上的实际负载力也不同。 气缸的实际负载是由工况所决定的,若确定了负载率n也就能确定气缸的理论出力,负载率n的选取与气缸的负载性能及气缸的运动速度有关(见下表) 负载的运动状 态 静负载如夹紧、 低速压铆 动载荷 气缸速度 v 100mm/s 气缸速度 100~500mm/s 气缸速度 > 500mm/s 负载率n< 8%< 6%< 5%< 3%

用气缸水平推动台车,负载质量M=150kg,台车与床面间摩擦系数0.3,气缸行程L=300mm,要求气缸的动作时间t=0.8s,工作压力P=0.5Mpa。试选定缸径。

气缸选型与计算 解轴向负载力= = 0.3x150x9.3 = 4503/1- 气缸的平均速度v = - = —= 375^;^按表沪T选取负载率岸= i 0.8 理论输出力^=- = —^ 9WN^ n0.5 鹹“得双作用气缸亂径D■捋如卩 故选麻收作用缸的缸径丸刘血m ' 气缸理论输出力表 气紅理论出力購西气缸内怪确宦 理谁出力忑:\) 其中P1――气缸推力,P2――气缸拉力 其它方面的选择 1、类型的选择 根据工作要求和条件,正确选择气缸的类型。要求气缸到达行程终端无冲击现象和撞击噪声应选择缓冲气缸;要求重量轻,应选轻型缸;要求安装空间窄且行程短,可选薄型缸;有横向负载,可选带导杆气缸;要求制动精度高,应选锁紧气缸;不允许活塞杆旋转,可选具有

气缸的工作原理

神威气动https://www.doczj.com/doc/e416648029.html, 文档标题:气缸的工作原理 气缸的工作原理的介绍: 引导活塞在缸内进行直线往复运动的圆筒形金属机件。空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。 二、气缸种类: ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒) 运动的动能,借以做功。 ⑤无杆气缸:没有活塞杆的气缸的总称。有磁性气缸,缆索气缸两大类。 做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 三、气缸结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示: 2:端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3:活塞 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄

气动平衡吊工作原理

0气动平衡吊的工作原理 气动平衡吊是利用重物的重力和气缸内压力达到平衡来实现将重物提升或下降的气动搬运设备。一般一个气动平衡吊会有两个平衡点,分别是重载平衡和空载平衡。重载平衡是平衡吊上有重物时达到平衡状态,空载平衡是平衡吊上无负载时实现的平衡状态。不管是哪种平衡状态,抓具会处于静止,这时只需一个很小的外力就能实现提升或下降重物或抓具。利用气动平衡吊的这个原理,可以提高工作效率,降低工人劳动强度。并且气动平衡吊结构简单,组成部分少,造价成本低,能适合在恶劣工况环境中使用。 下图是气动平衡吊的简单气路图,得雷流体以气路图为例详细说明气动平衡吊的工作原理。 气动平衡吊的核心部件是一个大流量、大排放量、高精密度的气控减压阀,这个减压阀直接关系到重物的定位准确性,移动重物时需要的外力大小,移动重物的速度。 两个先导压力减压阀入口压力取自主管路,分别作为重载平衡和空载平衡的先导阀,两路先导气体通入两位三通换向阀,换向阀用于切换重载平衡和空载平衡。经过换向阀之后,先导气体通入气控减压阀,气控减压阀的出口压力则和对应的先导压力相等。主管路的气体经气控减压阀减压后通入气缸,气缸内充入气体后活塞上升,从而将重物拉起。 当重物被吊起后处于静止状态时就说明达到了重载平衡,这时只需一个很小的外力打破这个

