当前位置:文档之家› 天然食品防腐剂的研究进展

天然食品防腐剂的研究进展

天然食品防腐剂的研究进展
天然食品防腐剂的研究进展

我国水产品物流现状及进展【文献综述】

文献综述 建筑环境与设备工程 我国水产品物流现状及进展 1前言 随着经济全球化的进一步加快,国际水产贸易量持续增长。全球水产品约有38%在国际间进行贸易流通。贸易额50%以上产生于发展中国家,而大约80%水产品出口到美国,欧盟和日本。自1978年中国实行改革开放政策以来,中国国民经济和对外贸易得到了前所未有的发展。特别是在1985年,水产品价格全面放开后,渔业生产力得到了极大解放,渔业经济总量及对外贸易持续增长[1]。渔业生产的持续发展,极大地支持了中国水产品对外贸易的发展。贸易规模迅速扩大,贸易总额从1981年的3.6亿美元增加到2007年的144.6亿美元;贸易总量从1981年的15.9万吨增加到2007年的652.8万吨;出口额从1981年的3.4亿美元增加到2007年的97.4亿美元;出口数量从1981年的10.2万吨增加到2007年的306.4万吨;进口量由1981年的5.7万吨增加到2007年的346.4万吨。中国水产品出口于2002年开始超过泰国,跃居世界第一位,形成了以国内自产水产品出口为主、来进料加工相结合的水产品国际贸易格局[2]。 2常见的水产品保鲜方法 水产品的保鲜技术就是应用物理、化学、生物等手段对原料进行处理,从而保持或尽量保持其原有的新鲜程度。水产品新鲜度的下降,其原因主要是酶、微生物的作用,以及氧化、水解等化学反应的结果。要想保持鲜度或减缓腐败速度,可以采用一些措施,例如使酶钝化,使微生物失活,以及使各种化学反应速度变慢甚至停止等等。目前实际应用于水产品中的保鲜技术已有低温保鲜、高压保鲜、辐照保鲜、气调保鲜、化学保鲜、生物保鲜等项技术。这些保鲜技术基本可以保持原有水产品的属性,如果再将保鲜概念向更为广义延伸,还可以用脱水保鲜、密闭加热保鲜等多种方法[17]。 以上所有这些方法中,以低温保鲜应用得最为广泛,研究得最为深入。因为降温后,可以最大程度地保持水产品原有的性质,特别是新鲜度改变得很小。根据低温保鲜的目的和温度的不同又可以分为普通冷却保鲜、微冻保鲜、冷冻保鲜。 3水产品冷链技术研究现状 水产品冷藏链是建立在食品冷冻工艺学、船用设备制造技术、制冷技术、包装技术、物

生命科学研究进展

生命科学研究进展 尹强 (江西农业大学理学院,江西南昌,330045) 现代生物技术已进入商品生产的激烈竞争阶段。据在京举行的关于“分子生物学进展”方面的学术报告会透露,美国科学院的院报中,每月的生物论文10倍于数理化天地论文的发表数量。这个数字显示了在当代人们对生命科学发展的重视程度。同样,在商品生产领域也表现出了同样的趋势。如在运用现代生物技术的遗传工程方面,美国每年在该领域投入的研究经费高达100多亿美元,有200多家大生物技术公司从事有关方面产品商品开发,已生产出了多种生物制品。在市场上出售的有人生长激素、胰岛素、调节血压的人肾素,还有乙型肝炎疫苗;可使肿瘤枯萎的生物技术药物已进入临床试验。美国利用遗传工程正在研制生物制品的还有多种,如具有抗癌作用的肿瘤坏死素、能溶解血栓的组织纤维蛋白溶酶活化剂及多种免疫系统调节制剂.科学工作者还正在研制艾滋病疫苗。在现阶段的动物试验中,这种疫苗已使老鼠体内产生了艾滋病抗体,并开始在人体上进行试验。 日本在生物技术方面的研发也不甘落后,该国的科学家把生物技术看成是使日本的技术在2l世纪处于世界领先地位的跳板。日本引进美国的生物技术,派出大量人员去美国学习,同时鼓励本国的科研。日本已研制出促进红细胞形成的血细胞生成素,可用于治疗肾脏疾病。 西欧各国在生物技术方面起步较慢,但在现代制药工业中生物技术却异军突起。他们在单克隆抗体和特异蛋白分子的生产方面处于世界领先地位。一些老企业也利用生物技术生产各种高效酶制剂,用于食品加工和废物处理。还有,他们在细胞融合领域也取得了重要进展,如番茄马铃薯的育成。在开发这类细胞融合技术产品时,除在产品实践方面有所突破外,还在育种理论上有新发现。如他们在研究报告中指出,利用细胞融合技术最有前途的是近亲植物细胞融合,它对提高品种质量效果明显。 俄罗斯生物技术研究也日趋活跃,他们在前苏联时期的研究基础上,先将遗传工程的重点放在农业方面,力图培育出“早熟、高产、营养丰富、能在贫瘠土地上生长的农作物。俄罗斯科学家还存分子生物学和医学生物技术方面进行了卓有成效的研究,在研究离子载体如何穿过细胞膜方面有突破性进展,了解这一点将使人们揭开细胞维持恒定状态的奥秘。 我国在现代生物技术开发方面虽然起步较晚,但发展迅速,在某些项目上已跻身于世界先进行列,引起了国际同行的关注。如存生物医学工程领域的人工器官,新华医院和上海第一结核病防治院共同研制的聚丙烯中空纤维人工肺已在全国推广应用,仅新华医院一家就用了300多例。过去不用人工肺死亡率达50%,现在应用新的人工肺,深低温手术无一例死亡,达到了国际先进水平。上海胸外医院、新华医院、人体代用材料研究所研制的人造血管、膨体心脏修补片已达到国际20世纪80年代水平。特别应提到的是,我周在转基因抗病虫害作物、生物大分子的合成及克隆生物领域取得的成果亦是颇多。我国还参与了人类基因组测序工作,说明我国在该领域占有一席之地。我们还必须进一步加强该领域的研究工作,以缩小与发达国家在生物技术研究开发方面的差距。 1 我国研制成功第二代人造血 查新报告显示,我国第一代人造血在临床应用中,已成功地抢救了400多名伤病员。研究第二代人造血的科研人员,在历时4年的探索中对氟碳人造血的合成、乳化、毒理以及药效等方面做了不少改进,储存期从半年延长到1.5年;它在血管中的半衰期也从原来的10 h延长到19.8h。这将更有利于患者恢复健康。人造血是国际生命科学界,特别是医学界关注的热门课题。第二代人造血是我国上海有机化学研究所、上海劳动卫生职业病防治研究所的科学工作者研制的。对第

