当前位置:文档之家› 动能和动能定理、重力势能·典型例题精析

动能和动能定理、重力势能·典型例题精析

动能和动能定理、重力势能·典型例题精析
动能和动能定理、重力势能·典型例题精析

动能和动能定理、重力势能·典型例题精析

[例题1]一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ.

[思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔE K=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系.

[解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时,

物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则

对物体在全过程中应用动能定理:ΣW=ΔE k.

mg l·sinα-μmg l·cosα-μmgS2=0

得 h-μS1-μS2=0.

式中S1为斜面底端与物体初位置间的水平距离.故

[小结] 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题.

[例题2] 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=?

[思路点拨] 因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·v m,可

求出36km/h时的牵引力,再根据牛顿第二定律求出机车的加速度a.[解题过程] (1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据ΣW=ΔE k,有

当机车达到最大速度时,F=f.所以

当机车速度v=36km/h时机车的牵引力

根据ΣF=ma可得机车v=36km/h时的加速度

[小结] 机车以恒定功率起动,直到最大速度,属于变力做功的问

由于速度增大导致加速度减小,汽车做加速度逐渐减小而速度逐渐变大的变加速运动.此类问题应用牛顿第二定律求解,在中学物理范围内是无法求解的.但应用动能定理求解变力做功,进而求解相关物理量是一种简捷优化的解题思路与方法.

[例题3] 一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图8-28所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车经过B点时的速度为v B.求车由A移到B的过程中,绳Q端的拉力对物体做的功?

[思路点拨] 汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升的高度,特别是汽车运动速度v B与物体上升过程中的瞬时速度关系,应用动能定理即可求解.

[解题过程] 以物体为研究对象,开始动能E k1=0,随着车的加速拖动,重物上升,同时速度在不断增加.当车运动至B点时,左边的绳与水平面所成角θ=45°,设物体已从井底上升高度h,此时物体速度为v Q,即为收绳的速度,它等于车速沿绳子方向的一个分量,如图8-29

[小结] 此题需明确:速度分解跟力的分解相似,两个分速度方向应根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的分运动外(每一瞬间绳均处于张紧的状态),还参与了绕定滑轮O的转动分运动(绳与竖直方向的夹角不断变化),因此还应该有一个绕O点转动的分速度,这个分速度垂直于绳长的方向.所以车子运动到B点时的速度分解如图8-29所示,有v Q=v B1=v B cosθ=v B cos45°.

[例题4] 在光滑水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J,则在整个过程中,恒力甲做的功和恒力乙做的功各等于多少?

[思路点拨] 由题意:物体先做匀加速运动,后做匀减速运动回到原处.整个过程中的位移为零,根据牛顿第二定律和运动学公式,即可确定两个力的大小关系,然后根据全过程中两个力做功和动能的变化即可得解.[解题过程] 物体从静止受水平恒力F甲作用,做匀加速运动,经过一段时间t后的速度为

经时间t后回到原处,前后两段时间内的位移大小相等,方向相反,所以

因此F乙=3F甲.

设在F甲作用下物体的位移为S,对全过程应用动能定理F甲·S+F 乙·S=ΔE k,代入F乙=3F甲,F甲·S+3F甲·S=ΔE k,所以恒力甲和乙做的功分别为

解析二:因位移大小相等,时间间隔又相等,所以两阶段运动的平均速度大小必相等,

得--

所以即得

[小结] 本题属多阶段物理过程求功问题,运动往复性的不同阶段有不同的恒力作用,运用功能定理从整体上考证功能转换比从力和运动关系去研究要简便.当然此题也可根据两个力作用时间相同、两个物理过程中的位移

大小相等,由平均速度的大小相等找出两者末速度的关系求解;也可以利用v-t图线更直观地得到启发,根据图线上下方与t轴间的面积相等求两段加速度之比,进而求解.

[例题5] 如图8-30所示,长为L,质量为m1的木板A置于光滑水平面上,在A板上表面左端有一质量为m2的物块B,B与A的摩擦因数为μ,A和B一起以相同的速度v向右运动,在A与竖直墙壁碰撞过程中无机械能损失,要使B一直不从A上掉下来,v必须满足什么条件(用m1、m2、L、μ表示)?倘若V0已知,木板B的长度L应满足什么条件(用m1、m2、V0、μ表示)?