平衡,就能实现轻松地上提或下放重物。以往下拉重物来打破平衡为例,当使用外力往下拉时,缸内活塞向下移动,这时缸内压力升高,超过了设定压力(这个设定压力就是平衡时的压力),多余的压力就会从气控减压阀的排放口排出。这样一个过程的结果是:活塞(重物)下降到一定位置静止不动,缸内压力又恢复到之前的平衡压力。反之,往上抬重物打破缸内压力平衡,也是一样的道理,只是气体一个是逆向流动(从缸内向气控减压阀的排气口流动),另一个是正向流动(气控减压阀向缸内流动)。 关于平衡吊气路系统的常见问题及解答: 1,为什么要使用两个先导减压阀来控制一个气控减压阀,而不是只用一个大流量的减压阀直接给气缸供气? 答:如果用一个手动调节的减压阀给气缸供气,减压阀出口压力只能实现一个平衡,无法在两个平衡点之间来回切换。 2,为什么要有重载平衡和空载平衡来回切换? 答:两种平衡分别对应有重物和无重物的情况,当重物被安放到支撑物上(如推车上)后,就应该用换向阀切换至空载平衡才能卸下吊钩。在空载平衡的状态下移动吊钩去吊另外一个重物,钩好后再切换到重载平衡,所以用气动平衡吊来来回搬运卸载重物需要切换两个平衡。 3,为什么不用两个大流量的减压阀接入一个换向阀,再从换向阀通入气缸? 答:正如前面所说的,满足气动平衡吊气路系统的减压阀必须是大流量、大排气量、高精度的,如果用两个这样的阀会大大增加使用成本。而使用一个满足这些条件的气控减压阀加两个先导阀则可以减少成本,因为先导阀可以用小流量的,成本较低。 4,如果气控减压阀不是大流量、大排气量、高精度的,会有什么后果? 答:这个问题需要从三个方面回答。1,流量不大,会引起向气缸内充气速度很慢,从而实现平衡的时间很长(特别是实现重载平衡的时间)。2,排气量小,多余的压力释放地慢,重物位移的速度就慢。3,精度不高,会导致很难调到平衡点,调不到平衡点就使重物无法处于静止状态,或者重物出现抖动现象。

气缸的结构及基本工作原理

气缸 引导活塞在其中进行直线往复运动的圆筒形金属机件。工质在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。英文名:cylinder 气缸-气缸种类 气压传动中将压缩气体的压力能转换为机械能的气动执行元件。气缸有作往复直线运动的和作往复摆动的两类(见图)。作往复直线运动的气缸又可分为单作用、双作用、膜片式和冲击气缸4种。 ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以作功。冲击气缸增加了带有喷口和泄流口的中盖。中盖和活塞把气缸分成储气腔、头腔和尾腔三室。它广泛用于下料、冲孔、破碎和成型等多种作业。作往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 气缸的作用: 将压缩空气的压力能转换为机械能,驱动机构作直线往复运动、摆动和旋转运动。 气缸的分类: 直线运动往复运动的气缸、摆动运动的摆动气缸、气爪等。 气缸的结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件组成,其内部结构如图所示:

SMC气缸原理图 1)缸筒 缸筒的内径大小代表了气缸输出力的大小。活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。小型气缸有使用不锈钢管的。带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。 SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。 2)端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,现在为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3)活塞 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。 4)活塞杆 活塞杆是气缸中最重要的受力零件。通常使用高碳钢,表面经镀硬铬处理,或使用不锈钢,以防腐蚀,并提高密封圈的耐磨性。 5)密封圈 回转或往复运动处的部件密封称为动密封,静止件部分的密封称为静密封。 缸筒与端盖的连接方法主要有以下几种: 整体型、铆接型、螺纹联接型、法兰型、拉杆型。 6)气缸工作时要靠压缩空气中的油雾对活塞进行润滑。也有小部分免润滑气缸。 气缸-工作原理 根据工作所需力的大小来确定活塞杆上的推力和拉力。由此来选择气缸时应使气缸的输出力稍有余量。若缸径选小了,输出力不够,气缸不能正常工作;但缸径过大,不仅使设备笨重、成本高,同时耗气量增大,造成能源浪费。在夹具设计时,应尽量采用增力机构,以减少气缸的尺寸。 气缸 下面是气缸理论出力的计算公式: F:气缸理论输出力(kgf)

气缸选型对照表

气缸的选型 根据气缸推力拉力的大小要求,选定气缸使用压力参数以及缸径尺寸 气缸推力计算公式:气缸推力F1=πD2P 气缸拉力计算公式F2=π(D2-d2)P 公式式中:D-气缸活塞直径(cm) d-气缸活塞杆直径(cm) P-气缸的工作压力(kgf/cm2) F1,F2-气缸的理论推拉力(kgf) 上述出力计算适用于气缸速度50~500mm/s的范围内 气缸以上下垂直形式安装使用,向上的推力约为理论计算推力的50% 气缸横向水平使用时,考虑惯性因素,实际出力与理论出力基本相等 为了避免用户选用时的有关计算,下附双作用气缸输出力换算表,用户可根据负载、工作压力、动作方向从表格中选择合适的缸径尺寸 双作用气缸输出力表单位Kgf 缸径mm 气缸的理论输出力(推力)单位:KG/公斤 使用空气压力MPa 10 16 20 25 32 40