常用食品防腐剂

常用食品防腐剂 1、苯甲酸和苯甲酸钠 苯甲酸又名安息香酸,是各国允许使用而且历史比较悠久的食品防腐剂。苯甲酸为白色鳞片状或针状结晶,难溶于水,易溶于乙醇。苯甲酸钠易溶于水,生产上使用较为广泛。 苯甲酸和苯甲酸钠在酸性条件下,以未解离的分子起抑菌作用,其防腐效果视介质的PH而异,一般PH<5时抑菌效果较好,PH2.5~4.0时抑菌效果最好。例如,当PH由7降至3.5时,其防腐效力可提高5~10倍。FAO(联合国粮农组织)和WHO(世界卫生组织)1994年规定,苯甲酸的ADI(每日允许摄入量)为0~5mg/kg。根据我国食品添加剂使用卫生标准(GB2760-1996)规定,苯甲酸和苯甲酸钠的使用标准见表: 苯甲酸与苯甲酸钠的使用标准

使用苯甲酸时,先用少量乙醇溶解,再添加到食品中。使用苯甲酸钠时,一般先配制成20%~30%的水溶液,再加入到食品中,搅拌均匀即可。 2、山梨酸和山梨酸钾 山梨酸又名花楸酸,为无色针状或白色粉末状结晶,无臭或稍有刺臭,耐光耐热,但在空气中长期放置易被氧化变色,防腐效果也有所降低。山梨酸难溶于水而易溶于乙醇等有机溶剂。山梨酸钾极易溶于水,也易溶于高浓度蔗糖和食盐溶液,因而在生产上被广泛使用。 山梨酸是一种不饱和脂肪酸,能在人体内参与正常的代谢活动,最后被氧化成二氧化碳和水,故国际上公认其为无害的食品防腐剂。山梨酸的ADI 为0~0.25mg/kg(FAO/WHO,1994)。 山梨酸和山梨酸钾属于酸型防腐剂,以未解离的分子起抑菌作用,其防腐效果随PH降低而增强,但适宜的PH范围比苯甲酸广,以PH<6的介质中使用未宜。根据我国食品添加剂使用卫生规定(GB2760-1996)规定,山梨酸与山梨酸钾的使用标准如下:

微生物农药的应用现状和发展前景

微生物农药的应用现状和发展前景 摘要化学农药的使用能够控制病虫害,增加作物的产量,但在土壤、空气和粮食中的残留也带来了环境污染、生态平衡破坏和食品安全等一系列问题。微生物农药是指微生物及其代谢产物,和由它加工而成的、具有杀虫、杀菌、除草、杀鼠或调节植物生长等活性的物质,包括活体微生物农药和农用抗生素两大类。前者主要包括Bt制剂、病毒杀虫剂、真菌杀虫剂和真菌除草剂;后者主要指微生物所产生的一些有活性的次级代谢产物及其化学修饰物。微生物农药由于其广谱、高效、安全、环境相容性好等特点,日益受到重视。本文介绍了微生物农药的种类、特点、应用现状,并在此基础上对其发展前景进行了展望。 关键词微生物农药;应用现状;发展前景 1.传统化学农药和微生物农药的比较 1.1传统化学农药产生的危害 1.1.1对土壤的影响 传统化学农药施用以后,一部分残留在农作物表面,一部分直接进入土壤,被土壤颗粒吸附。大气中的残留农药和农作物上的农药经雨水淋洗进入土壤,直接或间接与土壤接触,杀灭土壤中的微生物,影响土壤的腐熟和透气性,破坏土壤结构和土壤肥力,影响作物生长发育。 1.1.2破坏生态平衡 在杀灭害虫的同时,也杀灭了害虫的天敌,破坏了生态平衡,导致害虫种群急剧上升。有些次要的害虫,由于天敌数量急剧减少,很快发展为主要害虫。 1.1.3产生抗药性 针对一种害虫长期使用同种农药,往往会使其产生抗药性,从而导致农药浓度及用药频率增加,使农药残留更高。 1.1.4威胁食品安全和人体健康 化学农药在蔬菜水果上的残留会对食品安全造成巨大的威胁。农药通过饮食或食物链间接进入人体造成急性或慢性中毒,甚至致癌,危害人体健康。 1.2微生物农药的优点 与传统化学农药相比,微生物农药具有以下优点:(1)对病虫害的防治效果良好。病原