[思路点拨] A和墙壁碰撞后,A以大小为v的速度向左运动,B仍以原速向右运动.以后的运动过程有三种可能:(1)若m1>m2,则m1和m2最后以某一共同速度向左运动;(2)若m1=m2,则A、B最后都停在水平面上,但不可能与墙壁发生第二次碰撞;(3)若m1<m2,则A将多次和墙壁碰撞、最后停在靠近墙壁处.

[解题过程] 若m1>m2,碰撞后的总动量方向向左,以向左为正方向,系统Δp=0,

m1v-m2v=(m1+m2)v′,

若相对静止时B刚好在A板右端,则系统总机械能损失应为μm2gL,则功能关系为

若V0已知,则板长L应满足

若m1=m2,碰撞后系统总动量为零,最后都静止在水平面上,设静止时B 在A的右端,则

若m1<m2,则A与墙壁将发生多次碰撞,每次碰撞后总动量方向都向右,而B相对于A始终向右运动,设最后A静止在靠近墙壁处,B静止在A的右端,则有

[小结] 在有些用字母表示已知物理量的题目中,物理过程往往随着已知量的不同取值范围而改变.对于这类题目,通常是将物理量的取值分成几个范围来讨论,分别在各个范围内求解.如本题中,由于m1和m2的大小关系没有确定,在解题时必须对可能发生的物理过程进行讨论,分别得出结果.

动能定理应用及典型例题(整理好用)

动能定理及应用 动能定理 1、内容: ________________________________________________________________________________ 2、动能定理表达式:_____________________________________________________________________ 3、理解:①F合在一个过程中对物体做的功,等于物体在这个过程中动能的变化。 F合做正功时,物体动能增加;F合做负功时,物体动能减少。 ②动能定理揭示了合外力的功与动能变化的关系。 4、适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。 5、应用动能定理解题步骤: A、明确研究对象及研究过程 B进行受力分析和做功情况分析 C确定初末状态动能 D列方程、求解。 1、一辆5吨的载重汽车开上一段坡路,坡路上S=100m坡顶和坡底的高度差h=10m汽车山坡前的速度是10m/s, 上到坡顶时速度减为 5.0m/s。汽车受到的摩擦阻力时车重的0.05倍。求汽车的牵引力。 2、一小球从高出地面H米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对 球的平均阻力是其重力的多少 倍。 3、质量为5 x 105kg的机车,以恒定的功率沿平直轨道行驶,在大 速度15m/s ?若阻力保持不变,求机车的功率和所受阻力的数值. 3min内行驶了1450m,其速度从10m/s增加到最 4、质量为M、厚度为d的方木块,静置在光滑的水平面上,如图所示,一子弹以初速度V。水平射穿木块,子弹 的 质量为m,木块对子弹的阻力为f且始终不变,在子弹射穿木块的过程中,木块发生的位移为L。求子弹射穿木块后,子弹和木块的速度各为多少? 5、如图所示,质量m=1kg的木块静止在高h=1.2m的平台上,木块与平台间的动摩擦因数使木块产生位移S=3m时撤去,木块又滑行9=1m时飞出平台,求木块落地时速度的大小?"=0.2,用水平推力F=20N, 2 (空气阻力不计, g=10m/s ) 图6-3-1

动能和动能定理,机械能守恒典型例题和练习(精品)

学习目标 1. 能够推导并理解动能定理知道动能定理的适用围 2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和”的含义。 3. 确立运用动能定理分析解决具体问题的步骤与方法 类型一 .常规题型 例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力 F 跟 木 箱 前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ 例2. 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E2,则: A. E2=E1 B. E2=2E1 C. E2>2E1 D. E1<E2<2E1 针对训练 材料相同的两个物体的质量分别为m1和m2,且m m 124=,当它们以相同的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比 t t 12:分别是多少?(两物体与水平面的动摩擦因数相同)

类型二、应用动能定理简解多过程问题 例3:质量为m的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S后撤去外力,物体还能运动多远? 例4、一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 2-7-6 针对训练2 将质量m=2kg的一块石头从离地面H=2m高处由静止开始释放,落入泥潭并陷入泥中h=5cm深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s2)