50117137157 63125156187218250 80100151201251300352402 100157236314393471550628 125245368491615736859982 1604026038041005120614071608 18050876310181272152717812036 20062894212571571188521992514 250981147319632454294534363926 3201608241232164021482556296432 40025313796502662837539879610052 选定气缸的行程:确定工作的移动距离,考虑工况可选择满行程或预留行程。当行程超过推荐的最长行程时,要考虑活塞杆的刚度,可以选择支撑导向或选择特殊气缸。 选定气缸缓冲方式:根据需要选择缓冲形式,无缓冲气缸,固定缓冲气缸,可调缓冲气缸 选择润滑方式:有给油润滑气缸,无给油润滑气缸 选择气缸系列:根据以上条件,按需选择适当系列的气缸 选择气缸的安装形式:根据不同的用途和安装需要,选用适当的安装形式 气缸附件的选择:前(后)法兰,脚架,单(双)悬耳,中间铰轴式,铰轴支座式

气体气缸的工作原理

气缸的工作原理 1.2.1 单作用气缸 单作用气缸只有一腔可输入压缩空气,实现一个方向运动。其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。 其原理及结构见图42.2-2。 图42.2-2 单作用气缸 1—缸体;2—活塞;3—弹簧;4—活塞杆; 单作用气缸的特点是: 1)仅一端进(排)气,结构简单,耗气量小。 2)用弹簧力或膜片力等复位,压缩空气能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输出力。 3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。 4)气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。 由于以上特点,单作用活塞气缸多用于短行程。其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。单作用柱塞缸则不然,可用在长行程、高载荷的场合。 1.2.2 双作用气缸 双作用气缸指两腔可以分别输入压缩空气,实现双向运动的气缸。其结构可分为双活塞杆式、单活塞杆式、双活塞式、缓冲式和非缓冲式等。此类气缸使用最为广泛。 1)双活塞杆双作用气缸双活塞杆气缸有缸体固定和活塞杆固定两种。其工作原理见图42.2-3。 缸体固定时,其所带载荷(如工作台)与气缸两活塞杆连成一体,压缩空气依次进入气缸两腔(一腔进气另一腔排气),活塞杆带动工作台左右运动,工作台运动范围等于其有效行程s的3倍。安装所占空间大,一般用于小型设备上。 活塞杆固定时,为管路连接方便,活塞杆制成空心,缸体与载荷(工作台)连成一体,压缩空气从空心活塞杆的左端或右端进入气缸两腔,使缸体带动工作台向左或向左运动,工作台的运动范围为其有效行程s的2倍。适用于中、大型设备。 图42.2-3 双活塞杆双作用气缸

气缸的选型

1.气缸的选型步骤 气缸的选型应根据工作要求和条件,正确选择气缸的类型。下面以单活塞杆双作用缸为例介绍气缸的选型步骤。 (1)气缸缸径。根据气缸负载力的大小来确定气缸的输出力,由此计算出气缸的缸径。 (2)气缸的行程。气缸的行程与使用的场合和机构的行程有关,但一般不选用满行程。 (3)气缸的强度和稳定性计算 (4)气缸的安装形式。气缸的安装形式根据安装位置和使用目的等因素决定。一般情况下,采用固定式气缸。在需要随工作机构连续回转时(如车床、磨床等),应选用回转气缸。在活塞杆除直线运动外,还需作圆弧摆动时,则选用轴销式气缸。有特殊要求时,应选用相应的特种气缸。 (5)气缸的缓冲装置。根据活塞的速度决定是否应采用缓冲装置。 (6)磁性开关。当气动系统采用电气控制方式时,可选用带磁性开关的气缸。 (7)其它要求。如气缸工作在有灰尘等恶劣环境下,需在活塞杆伸出端安装防尘罩。要求无污染时需选用无给油或无油润滑气缸。 2.气缸直径计算 气缸直径的设计计算需根据其负载大小、运行速度和系统工作压力来决定。首先,根据气缸安装及驱动负载的实际工况,分析计算出气缸轴向实际负载F,再由气缸平均运行速度来选定气缸的负载率θ,初步选定气缸工作压力(一般为 ,最后计算出缸径及杆0.4MPa~0.6MPa),再由F/θ,计算出气缸理论出力F t 径,并按标准圆整得到实际所需的缸径和杆径。