洗涤剂文献综述及配方技术发展

洗涤剂文献综述及配方技术发展 化工11-2班谢佳璇3110313242 摘要:随着人们生活水平的提高和现代社会生活习惯的变化,人们对洗涤剂的需求也越来越大。本文献综述主要从洗涤剂的现状、洗涤剂的类型发展历史、质量标准及未来洗涤剂的发展趋势做出了简单的概述,让我们加深了对洗涤剂的了解和认识。 洗涤剂, 是指以去污为目的而设计配方的制品, 由活性组分和辅助组分构成。作为活性组分的是表面活性剂,作为辅助组分的有助剂、抗沉淀剂、酶、填充剂等,其作用是增强和提高洗涤剂的各种效能。洗涤剂的产品种类很多,基本上可分为 肥皂、合成洗衣粉、液体洗涤剂、固体状洗涤剂及膏状洗涤剂几大类。衣用(或其他纺织品)洗涤剂是洗涤用品中生产最早,用量最大的洗涤剂,人们日常使用较多 的衣用洗涤剂主要是洗衣粉、皂粉、液体洗涤剂和肥(香)皂。[1] 1 洗涤剂现状 洗涤剂的主要成分是表面活性剂,表面活性剂是分子结构中含有亲水基和亲 油基两部分的有机化合物。一般是根据表面活性剂在水溶液中能否分解为离子, 又将其分为离子型表面活性剂和非离子型表面活性剂的两大类。离子型表面活性 剂又可分为阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂三种。 区别于家用洗涤剂,专业洗涤剂是个独立分类,主要有宾馆、医院、酒店洗 涤剂,用于洗衣房等大型洗涤业的需求。包括公用设施用清洗剂、纺织工业清洗剂、皮革清洗剂、食品工业清洗剂、交通工具清洗剂、金属清洗剂、光学玻璃清 洗剂,塑料橡胶清洗剂以及其它工业清洗剂。 工业清洗剂常用表面活性剂:阳离子表面活性剂/阴离子表面活性剂/两性表 面活性剂/非离子表面活性剂,一般低泡沫清洗剂常用非离子表面活性剂。[2] 2 各类洗涤剂 2.1 粉状洗涤剂 粉状洗涤剂主要为洗衣粉和皂基洗衣粉。洗衣粉是一种碱性的合成洗涤剂, 主要成分是阴离子表面活性剂如烷基苯磺酸钠、少量非离子表面活性剂, 再加一 些辅助剂, 经混合、喷粉等工艺制成。皂基洗衣粉为近几年上市的洗化用品, 与 合成洗衣粉不同点在于: 它的主要成分为皂。另外加一种或多种表面活性剂和洗 涤助剂而成。表面活性剂有脂肪酸聚氧乙烯醚、脂肪酸烷醇酰胺等去污力较强的 非离子表面活性剂, 同时加入助洗剂。常见的洗衣粉配方如下[3]: 配方一:含磷重垢洗衣粉配方(质量%):十二烷基苯磺酸钠14.9,羧甲基纤维素

生物固氮原理、应用和研究进展

生物固氮的原理、应用及研究进展 摘要:生物固氮是自然生态系统中氮的主要来源全球生物固氮的量是巨大的,海洋生态系统每年生物固氮量在四百万吨到两千万吨,陆地生态系统生物固氮量在九百万吨到一千三百万吨,而工业固氮量在世纪年代中期每年约为一千三百万吨。可见,生物固氮在农林业生产和氮素生态系统平衡中的作用很大我国农民利用豆科植物固氮肥田历史悠长,直至现在仍保留着豆科植物和非豆科植物轮作套作和间作等耕作制度国外也十分重视固氮生物在农业中的作用。 关键词:生物固氮;联合固氮菌;自生固氮菌 一、生物固氮的原理 1982年,Postage 以肺炎克氏菌为例提出一个固氮酶催化机理模式,至今 仍被广泛采用其总反应式为:N 2 + 6H+ + nMg-ATP +6e-(酶)→2NH 3 +nMg-ADP+nPi 固氮微生物的固氮过程是在细胞内固氮酶的催化作用下进行的不同固氮微生物的固氮酶,其催化作用的情况基本相同在固氮酶将还原成的过程中,需要e和H+,还需要ATP提供能量生物固氮的过程十分复杂[1],简单地说,即在ATP提供 能量的情况下,e和H+通过固氮酶传递给N 2,使它们还原成NH 3 ,而乙炔和N 2 具 有类似的接受e还原成乙烯的能力。 二、固氮微生物的种类 固氮微生物多种多样,不同的划分标准满足了不同的要求。从它们的生物固氮形式来分,有自生固氮、联合固氮、和共生固氮3种。 ①自生固氮微生物是指能够在自由生活状态下固氮的微生物总称。在自然界,自生固氮微生物种类很多,分散地分布在细菌和蓝细菌的不同科、属和不同的生理群中;并大致可以分为光合细菌和非光合细菌两类。前者如红螺菌、红硫细菌和绿硫细菌等,其中的某些种类可与其它微生物联合而相互有利;后者的种类很多。根据非光合细菌的自生固氮菌对氧的需求,可以分为厌氧的细菌如梭状芽胞杆菌[2];需氧细菌如自生固氮菌、贝捷林克氏固氮菌、固氮螺菌等;以及兼性细菌如多粘芽胞杆菌、克鲁伯氏杆菌、肠杆菌等。自生固氮微生物中的某些种类,在有些情况下可以与植物进行联合固氮。 一般地,自生固氮微生物固定的氮素满足本身生长繁殖需要以后就不再固氮了,多余的氮反过来会抑制它们自身的固氮系统。同时,它们固氮效率也比较低。

常用食品防腐剂及使用安全比较资料

常用食品防腐剂及使用安全比较 化学与环境科学学院 10材料化学王珊 20101103962 指导教师王喜贵教授 摘要:食品的腐败变质会引起巨大的经济损失, 如何防止腐败是食品科学工作者最为关注的一个问题。目前,常用的防腐措施是添加食品防腐剂, 食品防腐剂分为化学防腐剂、天然防腐剂和复合型防腐剂, 其中使用最为广泛的是化学防腐剂。但随着人们对健康的重视, 天然防腐剂和复合型防腐剂的应用会越来越广泛。本文将对食品防腐剂分类和对防腐剂安全使用进行阐释。 关键词:天然防腐剂化学防腐剂复合型防腐剂 防腐剂的定义 防腐剂(preservative)是天然或合成的化学成分,用于加入食品、药品、颜料、生物标本等,抑制微生物生长繁殖或或化学变化引起的腐败。 防腐剂主要作用是抑制微生物的生长和繁殖,以延长食品的保存时间,抑制物质腐败的药剂。食品防腐剂能抑制微生物活动,防止食品腐败变质,从而延长食品的保质期。绝大多数饮料和包装食品想要长期保存,往往都要添加食品防腐剂。防腐剂是用以保持食品原有品质和营养价值为目的的食品添加剂,它能抑制微生物活动、防止食品腐败变质从而延长保质期。规定使用的防腐剂有苯甲酸、苯甲酸钠、山梨酸、山梨酸钾、丙酸钙等25种。 1. 化学合成防腐剂 凡能抑制微生物的生长活动, 延长食品腐败变质或生物代谢的化学制品都是化学防腐剂。目前常用的主要有苯甲酸(钠)、山梨酸(钾)、对羟基苯甲酸酯、丙酸盐、亚硫酸及其盐类、硝酸及亚硝酸盐类。 1.1苯甲酸和苯甲酸钠 苯甲酸又名安息香酸,是各国允许使用而且历史比较悠久的食品防腐剂。苯甲酸为白色鳞片状或针状结晶,无臭或微带安息香气味, 味微甜有收敛性, 在空气中稳定,难溶于水,易溶于乙醇。苯甲酸钠易溶于水,生产上使用较为广泛。防腐机理:苯甲酸钠亲油性大,易穿透细胞膜进入细胞体内,干扰细胞膜的通透性,抑制细胞膜对氨基酸的吸收,并抑制细胞的呼吸酶系的活性,从而达到防腐的目的。 1.2山梨酸和山梨酸钾 山梨酸又名花楸酸,为无色针状或白色粉末状结晶,无臭或稍有刺臭,耐光耐热,但在空气中长期放置易被氧化变色,防腐效果也有所降低。山梨酸难溶于水而易溶于乙醇等有机溶剂。山梨酸钾极易溶于水,也易溶于高浓度蔗糖和食盐