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 * 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F… R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 { 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) , 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200 ,半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=,则物体在两斜面上(不包括圆弧部分)一共能走多少路程 (g=10m/s 2 ). / 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O > E h

动能定理典型基础例题

动能定理典型基础例题 应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程 ②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功 ③明确物体在始末状态的动能 ④根据动能定理列方程求解。 例1.质量M=×103 kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=×lO 2 m 时,达到起飞速度ν=60m/s 。求: (1)起飞时飞机的动能多大 (2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大 (3)若滑行过程中受到的平均阻力大小为F=×103 N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大 ~ 例2.一人坐在雪橇上,从静止开始沿着高度为 15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( ) 例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . 4mgR B .3mgR C .2 mgR D .mgR 例5.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到 高 2 h 处速度变为零。求: (1)木块与斜面间的动摩擦因数 (2)木块第二次与挡板相撞时的速度 (3)木块从开始运动到最后静止,在斜面上运动的总路程 , 例6.质量m=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=停在B 点,已知A 、B 两点间的距离s=,物块与水平面间的动摩擦因数μ=,求恒力F 多大。(g=10m/s 2 ) 1、在光滑水平地面上有一质量为20kg 的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s 的速度。 2、汽车以15m/s 的速度在水平公路上行驶,刹车后经过20m 速度减小到5m/s ,已知汽车质量是,求刹车动力。(设汽车受到的其他阻力不计) 3、一个质量是的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是,求它落地时的速度。 4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始 到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为,求刹车前汽车的行驶速度。 5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为s 。汽车受到的摩擦阻力时车重的倍。求汽车的牵引力。 6、质量为2kg 的物体,静止在倾角为30o 的斜面的底端,物体与斜面间的摩擦系数为,斜面长1m ,用30N 平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。 7、质量为的铅球从离沙坑面高处自由落下,落入沙坑后在沙中运动了后停止,求沙坑对铅球的平均阻力。 ^ h m

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

动能及动能定理典型例题剖析

动能和动能定理、重力势能·典型例题剖析例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ. [思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系. [解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时, 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 对物体在全过程中应用动能定理:ΣW=ΔEk. mgl·sinα-μmgl·cosα-μmgS2=0 得h-μS1-μS2=0. 式中S1为斜面底端与物体初位置间的水平距离.故 [小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题. 例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=? [思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可

高中物理动能与动能定理典型例题

动能和动能定理·典型例题剖析 例1 一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运 动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相 同.求摩擦因数μ. [思路点拨] 以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化, 即ΔEK=,0因此可以根据全过程中各力的合功与物体动能的变化上找出联系. [解题过程] 设该面倾角为α,斜坡长为l,则物体沿斜面下滑时, 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 对物体在全过程中应用动能定理:ΣW=ΔE.k mgl·sin-αμmgl·c-o sμαmgS2=0 得h-μS1-μS2=.0 式中S1为斜面底端与物体初位置间的水平距离.故 [小结] 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优 越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用 于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的 问题. 例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶 2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=? [思路点拨] 因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加 速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可 求出36km/h时的牵引力,再根据牛顿第二定律求出机车的加速度a. [解题过程] (1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据ΣW=ΔE,k有 当机车达到最大速度时,F=f.所以

高中物理动能及动能定理典型例题

高中物理动能及动能定理典型例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

动能和动能定理·典型例题剖析 例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ. [思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系. [解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时, 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 对物体在全过程中应用动能定理:ΣW=ΔEk. mgl·sinα-μmgl·cosα-μmgS2=0 得 h-μS1-μS2=0. 式中S1为斜面底端与物体初位置间的水平距离.故 [小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题. 例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值 54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=( 2)机车的速度为36km/h时机车的加速度a=?