例题气缸推动工件在水平导轨上运动。已知工件等运动件质量为m=250kg,工件与导轨间的摩擦系数μ=0.25,气缸行程s为400mm,经1.5s时间工件运动到位,系统工作压力p=0.4MPa,试选定气缸直径。 解:气缸实际轴向负载 F=mg=0.25?250?9.81=613.13N 气缸平均速度 选定负载率 θ=0.5 则气缸理论输出力 双作用气缸理论推力 气缸直径 按标准选定气缸缸径为63mm。

气缸力计算公式

气缸力计算公式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

气缸推力计算公式 气缸理论出力的计算公式: F:气缸理论输出力(kgf) F′:效率为85%时的输出力(kgf)--(F′=F×85%) D:气缸缸径(mm) P:工作压力(kgf/cm2) 例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少芽输出力是多少 将P、D连接,找出F、F′上的点,得: F=2800kgf;F′=2300kgf 在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1中查出。 例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为 132kgf,(气缸效率为85%)问:该选择多大的气缸缸径 ●由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F′/85%=155(kgf) ●由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为63的气缸便可满足使用要求。 2.气缸理论基准速度为u=1920XS/A (mm/s).其中S为排气回路的合成有效面积,A为排气侧活塞的有效面积. 、耗气量:气缸往复一个行程的情况下,气缸以及缸与换向阀之间的配管内所消耗的空气量(标准大气压状态下) 2、最大耗气率:气缸活塞以最大速度运动时,单位时间内所消耗的空气量(标准大气压状态下)

气缸的最大耗气量: Q=活塞面积 x 活塞的速度 x 绝对压力通常用的公式是: Q=2v(p+) Q------标准状态下的气缸最大耗气量(L/min) D------气缸的缸径(cm) v------气缸的最大速度(mm/s) p------使用压力(MPa)气缸耗气量及气管流量计算方法

各种类型气缸的原理

一.产品的性能及特点: 1.免润滑性:该产品采用含油自润滑轴承,使活塞杆无需加油润滑; 2.耐久性:气缸本体、采用优质不锈钢、硬质氧化铝合金材质,前后端盖经过阳极硬质氧化处理,不仅具有耐磨耐腐蚀性,而且更显外观小巧精美; 3.可调缓冲性:该产品除了带有固定缓冲外,气缸终端还带有可调缓冲,是气缸换向时平稳无冲击; 4.安装形式多样性:多种安装附件供客户根据使用要求来选择; 5.耐高温性:可采用耐高温密封材料,使气缸在180°C高温条件下正常工作(客户订货时需向本公司特殊说明订购); 6.附磁性:气缸活塞上装有一个永久磁铁,它可触发安装在气缸上的感应开关来感应气缸的运动位置(客户订货时需向本公司特殊说明订购); 7.行程可调性:活塞杆端配有一个可调螺母,是气缸在其行程范围内实现可调(推力F1=拉力F2); 8.派生多样性:可在原来的基础上派生出多样化的非标产品以此适合客户需要的各种使用要求。 气动执行元件和控制元件 气动执行元件是一种能量转换装置,它是将压缩空气的压力能转化为机械能,驱动机构实现直线往复运动、摆动、旋转运动或冲击动作。气动执行元件分为气缸和气马达两大类。气缸用于提供直线往复运动或摆动,输出力和直线速度或摆动角位移。气马达用于提供连续回转运动,输出转矩和转速。 气动控制元件用来调节压缩空气的压力流量和方向等,以保证执行机构按规定的程序正常进行工作。气动控制元件按功能可分为压力控制阀、流量控制阀和方向控制阀。 气缸 一、气缸的工作原理、分类及安装形式 1.气缸的典型结构和工作原理