天然食品防腐剂的现状及发展趋势

天然食品防腐剂的现状及发展趋势 一.国内外食品防腐剂现状 随着我国经济的发展,食品行业获得了蓬勃的生机,已成为国民经济三大支柱产业之一。在此过程中,食品添加剂可以说功不可没,它为食品产业的创新发展和食品质量安全水平的提高起到了巨大推动作用。而食品防腐剂作为添加剂中一大类,自然也发挥了重要的作用。除了一些即采即食的食物外,食品在生产、贮藏、流通等环节中很容易受到细菌、酵母菌、霉菌等微生物的浸染,从而导致食品腐败变质。在食品中添加适量的防腐剂是抑制各种有害微生物的有效方法,而且可以提高食品色、香、味,保护食品的优良品质。可想,如果没有防腐剂,食品行业会面临巨大的浪费和损失,可以说,没有食品防腐剂,就没有现代化的食品工业。 现在广泛使用的化学防腐剂如苯甲酸盐、尼泊金丙酯以及亚硝酸盐和硝酸盐等,在限量范围内是安全的,但仍有一定的毒性。许多国家如日本,已禁止使用苯甲酸(钠),欧共体禁止用于儿童食品。我国也提出了限用要求。但一些企业为了自己的经济利益,超量、超标使用化学防腐剂,导致食物中毒现象,使消费者对防腐剂产生了错误认识和恐惧心理.因此要正确理解食品防腐剂的合理使用和安全性。由于人们对食品安全性的认识和要求的日益提高,化学防腐剂受到严重挑战。食品防腐剂的天然化已成为防腐剂技术的发展趋势.开发抗菌性强,安全无毒的天然食品防腐剂已成为各国科技工作者的研究热点[1]。 一般认为,优良的食品防腐剂应具备以下特点:①应对导致食品变质的微生物具有良好的抑制作用;②必须对消费者是安全的;③对食品应有的外观、气味、颜色和味道没有或有很小的影响;④价格低廉。 目前天然食品防腐剂有:(1)天然植物中提取的防腐剂:如大蒜辣素、甘草制剂、壳聚糖、果胶分解物、琼脂低聚糖等;(2)来源于动物的天然防腐剂:如溶菌酶、枯草杆菌素、甲壳素、鱼精蛋白;(3)来源于微生物的天然防腐剂:如乳酸链球菌素、那他霉素等[2]。 二.天然植物中提取的防腐剂 1.中草药提取物

生物农药的发展与苏云金杆菌杀虫剂研究现状_刘保民

2011.01B 总第206期生物农药的发展 在全球范围内,由于农业病虫害所造成的农产品损失每年达到15%~25%.大规模地使用化学农药是当前控制害虫的主要策略。这一措施虽然对于稳定农业产量具有一定的积极作用,但是,由于化学农药的杀虫谱广,田间残效期较长,容易诱发害虫对其产生抗药性,特别是化学农药对农产品和环境的污染,导致妇女流产、婴儿畸变以及诱发人类癌症等各种疾病。因此,使用生物农药防治害虫越来越受到人们的重视。 1.生物农药发展概况 随着人类环境保护意识的增强,高效低毒的生物农药已成为当今农药的发展方向。生物农药是指非人工合成,具有杀虫、杀菌或抗病、除草能力的,并可以制成具有农药功效和商品价值的生物制剂,包括微生物源农药(细菌、病毒、真菌及其次生代谢产物)、植物源农药、动物源农药和抗病虫草害的转基因植物等。相对于常规的化学农药而言,生物农药具有作用方式独特,防治对象专一,对天敌等有益生物安全,用量小,降解快,对人、畜、环境风险性低,适用于病、虫、草害综合防治等特点。1992年,世界环境与发展大会曾明确指出,到2000年要在全球范围内控制化学农药的销售和使用,生物农药的用量达到60%,然而,目前生物农药在全球农药销售总量中仅占2%的市场份额,与预期目标相差甚远。因此,大力发展生物农药已经成为世界各国共同面临的重大任务。我国有关部门提出到2015年,要求生物农药的使用占农药总量的30%~50%,按此比例计算,当前我国农药耗用量每年达120万t,年需生物农药量至少在60万t以上。至2002年底,包括转基因棉花,我国生物农药年产量仅占到农药总产量的10%左右,推广应用面积占到农药总应用面积的12%左右。可见发展生物农药已经成为我国急待解决的重大问题之一。目前,我国正式注册的农药生产企业近2000家,品种约250种,年产量近40万t,总产量仅次于美国。其中,化学农药占农药总量的90%以上,生物农药所占比例不足10%,我国农药品种结构老化,高毒品种仍在继续使用,集中表现为“3个70%”,即杀虫剂约占农药总产量的70%,有机磷农药约占杀虫剂的70%,几个高毒老品种,如,甲胺磷、甲基对硫磷、敌敌畏等约占有机磷农药的70%,这种现状已不能适应现代农业生产发展和环境保护的要求。 生物农药在我国发展有两个高潮,即20世纪60年代-70年代和20世纪90年代以后。在前一个高潮阶段由于当时生物技术水平相对较低,满足不了生物农药对工艺、贮藏和运输要求的条件,除井冈霉素外,未形成有影响的产品。进入20世纪90年代以后,由于生物技术尤其是微生物技术的进步,为生物农药的开发提供了便利,形成了第二个高潮。据《农药登记公告》统计,我国已商品化的生物农药产品主要有以下几类:苏云金杆菌、核型多角体病毒、阿维菌素和农用抗生素等。 不同种类的生物农药各有特点,病毒类生物农药由于病毒无法离体培养,生产中需要大量养殖昆虫,从而使大规模生产受到限制;真菌类生物农药,由于大量培养抗逆孢子技术没有突破,致使产品的保存期和稳定性达不到农药登记的要求,造成规模化生产存在一定的难度;植物源农药由于需要种植大量植物,工业规模化生产受到土地、植被和生态保护等限制;动物源农药主要是被开发成仿生合成农药,直接开发成生物农药难度很大;转基因植物,由于安全性评价问题也影响其推广应用。以苏云金杆菌为代表的细菌类杀虫剂,由于 山西省芮城县生物农药厂刘保民 与 苏云金杆菌杀虫剂研究现状 27 AGRICULTURAL TECHNOLOGY&EQUIPMENT