高中物理动能及动能定理典型例题

动能和动能定理·典型例题剖析 例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ. [思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系. [解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时, 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 对物体在全过程中应用动能定理:ΣW=ΔEk. mgl·sinα-μmgl·cosα-μmgS2=0 得h-μS1-μS2=0. 式中S1为斜面底端与物体初位置间的水平距离.故 [小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题. 例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=? [思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可 求出36km/h时的牵引力,再根据牛顿第二定律求出机车的加速度a. [解题过程](1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据ΣW=ΔEk,有

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案).docx

高中物理动能与动能定理解题技巧及经典题型及练习题( 含答案 ) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在 A 点,自然状态时其右端位于B 点。水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R=1.0m 的圆环剪去了左 上角 120°的圆弧, MN 为其竖直直径,P 点到桌面的竖直距离是h=2.4m。用质量为 m=0.2kg 的物块将弹簧由 B 点缓慢压缩至 C 点后由静止释放,弹簧在 C 点时储存的弹性势能 E p=3.2J,物块飞离桌面后恰好P 点沿切线落入圆轨道。已知物块与桌面间的动摩擦因数μ=0.4,重力加速度 g 值取 10m/s 2,不计空气阻力,求∶ (1)物块通过 P 点的速度大小; (2)物块经过轨道最高点M 时对轨道的压力大小; (3)C、D 两点间的距离; 【答案】 (1)8m/s ;(2)4.8N; (3)2m 【解析】 【分析】 【详解】 (1)通过 P 点时,由几何关系可知,速度方向与水平方向夹角为60o,则 v y22gh sin 60o v y v 整理可得,物块通过P 点的速度 v8m/s (2)从 P 到 M 点的过程中,机械能守恒 1mv2 =mgR(1cos60o )+1mv M2 22 在最高点时根据牛顿第二定律 mv M2 F N mg R 整理得 F N4.8N 根据牛顿第三定律可知,物块对轨道的压力大小为 4.8N

(3)从 D 到 P 物块做平抛运动,因此 v D v cos60o4m/s 从 C 到 D 的过程中,根据能量守恒定律 E p mgx 1 mv D2 2 C、D 两点间的距离 x 2m 2.如图所示,在倾角为θ=37°的斜面底端有一个固定挡板D,处于自然长度的轻质弹簧一 端固定在挡板上,另一端在O 点,已知斜面OD 部分光滑,PO 部分粗糙且长度L=8m。质量 m=1kg 的物块(可视为质点)从P 点静止开始下滑,已知物块与斜面 数μ=0.25, g 取 10m/s 2, sin37 =0°.6, cos37°=0.8。求: PO 间的动摩擦因(1)物块第一次接触弹簧时速度的大小 (2)若弹簧的最大压缩量 d=0.5m,求弹簧的最大弹性势能 (3)物块与弹簧接触多少次,反弹后从O 点沿斜面上升的最大距离第一次小于0.5m 【答案】( 1) 8m/s (2) 35J(3)5 次 【解析】 【详解】 (1)物块在 PO 过程中受到竖直向下的重力、垂直斜面向上的弹力、和沿斜面向上的摩擦 力,此过程应用动能定理得: mgL sin mgL cos 1 mv2 2 解得物块第一次接触弹簧时物体的速度的大小为: v2gL sin cos8 m/s (2)物块由O 到将弹簧压缩至最短的过程中,重力势能和动能减少、弹簧的弹性势能增 加,由能量守恒定律可得弹簧的最大弹性势能E p E p 1 mv2mgd sin35 J 2 (3)物块第一次接触弹簧后,物体从O 点沿斜面上升的最大距离s1,由动能定理得: mgs1mgs1 cos0 1 mv2 2 解得: s14m

动能定理典型例题附答案

1、如图所示,质量m=0.5kg 的小球从距地面高H=5m 处自由 下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆 槽半径R=0.4m.小球到达槽最低点时的速率为10m /s ,并继 续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好 又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如 此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽 上升的高度h.(2)小球最多能飞出槽外几次? (g 取10m /s 2 ) 2、如图所示,斜面倾角为θ,滑块质量为m ,滑块与斜 面的动摩擦因数为μ,从距挡板为s 0的位置以v 0 的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P 碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R ,由左右两部分 组成。如图所示,右半部分AEB 是光滑的,左半部分BFA 是粗糙的.现在最低点A 给一个质量为m 的小球一个水平 向右的初速度,使小球沿轨道恰好运动到最高点B ,小球在 B 点又能沿BFA 轨道回到点A ,到达A 点时对轨道的压力 为4mg 1、求小球在A 点的速度v 0 2、求小球由BFA 回到A 点克服阻力做的功 4、如图所示,质量为m 的小球用长为L 的轻质细线悬于O 点,与O 点处于同一水平线上的P 点处有一根光滑的细钉,已知OP = L /2,在A 点给小球一个水平向左的初速度v 0,发现小球恰能到达跟P 点在同一竖直线上的最高点B .则:(1)小球到达B 点时的速率?(2)若不计空气阻力,则初速度v 0为多少? (3)若初速度v 0=3gL ,则在小球从A 到B 的过程中克服空气阻力做了多少功?