图 1 普通双作用气缸 1、3-缓冲柱塞 2-活塞 4-缸筒 5-导向套 6-防尘圈7-前端盖 8-气口 9-传感器 10-活塞杆 11-耐磨环 12-密封圈 13-后端盖 14-缓冲节流阀 以气动系统中最常使用的单活塞杆双作用气缸为例来说明,气缸典型结构如(图1)所示。它由缸筒、活塞、活塞杆、前端盖、后端盖及密封件等组成。双作用气缸内部被活塞分成两个腔。有活塞杆腔称为有杆腔,无活塞杆腔称为无杆腔。 当从无杆腔输入压缩空气时,有杆腔排气,气缸两腔的压力差作用在活塞上所形成的力克服阻力负载推动活塞运动,使活塞杆伸出;当有杆腔进气,无杆腔排气时,使活塞杆缩回。若有杆腔和无杆腔交替进气和排气,活塞实现往复直线运动。 2.气缸的分类 气缸的种类很多,一般按气缸的结构特征、功能、驱动方式或安装方法等进行分类。分类的方法也不同。按结构特征,气缸主要分为活塞式气缸和膜片式气缸两种。按运动形式分为直线运动气缸和摆动气缸两类。 3.气缸的安装形式气缸的安装形式可分为 1)固定式气缸气缸安装在机体上固定不动,有脚座式和法兰式。 2)轴销式气缸缸体围绕固定轴可作一定角度的摆动,有U形钩式和耳轴式。 3)回转式气缸缸体固定在机床主轴上,可随机床主轴作高速旋转运动。这种气缸常用于机床上气动卡盘中,以实现工件的自动装卡。 4)嵌入式气缸气缸缸筒直接制作在夹具体内。 二、常用气缸的结构原理 1.普通气缸 包括单作用式和双作用式气缸。常用于无特殊要求的场合。 图2为最常用的单杆双作用普通气缸的基本结构,气缸一般由缸筒、前后缸盖、活塞、活塞杆、密封件和紧固件等零件组成。 缸筒7与前后缸盖固定连接。有活塞杆侧的缸盖5为前缸盖,缸底侧的缸盖14为后缸盖。在缸盖上开有进排气通口,有的还设有气缓冲机构。前缸盖上,设有密封圈、防尘圈3,同时还设有导向套4,以提高气缸的导向精度。活塞杆6与活塞9紧固相连。活塞上除有密 封圈10,11防止活塞左右两腔相互漏气外,还有耐磨环12以提高气缸的导向性;带磁性开关的气缸,活塞上装有磁环。活塞两侧常装有橡胶垫作为缓冲垫8。如果是气缓冲,则活塞 两侧沿轴线方向设有缓冲柱塞,同时缸盖上有缓冲节流阀和缓冲套,当气缸运动到端头时, 图 2 普通双作用气缸

气缸的结构及基本原理

气缸的结构及基本原理 一、气缸-气缸种类 气压传动中将压缩气体的压力能转换为机械能的气动执行元件。气缸有作往复直线运动的和作往复摆动的两类(见图)。作往复直线运动的气缸又可分为单作用、双作用、膜片式和冲击气缸 4种。 ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以作功。冲击气缸增加了带有喷口和泄流口的中盖。中盖和活塞把气缸分成储气腔、头腔和尾腔三室。它广泛用于下料、冲孔、破碎和成型等多种作业。作往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于 280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 二、气缸的作用: 将压缩空气的压力能转换为机械能,驱动机构作直线往复运动、摆动和旋转运动。 三、气缸的分类: 直线运动往复运动的气缸、摆动运动的摆动气缸、气爪等。 四、气缸的结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件组成。 五、SMC气缸原理图 1)缸筒 缸筒的内径大小代表了气缸输出力的大小。活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。小型气缸有使用不锈钢管的。带磁性开关的气缸或在耐腐蚀

气缸选型步骤及技巧

气缸选型步骤 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、气缸型号分类 (1)从动作上分为单作用和双作用,结构示意图如图所示,前者又分弹簧压回和压出两种,一般用于行程短、对输出力和运动速度要求不高的场合(价格低、耗能少),双作用气缸则更广泛应用。(注:不要把单双作用气缸跟带还是不带磁环气缸等同了) (2)从功能上来分(比较贴合设计情况),类型较多,如标准气缸、复合型气缸、特殊气缸、摆动气缸、气爪等,其中比较常用的为自由安装型气缸、薄型气缸、笔形气缸、双杆气缸、滑台气缸、无杆气缸、旋转气缸、夹爪气缸等,如图所示,大家只要了解各种气缸大致特性和对应型号,要用时调(标准件图纸)出来即可! 基于对气缸在动力特性或空间布局方面的应用特长,我们在实际选用气缸时,首先是确定一个合适的类别从三面考虑:功能要求、空间要求,精度要求。 气缸型号、气缸种类、气缸规格、最全面的气缸大全选型介绍与分析 ●节省空间 指气缸的轴向或径向尺寸比标准气缸的较大或较小的气缸,具有结构紧凑、重量轻、占用空间小等优点,比如薄型气缸(如SDA系列,缸径=Φ12mm~Φ100mm,行程≤100mm)和自由安装型气缸(如CU系列,缸径=Φ6mm~Φ32mm,行程≤100mm),如图所示:

广泛应用的气缸具有节省空间特长的还有无杆气缸,形象地说,有杆气缸的安装空间约2.2倍行程的话,无杆气缸可以缩减到约1.2倍行程,一般需要和导引机构配套,定位精度也比较高。 磁偶式无杆气缸:活塞两侧受压面积相等,具有同样的推力,有利于提高定位精度,适合长行程,重量轻、结构简单、占用空间小,如图所示 机械式无杆气缸:“有较大的承载能力和抗力矩能力,适用缸径Φ10mm~Φ80mm,此外,同样希望节省空间兼顾导向精度要求时,往往会用到双杆气缸(相当于两个单杆气缸并联成一体)。 ●精度要求 一般采用滑台气缸(将滑台与气缸紧凑组合的一体化的气动组件),也有各种细分的类型,工件可安装在滑台上,通过气缸推动滑台运动,适用于精密组装、定位、传送工件等。 ●摆动/旋转运动 遇到需要摆动或转动的场合,一般采用旋转气缸,主要有以下几类: 叶片式旋转缸:用内部止动块或外部挡块来改变其摆动角度。止动块于缸体固定在一起,叶片于转轴连在一起。气压作用在叶片上,带动转轴回转,并输出力矩。叶片式摆缸由单片式和双片式。双片式的输出力矩比单片式大一倍,但转角小于180度。 齿轮式旋转缸:气压力推动活塞带动齿条作直线运动,齿条推动齿轮作回转运动,由齿轮轴输出力矩并带动外负载摆动。齿轮齿条式摆缸有CRJ、CRJU(缸大小代号0.5、1mm),CRA1(缸径30~100mm标准型)、CRQ2(缸径10~40mm薄型)、MSQ(缸径10~200mm 摆动平台)系列可供选择。 转角下压气缸:也称回转夹紧气缸,旋转到一定角度后下压夹紧 ●夹持/固定产品

气缸耗气量的计算

气缸耗气量的计算 通常在标准气缸的选择上,各公司都为客户提供了标准缸径理论输出力选查表。然在实际应用中往往不能满足一些非标用 户的需要(主要是非标缸径和非标活塞杆用户)。因此气缸的耗气量计算式每个参与设计到采购环节人员所必须要掌握的。 气缸耗气量就是指气缸在以单位速度运动时需消耗的气体流量。通常在设计中我们需要考虑的是最大耗气量和平均耗气量。 1、气缸最大耗气量计算公式: Qmax=0.047*D*S *( p+0.1) / 0.1*1/ t 式中: max Q ——最大耗气量(L/min) D——缸径(cm) S ——气缸行程(cm) t ——气缸一次夹紧(或松开)动作时间(sec),(夹紧和松开的时间一般认为相等) p ——工作压力(Mpa) 2、平均耗气量计算公式一: 单作用气缸耗气量max Q =t*Q /T 平均 双作用气缸耗气量max Q =2*t*Q /T 平均 式中:Q平均——平均耗气量(L/min) t ——气缸一次夹紧(或松开)动作时间(sec),(夹紧和松开的时间一般认为相等) max Q ——最大耗气量(L/min) T ——循环周期(sec) 3、平均耗气量计算公式二: 单作用气缸耗气量Q =s*n*q 平均 双作用气缸耗气量Q =2*s*n*q 平均 式中:Q平均——平均耗气量(L/min) q ——单位行程耗气量(L/cm),(可从气动工具书上查出此值)s ——行程(cm) n ——单位时间气缸工作循环次数(min?1 ),(即每分钟循环的次数)。n=60/T 4、当T=2t 时(即气缸一直不停的往复动作),导入平均耗气量计算公式一。得: 单作用气缸最大耗气量max Q =2*Q =2* s*n*q 平均() 双作用气缸最大耗气量max Q =Q =2* s*n*q 平均() 5、气缸全部耗气量还包括非工作容积(含缸内及气管等,这大概占实际耗气量的20%至50%),所以需将耗气量计算结果乘以CBWEE 经验系数1.25 至2,一般取2.