防腐剂

北京疾控中心营养与食品卫生所主任医师徐筠在接受采访时表示,现在企业在食品包装上标注“不含防腐剂”的现象很普遍,有些企业甚至加了防腐剂还宣称自己“不含任何防腐剂”。专家们认为,企业通过“不含防腐剂”误导消费者主要存在以下几种情况: 一是是否添加防腐剂,与设备和工艺水平有很大的关系。同样是饮料,具备无菌灌装或者二次杀菌能力的企业,产品中不用加防腐剂。但一些中小企业没这个能力,却宣称产品不含防腐剂。 二是碳酸饮料、果脯蜜饯、腌菜等需要长期保存的食品,都必须添加防腐剂。但是记者在超市里看到,很多上述产品的包装上都写着“不含防剂”,比如重庆某地产的榨菜,大部分都标注了没有防腐剂,一些不知名企业生产的果脯也是一样。 三是有些防腐剂还有其他一些功能,企业往往在这上面与消费者“捉迷藏”。比如山梨酸和苯甲酸钠,既是防腐剂又是调味剂,企业可能就告诉消费者产品里有调味剂,然后堂而皇之地标上“本品不含防腐剂”。记者在超市里发现,有些火腿、饮料在成分栏里注明了含苯甲酸钠、山梨酸,包装上却标出没有防腐剂。还有一些情况,比如酸奶能够自己产生乳酸菌,达到防腐的效果,根本不用添加防腐剂。但是记者发现,不少知名乳制品厂家的酸奶产品还是标出了“不含防腐剂”。方便面经过彻底干燥后,微生物已经不能繁殖,根本不需要添加防腐剂,但一些方便面还是打上了“不含防腐剂”。 为什么这么多的食品企业非要围绕着防腐剂做文章,甚至做出前后相互矛盾的标注来欺骗消费者呢?专家分析,主要原因有两个:一是迎合消费者对防腐剂的抗拒心理。这些年来,一些食品安全事件让消费者顾虑重重。企业为了讨好消费者,就说自己的产品中不含防腐剂。二是为了打压竞争。食品企业宣称产品不含防腐剂,可以让消费者以为他们的产品安全性比其他产品“过硬”,借此打压对手,这也算是一种不正当的竞争行为。 其他回答 yyu603 2009-02-16 23:10:39 因为猪肉干加工的时候已经做了除菌处理 WANYONGSZ 2009-11-06 16:45:20 给你文章参考 有苯甲酸钠、山梨酸钾、脱氢乙酸钠、丙酸钙、双乙酸钠、乳酸钠、对羟基苯甲酸丙酯、乳酸链球菌素、过氧化氢等 防腐剂是用于保持食品原有品质和营养价值为目的食品添加剂,它能抑制微生物的生长繁殖,防止食品腐败变质而延长保质期。防腐剂的防腐原理,大致有如下3种:一是干扰微生物的酶系,破坏其正常的新陈代谢,抑制酶的活性。二是使微生物的蛋白质凝固和变性,干扰其生存和繁殖。三是改变细胞浆膜的渗透性,抑制其体内的酶类和代谢产物产物的排除,导致其失活。 谈到防腐剂,人们往往认为有害,其实在安全使用范围内,对人体是无毒副作用的。我国防

白蔹抗菌活性的研究[文献综述]

毕业论文文献综述 生物工程 白蔹抗菌活性的研究 1 前言 微生物耐药性已成为全球关注的严峻问题,由多重耐药菌和许多新的病原微生物引起 的感染对人类健康造成极大威胁。随着抗微生物药物的广泛应用,医院感染性微生物耐药性问题日趋严重,细菌感染在临床上也有逐年上升趋势[1]。微生物的耐药性产生速度,远远大于抗生素研制速度。与此同时,中草药具有清热解毒、滋补、抗菌等作用, 且毒副作用小、耐药性小, 也开始得到人们的关注。 白蔹为葡萄科植物自蔹 Ampelopsis japonica(Thunb)akino的干燥块根 ,又名白根 , 五爪藤 ,山地瓜。始载于《神农本草经》 ,性微寒,味苦,具有清热解毒、生肌止痛之功效。用于痈肿疮疡、瘰疬、烫伤、扭挫伤;外用于痈、疖、蜂窝组织炎、淋巴结炎等。白蔹入药历史悠久,早在《名医别录》中已有记载 ,是历代医家治疗疔痈的重要药物[2]。 临床报道白蔹用于治疗化脓性皮肤感染、细菌性痢疾等疾病,疗效显著[3]。现代研究表明,白蔹含有大黄素甲醚、大黄酚、大黄素、富马酸、没食子酸等多种抗细菌和抗真菌成分,与其临床应用相一致[4]。 2 植物提取物的抑菌活性 人类自从古代就记载了许多具有杀虫或控制害虫、抗菌或杀菌作用的植物, 如中国、印度等东南亚以及一些非洲国家的劳动人民积累了许多利用植物杀虫防病的经验。几个世纪前, 我国人民就已知道植物中含有抗菌物质, 在许多实例中,这些化合物能以天然的抗性或防御体系来抵抗微生物或其他病害。某些化合物具有特殊味道或气味, 已经在香料工业中使用, 使用药草和香料作为调味品或食品防腐剂, 许多文献已报道了它们的特性及活性成分[5~6]。 不同的抗菌、杀菌植物, 其有效成分分布在植物根、茎、叶、花、果、种子等不同部位, 如厚扑存在于叶中、苦瓜存在于果实中等。同种植物不同部位活性成分的含量亦存在差异, 黄梁绮龄等对香港地区四种红树植物的根、茎分别用95%乙醇浸取, 其浸取物对三种植物病菌抑制活性存在一定差异[7]。研究有效成分在植物中分布, 应针对具体的杀菌、抗菌植物, 分成根、茎、叶、花、果实等部分, 采用生物测定法来分析活性成分在植株中的部位, 只有