动能定理的典型例题

高考专版——“动能定理”的典型例题 【例1】质量为m=2kg的物体,在水平面上以v1= 6m/s的速度匀速向西运动,若有一个F=8N、方向向北的恒定力作用于物体,在t=2s内物体的动能增加了 [ ] A.28J B.64J C.32J D.36J E.100J 【分析】物体原来在平衡力作用下西行,受向北的恒力F作用后将做类似于平抛的曲线运动(见图).物体在向北方向上的加速度 2s后在向北方向上的速度分量 故2s后物体的合速度 所以物体在2s内增加的动能为 也可以根据力对物体做动能定理来计算.由于在这个过程中,可以看作物体只受外力F作用,在这个力方向上的位移 外力F对物体做的功 W =Fs= 8×8J=64J,

故物体动能的增加 【答】B. 【说明】由上述计算可知,动能定理在曲线运动中同样适用,而且十分简捷. 有的学生认为,物体在向西方向上不受外力,保持原动运能不变,向北方向上受到外力后,向北方向上的动能增加了 即整个物体的动能增加了64J,故选B. 必须注意,这种看法是错误的.动能是一个标量(不同于动量),不能分解.外力对物体做功引起物体动能的变化,是对整个物体而言的,它没有分量式(不同于物体在某方向上不受外力,该方向上动量守恒的分量式).上述计算结果的巧合是由于v2与v1互成90°角的缘故.   【例2】一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为s(见图),不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求摩擦因数μ. 【分析】以物体为研究对象,它从静止开始运动,最后又静止在平面上,整个过程中物体的动能没有变化,即E k2=E k1=0.可以根据全过程中功与物体动能的变化上找出联系. 【解】物体沿斜面下滑时,重力和摩擦力对物体做功(支持力不做功),设斜面倾角为α,斜坡长L,则重力和摩擦力的功分别为 W G= mgsinαL, W f1= -μmgcosαL. 在平面上滑行时仅有摩擦力做功(重力和支持力不做功),设平面上滑行距离为s2,则 W f2= -μmgs2. 整个运动过程中所有外力的功为 W=W G+W f1+W f2, =mgsinαL - μumgcosαL- μmgs2. 根据动能定理, W=E k2-E k1,

动能定理应用及典型例题.doc

学习好资料欢迎下载 动能定理及应用 动能及动能定理 1 E K 1 m 2 动能表达式: 2 2 动能定理(即合外力做功与动能关系):W E K 2E K1 3 理解:① F 合在一个过程中对物体做的功,等于物体在这个过程中动能的变化。 F 合做正功时,物体动能增加; F 合做负功时,物体动能减少。 ②动能定理揭示了合外力的功与动能变化的关系。 4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。 5应用动能定理解题步骤: a 确定研究对象及其运动过程 b 分析研究对象在研究过程中受力情况,弄清各力做功情况 c 确定研究对象在运动过程中初末状态,找出初、末动能 d列方程、求解。 例 1、一小球从高出地面 H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙 坑 h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。 例 2.一人坐在雪橇上,从静止开始沿着高度为 15m的斜坡滑下,到达底部时速度为 10m/s。人和雪橇的总质量为 60kg,下滑过程中克服阻力做的功。 基础练习 1、一个质量是 0.20kg 的小球在离地 5m高处从静止开始下落,如果小球下落过程中所受的空 气阻力是 0.72N ,求它落地时的速度。 2、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹 车开始到汽车停下来,汽车前进 12m。已知轮胎与路面之间的滑动摩擦系数为 0.7 ,求刹车前汽车 的行驶速度。 3、一辆 5 吨的载重汽车开上一段坡路,坡路上S=100m,坡顶和坡底的高度差h=10m,汽车山坡前的速度是10m/s ,上到坡顶时速度减为 5.0m/s 。汽车受到的摩擦阻力时车重的0.05 倍。求汽车的牵引力。 4、质量为4× 103Kg 的汽车由静止开始以恒定功率前进,经100 s,前进了425m,这时它达3