气缸的结构与工作原理[详细讲解]

气缸的结构与工作原理 容来源网络,由“机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在机械展. 气缸定义 气压传动中将压缩气体的压力能转换为机械能的气动执行元件。 气缸构造 气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其部结构如图所示:

气缸分类 气缸有做往复直线运动的和做往复摆动两种类型。做往复直线运动的气缸又可分为单作用气缸、双作用气缸、薄膜式气缸和冲击气缸4种。 ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。

单作用气缸结构简单,耗气量少。缸体安装了弹簧,缩短了气缸的有效行程。弹簧的反作用力随压缩行程的增大而增大,故活塞杆的输出力随运动行程的增大而减小。弹簧具有吸收动能的能力,可减小行程中断的撞击作用。一般用于行程短、对输出力和运动速度要求不高的场合。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 双作用气缸的活塞前进或后退都能输出力(推力或拉力)。结构简单,行程可根据需要选择。为了吸收行程终端气缸运动件的撞击能,在活塞两端设有缓冲垫,以保护气缸不受损伤。 双作用气缸还可以分为单活塞杆型和双活塞杆型,双活塞杆型气缸的活塞两侧受压面积相等,两侧运动行程和输出力是相等的。双作用气缸常用于长行程的工作台的装置上。 ③薄膜式气缸:是引导活塞在其中进行直线往复运动的圆筒形金属机件。是一种利用压缩空气通过薄膜推动活塞杆作往复直线运动并在次过程中将空气压力能转换为机械能的气缸。

气缸的种类及选型、计算【干货】

气缸的种类及选型、计算 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 01 — 气缸型号分类 (1)从动作上分为单作用和双作用,结构示意图如图所示,前者又分弹簧压回和压出两种,一般用于行程短、对输出力和运动速度要求不高的场合(价格低、耗能少),双作用气缸则更广泛应用。(注:不要把单双作用气缸跟带还是不带磁环气缸等同了) (2)从功能上来分(比较贴合设计情况),类型较多,如标准气缸、复合型气缸、特殊气缸、摆动气缸、气爪等,其中比较常用的为自由安装型气缸、薄型气缸、笔形气缸、双杆气缸、滑台气缸、无杆气缸、旋转气缸、夹爪气缸等,如图所示,大家只要了解各种气缸大致特性和对应型号,要用时调(标准件图纸)出来即可!

基于对气缸在动力特性或空间布局方面的应用特长,我们在实际选用气缸时,首先是确定一个合适的类别从三面考虑:功能要求、空间要求,精度要求。 02 — 气缸型号、气缸种类、气缸规格、最全面的气缸大全选型介绍与分析

节省空间 指气缸的轴向或径向尺寸比标准气缸的较大或较小的气缸,具有结构紧凑、重量轻、占用空间小等优点,比如薄型气缸(如SDA系列,缸径=Φ12mm~Φ100mm,行程≤100mm)和自由安装型气缸(如CU系列,缸径=Φ6mm~Φ32mm,行程≤100mm),如图所示: 广泛应用的气缸具有节省空间特长的还有无杆气缸,形象地说,有杆气缸的安装空间约2.2倍行程的话,无杆气缸可以缩减到约1.2倍行程,一般需要和导引机构配套,定位精度也比较高。 磁偶式无杆气缸:活塞两侧受压面积相等,具有同样的推力,有利于提高定位精度,适合长行程,重量轻、结构简单、占用空间小,如图所示

气缸的结构与工作原理【详解】(汇编)

气缸的结构与工作原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 气缸定义 气压传动中将压缩气体的压力能转换为机械能的气动执行元件。 气缸构造

气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示: 气缸分类 气缸有做往复直线运动的和做往复摆动两种类型。做往复直线运动的气缸又可分为单作用气缸、双作用气缸、薄膜式气缸和冲击气缸4种。 ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。

单作用气缸结构简单,耗气量少。缸体内安装了弹簧,缩短了气缸的有效行程。弹簧的反作用力随压缩行程的增大而增大,故活塞杆的输出力随运动行程的增大而减小。弹簧具有吸收动能的能力,可减小行程中断的撞击作用。一般用于行程短、对输出力和运动速度要求不高的场合。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。