联合固氮菌研究进展

联合固氮菌研究进展 田颖1,陈萍2 (1.陕西科技大学,陕西西安710016;2.陕西省仪祉农业学校,陕西咸阳712000) 摘要 过量施用化学肥料,对维持生态平衡和保护环境不利,微生物肥料具有长效、无毒、无污染、节约能源、成本低等特点,可弥补化学肥料的不足,因此,生物固氮引起各国科学家的关注。通过阐述联合固氮菌的研究现状、进展及相关技术,为研究者提供相关的参考。关键词 联合固氮菌;联合固氮作用;进展 中图分类号 Q936 文献标识码 A 文章编号 0517-6611(2005)11-2131-03 R esearch on the Improvem ent of Associative N itrogen Fixation B acteria TIAN Ying et al (Shanxi University of Science&T echn ology,X ian,Shanxi710016) Abstract It is n ot g ood to retain ecologic balance and protect environm ent under over use of chem ical fertilizer.T he m icrobiological fertilizer,which has s o m any advances,such as the long effectiveness,n o toxic and n o pollution etc,can give support to chem ical fertilizer.S o biological fixation of nitrogen has been paid attention to by scientists. K ey w ords Ass ociative nitrogen fixation bacteria;Research progress 人类当前面临的最紧迫的问题是:粮食短缺、环境污染、能源枯竭。对生物固氮各环节的了解有助于解决上述问题。联合固氮作用在自然界广泛存在,对该体系的深入研究和探讨对于开发非豆科植物的固氮潜力具有重要意义。 1 联合固氮菌的概念及研究意义 20世纪70年代,巴西学者D bereiner从热带禾本科牧草雀稗根际分离获得雀稗固氮菌(Azotobacter paspali),并提出根际联合固氮的概念,认为根际中存在一类自由生活的能固氮的细菌,定殖于植物根表或近根土壤,部分则能侵入植物根的皮层组织或微管中,靠根系分泌物生存繁殖,与植物根系有密切关系,但不与宿主形成特异分化结构,并将植物与细菌之间的这种共生关系称为联合共生固氮(Ass ociative symbi2 otic nitrogen fixation),现称为联合固氮作用[1]。这种固氮作用在自然界广泛存在,是介于根际自生固氮和结瘤固氮之间的过渡类型。继D bereiner等人的发现之后,又发现许多具有重要经济价值的非豆科作物如:甘蔗、水稻、玉米、棉花、牧草等存在明显的生物固氮现象,这引起人们对非豆科植物生物固氮的极大关注。进入21世纪,人类社会普遍面临粮食、人口、环境、能源、资源等问题的困扰,加之目前化肥用量不断增加,土壤肥力日趋下降,如何保持农业生态环境的良好循环已成为当今世界现代农业的一个重大课题,在此背景下根际联合固氮作用逐渐显出其特殊的意义。 2 联合固氮菌种类 联合固氮的种类和分布非常广泛,从禾本科作物到木本植物以及竹子的根际中都有发现。其中研究的较为普遍和深入的有:雀稗固氮菌(Azolobacter paspali)、粪产碱菌(Alcali2 gens f accalis)、肺炎克雷伯氏菌(K oeb siella pneumonia)、印度拜叶林克氏菌(Beijerinckia india)、德氏拜叶林克氏菌(Bderxii)、弗李明拜叶林克氏菌(Bflumnensis)、多粘芽孢杆菌(Bacillus polymyxa)、梭菌属(Clo stridium)、德克氏菌属(Derxia)、阴沟肠杆菌(E cloacae)、凝聚肠杆菌(E agglomerans)、草生欧文氏菌(Erwoma herbicola)、稻草杆菌(Flavobacterium oryzae sp now)、生脂刚螺菌(Azo spirillum lipo ferum)、假单孢菌(P seudomonas sp)等。 作者简介 田颖(1971-),女,陕西西安人,硕士,讲师,从事微生物学的教学与研究工作。 收稿日期 2005208216 根据生理生态特征联合固氮菌大致可分成为3类:根际固氮菌、兼性内生固氮菌、专性内生固氮菌[2]。 2.1 根际固氮菌 根际固氮菌指定殖于根表的所有固氮细菌。这类细菌不仅为植物提供氮素营养,其促进植物生长的主要原因在于产生的激素影响了植物的生理过程。这类固氮菌主要包括雀稗固氮菌(Azotobacter paspali)、拜叶林克氏菌(Beijerinckia spp)等。 2.2 内生固氮菌 内生固氮菌是指那些定殖在植物根内而与宿主植物联合固氮的固氮菌。它们的来源之一是种子和无性繁殖材料(块根、块茎等)。另一个来源是根围和叶围,其中主要是根围。根据内生固氮菌的特点不同,又可分为兼性内生固氮菌和专性内生固氮菌2类。 2.2.1 兼性内生固氮菌。这类固氮菌既能在根内也能在根表和土壤中定殖,主要为固氮螺菌属(Azo spirillum)的细菌。该属细菌分布广泛,能与许多寄主联合固氮,目前已分离鉴定出的有5个种:产脂固氮螺菌(A.lipo ferum)、巴西固氮螺菌(A.brasilense)、亚马逊固氮螺菌(A.amazomense)、伊拉克固氮螺菌(A.irankense)、高盐固氮螺菌(A.haloprae ferens)。 2.2.2 专性内生固氮菌。这类固氮菌在土壤中不能生存或生存能力很差,主要存在于植物组织内。它们可为宿主提供相当数量的氮素。这类细菌主要从寄主植物的自然开口(排水口、气孔、皮孔)、根表皮裂细胞或次生根形成点细胞间隙感染植物,经木质部扩散至植株上部。该类群包括重氮醋酸固氮菌(Acetobacter diazotrophicus)、固氮弧菌(Azoarus spp.)、草螺菌属(H erbaspirillum spp)、红苍白草螺菌(H erbaspirillum rubrisubalbicans)和伯克霍尔德氏菌(Burkholderia spp.)。 3 几种联合固氮细菌的特征 3.1 重氮营养醋杆菌(Acetobacter diazotrophicus) 重氮营养醋杆菌是Dǒbereiner1988年从甘蔗当中分离得到的[3],其固氮酶活性很高,可为甘蔗提供60%的氮素。该菌是严格的专性内生菌,大量存在于甘蔗的根茎叶当中,主要与富含糖分并以茎节或块根作为繁殖材料的植物,如甘蔗、甘薯、紫花狼尾草等共生。重氮营养醋杆菌为好气性杆菌,尾部圆形,革兰氏阴性,具1~3条鞭毛,以N2为唯一氮源,高浓度(10%)蔗糖是其生长和固氮的最好碳源,在蔗糖浓度高达30%时仍可生长,生长过程中会产酸,甚至使环境的pH值达3.0以 安徽农业科学,Journal of Anhui Agri.Sci.2005,33(11):2131-2133 责任编辑 罗芸 责任校对 罗芸