高中物理动能定理经典计算题和答案

动能和动能定理经典试题 例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的倍(k =),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) | — 例3 一质量为㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv=12m/s C. W=0 D. W= 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 22 0- 《 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力 作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大 2-7-3 θ F O & Q l h H 2-7-2

高一物理动能定理经典题型总结(全)

1、动能定理应用的基本步骤 应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能. 动能定理应用的基本步骤是: ①选取研究对象,明确并分析运动过程. ②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和. ③明确过程始末状态的动能E k1及E K2 ④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解. 2、应用动能定理的优越性 (1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制. (2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识. (3)用动能定理可求变力所做的功.在某些问题中,由于力F 的大小、方向的变化,不能直接用W=Fscos α求出变力做功的值,但可由动能定理求解. 一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。设运动的阻力与质量成正比,机车的牵引力是恒定的。当S 1 L V 0 V 0

动能与动能定理经典习题及答案(免费》

动能和动能定理的应用典例分析 1.关于做功和物体动能变化的关系,不正确的是(). A.只有动力对物体做功时,物体的动能增加 B.只有物体克服阻力做功时,它的功能减少 C.外力对物体做功的代数和等于物体的末动能和初动能之差 D.动力和阻力都对物体做功,物体的动能一定变化 2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零 B.如果合外力对物体所做的功为零,则合外力一定为零 C.物体在合外力作用下作变速运动,动能一定变化 D.物体的动能不变,所受的合外力必定为零 3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是(). A.乙大B.甲大C.一样大D.无法比较 4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零 C.动力做功与阻力做功的代数和为零D.合力做的功为零 5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是(). A.物体的动能可能减少B.物体的动能可能增加 C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功 6.如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水 平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当 拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R, 则外力对物体所做的功大小是(). A、FR/4 B、3FR/4 C、5FR/2 D、零 7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为() A. 0 B. 8J C. 16J D. 32J 8.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值. 9. 一小球从高出地面Hm处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。

(完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题 例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) 例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220- 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力 作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的 拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大 拉力的过程中,绳的拉力对球做的功为________. 例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持 v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O P Q l h H 2-7-2

动能定理典型例题

动能定理典型题精讲 一、经典题组 1.子弹的速度为v ,打穿一块固定的木块后速度刚好变为零.若木块对子弹的阻力为恒力,那么当子弹射入木块的深度为其厚度的一半时,子弹的速度是 ( ) A.2v B.22 v C.3v D.4v 2.如图1所示,物体与斜面AB 、DB 间动摩擦因数相同.可视为质点的 物体分别沿AB 、DB 从斜面顶端由静止下滑到底端,下列说法正确的 是 ( ) A .物体沿斜面D B 滑动到底端时动能较大 B .物体沿斜面AB 滑动到底端时动能较大 图1 C .物体沿斜面DB 滑动过程中克服摩擦力做的功较多 D .物体沿斜面AB 滑动过程中克服摩擦力做的功较多

3.如图3所示,光滑水平平台上有一个质量 为m 的物块,站在地面上的 人用跨过定滑轮的绳子向右拉动物块,不计绳和滑轮的质量及滑轮的 摩擦,且平台边缘离人手作用点竖直高度始终为h .当人以速度v 从平 图3 台的边缘处向右匀速前进位移x 时,则 ( ) A .在该过程中,物块的运动可能是匀速的 B .在该过程中,人对物块做的功为2(h2+x2mv2x2 C .在该过程中,人对物块做的功为21mv 2 D .人前进x 时,物块的运动速率为h2+x2vh 4.如图4所示,一质量为m 的质点在半径 为R 的半球形容器中(容器固定)