双作用气缸的活塞前进或后退都能输出力(推力或拉力)。结构简单,行程可根据需要选择。为了吸收行程终端气缸运动件的撞击能,在活塞两端设有缓冲垫,以保护气缸不受损伤。 双作用气缸还可以分为单活塞杆型和双活塞杆型,双活塞杆型气缸的活塞两侧受压面积相等,两侧运动行程和输出力是相等的。双作用气缸常用于长行程的工作台的装置上。 ③薄膜式气缸:是引导活塞在其中进行直线往复运动的圆筒形金属机件。是一种利用压缩空气通过薄膜推动活塞杆作往复直线运动并在次过程中将空气压力能转换为机械能的气缸。

气缸选择(实际经验总结)

气缸选择(实际经验总结)

如何选择合适的气缸(实际经验总结) 1、类型的选择 根据工作要求和条件,正确选择气缸的类型。要求气缸到达行程终端无冲击现象和撞击噪声应选择缓冲气缸;要求重量轻,应选轻型缸;要求安装空间窄且行程短,可选薄型缸;有横向负载,可选带导杆气缸;要求制动精度高,应选锁紧气缸;不允许活塞杆旋转,可选具有杆不回转功能气缸;高温环境下需选用耐热缸;在有腐蚀环境下,需选用耐腐蚀气缸。在有灰尘等恶劣环境下,需要活塞杆伸出端安装防尘罩。要求无污染时需要选用无给油或无油润滑气缸等。 2、安装形式 根据安装位置、使用目的等因素决定。在一般情况下,采用固定式气缸。在需要随工作机构连续回转时(如车床、磨床等),应选用回转气缸。在要求活塞杆除直线运动外,还需作圆弧摆动时,则选用轴销式气缸。有特殊要求时,应选择相应的特殊气缸。 3、作用力的大小 即缸径的选择。根据负载力的大小来确定气缸输出的推力和拉力。一般均按外载荷理论平衡条件所需气缸作用力,根据不同速度选择不同的负载率,使气缸输出力稍有余量。缸径过小,输出力不够,但缸径过大,使设备笨重,成本提高,又增加耗气量,浪费能源。在夹具设计时,应尽量采用扩力机构,以减小气缸的外形尺寸。 4、活塞行程 与使用的场合和机构的行程有关,但一般不选满行程,防止活塞和缸盖相碰。如用于夹紧机构等,应按计算所需的行程增加10~20㎜的余量。 5、活塞的运动速度 主要取决于气缸输入压缩空气流量、气缸进排气口大小及导管内径的大小。要求高速运动应取大值。气缸运动速度一般为50~800㎜/s。对高速运动气缸,应选择大内径的进气

管道;对于负载有变化的情况,为了得到缓慢而平稳的运动速度,可选用带节流装置或气—液阻尼缸,则较易实现速度控制。选用节流阀控制气缸速度需注意:水平安装的气缸推动负载时,推荐用排气节流调速;垂直安装的气缸举升负载时,推荐用进气节流调速;要求行程末端运动平稳避免冲击时,应选用带缓冲装置的气缸。 气缸的选型 程序1:根据操作形式选定气缸类型:气缸操作方式有双动,单动弹簧压入及单动弹簧压出等三种方式 程序2:选定其它参数: 1、选定气缸缸径大小根据有关负载、使用空气压力及作用方向确定 2、选定气缸行程工件移动距离 3、选定气缸系列 4、选定气缸安装型式不同系列有不同安装方式,主要有基本型、脚座型、法兰型、U型钩、轴耳型 5、选定缓冲器无缓冲、橡胶缓冲、气缓冲、油压吸震器 6、选定磁感开关主要是作位置检测用,要求气缸内置磁环 7、选定气缸配件包括相关接头 二、方向阀的选择 1、选用阀的适用范围应与使用现场的条件相一致。即应根据使用场合的气源压力大小、电源条件(交直流、电压大小及波动范围)、介质温度、湿度、环境温湿度、粉尘、振动等选用适合在此条件下可靠使用的阀。 2、选用阀的功能及控制方式应符合系统工作要求即应根据气动系统对元件的位置数、通路数、记忆性、静置时通断状态和控制方式等的要求选用符合所需功能及控制方式的阀。

相关主题
文本预览
相关文档 最新文档