生物防腐剂乳酸链球菌素在食品中的应用

生物防腐剂乳酸链球菌素在食品中的应用 乳酸链球菌素(Nisin) Nisin是通过现代生物技术,从乳酸乳球菌发酵产物中提取的、具有抗菌活性的多肽物质。 Nisin的主要特点: ◤ Nisin进入人体即被体内蛋白酶分解为多种氨基酸,无残留,安全可靠。 ◤ 可降低食品灭菌温度,缩短灭菌时间,减少食品营养破坏。 ◤ 对引起食物腐败的阳性菌,尤其是耐热芽孢有强烈的抑制作用。 乳酸链球菌素是一种世界公认的、安全的天然生物性食品防腐剂和抗菌剂,主要用于乳和乳制品、肉和肉制品的防腐保鲜。乳酸链球菌素的发现要追溯到上世纪20年代,1928年, LA.Rogers等美国研究人员首先报道了乳酸链球菌代谢产物能抑制其他乳酸菌的生长。1947年,A.T.R.Mattick等人发现血清学N群中的一些乳酸链球菌能产生蛋白类抑菌物质,并从乳酸链球菌发酵液中制备出了这种多肽物质,由于是N群中的乳酸菌所产生的抑菌物质,故命名为N- inhibitory Substance,即N群抑菌物质,简称为Nisin。 Nisin是乳酸链球菌的一种天然产物,对远超过食品应用量的乳酸链球菌素的毒性研究表明,它是无毒的。由于其对蛋白水解酶(α-胰蛋白酶)特别敏感,因此食用后在消化道内即可很快被蛋白水解酶水解成氨基酸。1953年,乳酸链球菌素的第一批商业产品Nisaplin在英国面市;1969年,FAO/WHO食品添加剂联合专家委员会批准乳酸链球菌素可作为一种食品添加剂;1988年,美国食品和药物管理局(FDA)也正式批准将乳酸链球菌素应用于食品中;1990年,我国卫生部食品监督部门签发了乳酸链球菌素在中国的使用合格证明书。目前已有50多个国家批注允许使用乳酸链球菌素。 法规安全

食品防腐剂论文绿色食品的论文

食品防腐剂论文绿色食品的论文 新型食品防腐剂 摘要:对新型植物型、动物型、微生物型和海洋生物型食品防腐剂的特点和应用研究进展作一综述,为我国新型、安全、高效、天然食品防腐剂的研究和开发提供参考。 关键词:天然防腐剂;研究;开发;应用 Development and Application of Food Preservative ZHAO Dian-bo1,CHEN Bi-chun2, ZHANG Xiao-li3,BAI Yan-hong1 (1. College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; 2. Technical Center, Shenzhen Cigarette Factory, Shenzhen 518109, China; 3. Technical Center, Tianjing Cigarette Factory of Shanghai Tobacco( Group), Tianjing 300163, China) Abstract:This article summarizes the characteristics and applications of food preservatives which have been extracted from plants, animals, microorganisms, and sea organisms in order to provide evidence for the research and development of new typical, safe, high effective and natural food preservatives. Key words:natural preservative; research;development; application