由静止开始自边缘上的A 点滑下,到达最低点B 时,它对容器的正压力 为F N .重力加速度为g ,则质点自A 滑到B 的过程中,摩擦力对其所做 的功为 ( ) 图4 A.21 R (F N -3mg ) B.21 R (3mg -F N ) C.21 R (F N -mg ) D.21 R (F N -2mg ) 5.质点所受的力F 随时间变化的规律如图所示,力的方向始终在一直线上.已知t=0时质点的速度为零.在右图所示的t 1、t 2、t 3和t 4各时刻中,质点动能最大的时刻是( ). (A)t 1 (B)t 2 (C)t 3 (D)t 4 6.以速度v 飞行的子弹先后穿透两块由同种材料制成的平行放置的固定金属板,若子弹穿透两块金属板后的速度分别变为0.8v 和0.6v ,则两块金属板的厚度之比为( ). (A)1:1 (B)9:7 (C)8:6 (D)16:9 7.一个物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为 v ,克服摩擦阻力做功为

动能定理应用及典型例题

动能定理及应用 动能及动能定理 1 动能表达式: 221υm E K = 2 动能定理(即合外力做功与动能关系):12K K E E W -= 3理解:①F 合在一个过程中对物体做的功,等于物体在这个过程中动能的变化。 F 合做正功时,物体动能增加;F 合做负功时,物体动能减少。 ②动能定理揭示了合外力的功与动能变化的关系。 4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。 5应用动能定理解题步骤: a 确定研究对象及其运动过程 b 分析研究对象在研究过程中受力情况,弄清各力做功情况 c 确定研究对象在运动过程中初末状态,找出初、末动能 d 列方程、求解。 例1、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。 例2.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 基础练习 1、一个质量是0.20kg 的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是0.72N ,求它落地时的速度。 2、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为0.7,求刹车前汽车的行驶速度。 3、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为5.0m/s 。汽车受到的摩擦阻力时车重的0.05倍。求汽车的牵引力。 4、质量为4×103Kg 的汽车由静止开始以恒定功率前进,经100 3 s,前进了425m ,这时它达

2018年高中物理动量定理和动能定理专项练习题(供参考)

专题4、动量定理和动能定理 典型例题 【例1】如图所示,质量m A为4.0kg的木板A放在水平面C上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B为1.0kg的小物块B(视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s的瞬时冲量作用开始运动,当小物块滑离木板时,木板的动能E KA为8.0J,小物块的动能E KB为0.50J,重力加速度取10m/s2,求:(1)瞬时冲量作用结束时木板的速度υ0; (2)木板的长度L. 【例2】在一次抗洪抢险活动中,解放军某部队用直升飞机抢救一重要落水物体,静止在空中的直升飞机上的电动机通过悬绳将物体从离飞机90m处的洪水中吊到机舱里.已知物体的质量为80kg,吊绳的拉力不能超过1200N,电动机的最大输出功率为12k W,为尽快把物体安全救起,操作人员采取的办法是,先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当物体到达机舱前已达到最大速度.(g取10m/s2)求: (1)落水物体运动的最大速度; (2)这一过程所用的时间. 【例3】一个带电量为-q的液滴,从O点以速度υ射入匀强电场中,υ的方向与电场方向成θ角,已知油滴的质量为m,测得油滴达到运动轨道的最高点时,速度的大小为υ,求: (1)最高点的位置可能在O点上方的哪一侧? (2)电场强度为多大? (3)最高点处(设为N)与O点电势差绝对值为多大?

【例4】.如图所示,固定的半圆弧形光滑轨道置于水平方向的匀强电场和匀强磁场中,轨道圆弧半径为R ,磁感应强度为B ,方向垂直于纸面向外,电场强度为E ,方向水平向左。一个质量为m 的小球(可视为质点)放在轨道上的C 点恰好处于静止,圆弧半径OC 与水平直径AD 的夹角为α(sin α=0.8). ⑴求小球带何种电荷?电荷量是多少?并说明理由. ⑵如果将小球从A 点由静止释放,小球在圆弧轨道上运动时,对轨道的最大压力的大小是多少? 【例5】.如图所示,虚线上方有场强为E 的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab 是一根长为L 的绝缘细杆,沿电场线放置在虚线上方的场中,b 端在虚线上.将一套在杆上的带正电的小球从a 端由静止释放后,小球先做加速运动,后做匀速运动到达b 端.已知小球与绝缘杆间的动摩擦因数μ=0.3,小球重力忽略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是L /3,求带电小球从a 到b 运动过程中克服摩擦力所做的功与电场力所做功的比值. B E

相关主题
文本预览
相关文档 最新文档