生物农药研究进展

生物农药研究进展

生物农药研究进展 由于控制全球化合物生物积聚的呼吁越来越强烈、新化学农药开发耗资巨大和周期延长、农业害虫对化学农药抗药性日益增强,以及生物技术飞速发展带来的冲击,当今农药研究、开发和生产应用等正面临选择方向挑战,生物农药以其独特的优势迎来了新的发展机遇。 1 生物农药的发展 在农药的发展历史中,生物农药是最古老的一类。《周礼·秋官》就有“莽草熏之”“焚牡菊,以灰洒之”等防治害虫的记述;古罗马也有使用藜芦防治忍鼠类和昆虫的民间传说。19世纪以来,开发应用生物成分防治有害物逐渐从以经验上升到科学试验阶段,如除虫菊、鱼藤和烟草的应用。20世纪早期,微生物学的发展,特别是苏云金杆菌(Bacillus thuringiensis,以下简称Bt)的发现促进了微生物农药的开发。20世纪30年代以来,几类植物内源激素先后被发现和利用,20世纪40年代后,由于有机合成化学农药的发展,使生物成分农药的研究开发被相对忽视而发展缓慢,这段时期基于B.popillae、Bt的产品在美国上市.20世纪60年代,化学农药的弊端暴露出来,生物农药的研究又受到重视.在最近的几十年中,生物农药得到了长足发展,如农用抗生素、活体微生物农药等[15,30]。20世纪末,植物农药(或转基因植物农药)等的出现,极大丰富了生物农药的内容。 2生物农药的内涵 不同学者、不同机构、组织对生物农药的内涵意见不同。过去,生物农药就是指“微生物农药”。后来,其概念发展为“相对于化学农药而言的天然资源的生理活性物质,用于农药的有微生物、植物(除)虫菊”、菸碱等)、昆虫(性引诱剂、变态激素等)”[11]。FAO(中文名称)(1988)将其定义为生物害物控制剂(Biological pest control agents),包括生物化学农药和微生物农药,将传统的鱼藤酮、烟碱等具有直接毒性的物质排除在生物农药之外。《中国农业百科全书———农药类》中生物农药(biogenic pesticides)是指利用生物资源开发的农药;狭义概念,指直接利用生物产生的天然活性物质或生物活体作为农药;广义概念,还包括按天然物质的化学结构或类似衍生结构人工合成的农药。 随着科技的发展,生物农药的内涵发生了巨大变化,英国作物保护委员会根据来源将生物农药分为五类,来自微生物、植物、动物的相关基因也包括在内。美国环保署农药部(EPA)将生物农药(Bio-pesticides)分为三大类,其中一类为植物农药(Plant-pesticides)或转基因植物农药———将基因植入植物体内的农药,使得生物农药的概念进一步地得到延伸。2001年农业部参考FAO和EPA的定义界定了生物农药的内涵,加强了我国生物农药的管理工作。 在这些定义中,完全仿生物合成的化合物、人工合成与天然产物相同的化合物、人工合成的衍生物(如烯虫酯、米满等)、转基因植物,以及鱼藤酮、烟碱等具有直接毒性的天然产物农药的归属存在分歧。 笔者认为,张兴等(2002)对生物农药内涵的界定较为科学。生物农药是可以

食品防腐剂介绍

食品防腐剂是能防止由微生物引起的腐败变质、延长食品保藏期的食品添加剂。因兼有防止微生物繁殖引起食物中毒的作用,又称抗微生物剂。 食品防腐剂是抑制物质腐败的药剂,即对以腐败物质为代谢底物的微生物的生长具有持续的抑制作用。重要的是它能在不同情况下抑制最易发生的腐败作用,特别是在一般灭菌作用不充分时仍具有持续性的效果。由于在食品中使用防腐剂受到限制,因此多靠干燥、腌制等一些物理的方法。 我国规定使用的防腐剂有苯甲酸、苯甲酸钠、山梨酸、山梨酸钾、丙酸钙等25种。 食品防腐剂应具备如下条件: 1)性质较稳定:加入到食品中后在一定的时期内有效,在食品中有很好的稳定性 2)低浓度下具有较强的抑菌作用 3)本身不应具有刺激气味和异味 4)不应阻碍消化酶的作用,不应影响肠道内有益菌的作用 5)价格合理,使用较方便。 食品防腐剂防腐作用机理如下:· ①能使微生物的蛋白质凝固或变性,从而干扰其生长和繁殖。 ②防腐剂对微生物细胞壁、细胞膜产生作用。由于能破坏或损伤细胞壁,或能干扰细胞壁合成的机理,致使胞内物质外泄,或影响与膜有关的呼吸链电子传递系统,从而具有抗微生物的作用。 ③作用于遗传物质或遗传微粒结构,进而影响到遗传物质的复制、转录、蛋白质的翻译等。 ④作用于微生物体内的酶系,抑制酶的活性,干扰其正常代谢。 食品防腐剂分类如下: 食品防腐剂按作用分为杀菌剂和抑菌剂。二者常因浓度、作用时间和微生物性质等的不同而不易区分。 按性质也可分为有机化学防腐剂和无机化学防腐剂两类。此外还有乳酸链球菌素,是一种由乳链球菌产生、含34个氨基酸的肽类抗菌素。 目前世界各国所用的食品防腐剂约有30多种。食品防腐剂在中国被划定为第17类,有28个品种。 防腐剂按来源分,有化学防腐剂和天然防腐剂两大类。化学防腐剂又分为有机防腐剂与无机防腐剂。前者主要包括苯甲酸、山梨酸等,后者主要包括亚硫酸盐和亚硝酸盐等。天然防腐剂,通常是从动物、植物和微生物的代谢产物中提取。如乳酸链球菌素是从乳酸链球菌的代谢产物中提取得到的一种多肽物质,多肽可在机体内降解为各种氨基酸,世界各国对这种防腐剂的规定也不相同,我国对乳酸链球菌素有使用范围和最大许可用量的规定。 食品防腐剂种类使用范围如下: 苯甲酸及盐:常用于,碳酸饮料、低盐酱菜、蜜饯、葡萄酒、果酒、软糖、酱油、食醋、果酱、果汁饮料、食品工业用桶装浓果蔬汁。 山梨酸钾:用于除以上介绍外,还有鱼、肉、蛋、禽类制品、果蔬保鲜、胶原蛋白肠衣、果冻、乳酸菌饮料、糕点、馅、面包、月饼等。 脱氢乙酸钠:常用于,腐竹、酱菜、原汁桔浆。 对羟基苯甲酸丙酯:常用于,果蔬保鲜、果汁饮料、果酱,糕点陷、蛋黄陷、碳酸饮料、食醋、酱油。 丙酸钙:常用于,生湿面制品(切面、馄饨皮)、面包、食醋、酱油、糕点、豆制食品. 双乙酸钠:常用于,各种酱菜、面粉和面团中。 乳酸钠:常用于,烤肉、火腿、香肠、鸡鸭类产品和酱卤制品等。

相关主题
文本预览
相关文档 最新文档