当前位置:文档之家› 如何在VB中编写CRC校验程序

如何在VB中编写CRC校验程序

如何在VB中编写CRC校验程序
如何在VB中编写CRC校验程序

如何在VB中编写CRC校验程序

随着计算机技术的不断发展,在现代工业中,利用微机进行数据通讯的工业控制应用得也越来越广泛。由于传输距离、现场状况等诸多可能出现的因素影响,计算机与受控设备之间的通讯数据常会发生无法预测的错误。为了防止错误所带来的影响,一般在通讯时采取数据校验的办法,而循环冗余码校验是最常用的校验方法之一。

一、循环冗余码校验原理

循环冗余码校验英文名称为Cyclical Redundancy Check,简称CRC。它是利用除法及余数的原理来作错误侦测(Error Detecting)的。实际应用时,发送装置计算出CRC值并随数据一同发送给接收装置,接收装置对收到的数据重新计算CRC并与收到的CRC相比较,若两个CRC值不同,则说明数据通讯出现错误。

根据应用环境与习惯的不同,CRC又可分为以下几种标准:

①CRC-12码;

②CRC-16码;

③CRC-CCITT码;

④CRC-32码。

CRC-12码通常用来传送6-bit字符串。CRC-16及CRC-CCITT码则用是来传送8-bit字符,其中CRC-16为美国采用,而CRC-CCITT为欧洲国家所采用。CRC-32码大都被采用在一种称为Point-to-Point的同步传输中。

下面以最常用的CRC-16为例来说明其生成过程。

CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或,之后对CRC寄存器从高到低进行移位,在最高位(MSB)的位置补零,而最低位(LSB,移位后已经被移出CRC 寄存器)如果为1,则把寄存器与预定义的多项式码进行异或,否则如果LSB 为零,则无需进行异或。重复上述的由高至低的移位8次,第一个8-bit数据处理完毕,用此时CRC寄存器的值与下一个8-bit数据异或并进行如前一个数据似的8次移位。所有的字符处理完成后CRC寄存器内的值即为最终的CRC值。

下面为CRC的计算过程:

1.设置CRC寄存器,并给其赋值FFFF(hex)。

2.将数据的第一个8-bit字符与16位CRC寄存器的低8位进行异或,并把结果存入CRC寄存器。

3.CRC寄存器向右移一位,MSB补零,移出并检查LSB。

4.如果LSB为0,重复第三步;若LSB为1,CRC寄存器与多项式码相异或。

5.重复第3与第4步直到8次移位全部完成。此时一个8-bit数据处理完毕。

6.重复第2至第5步直到所有数据全部处理完成。

7.最终CRC寄存器的内容即为CRC值。

二、循环冗余码校验程序的编写

明白了CRC校验码的产生过程,编写起程序来就非常容易了。由于Visual Basic的广泛普及以及其在数据通讯中的重要地位,下面就以VB语言来编写CRC的生成程序,其它语言只需稍做修改即可。

编写CRC校验程序有两种办法:一种为计算法,一种为查表法。下面对两种方法分别讨论。

1.计算法

计算法就是依据CRC校验码的产生原理来设计程序。其优点是模块代码少,修改灵活,可移植性好。其缺点为计算量大。为了便于理解,这里假定了三位数据,而多项式码为A001(hex)。

在窗体上放置一命令按钮Command1,并添加如下代码:

Private Sub Command1_Click()

Dim CRC() As Byte

Dim d() As Byte '待传输数据

ReDim d(2) As Byte

d(0) = 123

d(1) = 112

d(2) = 135

CRC = CRC16(d) '调用CRC16计算函数

'CRC(0)为高位

'CRC(1)为低位

End Sub

注意:在数据传输时CRC的低位可能在前,而高位在后。

Function CRC16(data() As Byte) As String

Dim CRC16Lo As Byte, CRC16Hi As Byte 'CRC寄存器

Dim CL As Byte, CH As Byte '多项式码&HA001

Dim SaveHi As Byte, SaveLo As Byte

Dim i As Integer

Dim Flag As Integer

CRC16Lo = &HFF

CRC16Hi = &HFF

CL = &H1

CH = &HA0

For i = 0 To UBound(data)

CRC16Lo = CRC16Lo Xor data(i) '每一个数据与CRC寄存器进行异或

For Flag = 0 To 7

SaveHi = CRC16Hi

SaveLo = CRC16Lo

CRC16Hi = CRC16Hi \ 2 '高位右移一位

CRC16Lo = CRC16Lo \ 2 '低位右移一位

If ((SaveHi And &H1) = &H1) Then '如果高位字节最后一位为1

CRC16Lo = CRC16Lo Or &H80 '则低位字节右移后前面补

1

End If '否则自动补0

If ((SaveLo And &H1) = &H1) Then '如果LSB为1,则与多项式码进行异或

CRC16Hi = CRC16Hi Xor CH

CRC16Lo = CRC16Lo Xor CL

End If

Next Flag

Next i

Dim ReturnData(1) As Byte

ReturnData(0) = CRC16Hi 'CRC高位

ReturnData(1) = CRC16Lo 'CRC低位

CRC16 = ReturnData

End Function

2.查表法

查表法的优缺点与计算法的正好相反。为了便于比较,这里所有的假定与计算法的完全相同,都而在窗体上放置一个Command1的按钮,其代码部分与上面的也完全一致。下面只介绍CRC函数的编写源代码。

Private Function CRC16(data() As Byte) As String

Dim CRC16Hi As Byte

Dim CRC16Lo As Byte

CRC16Hi = &HFF

CRC16Lo = &HFF

Dim i As Integer

Dim iIndex As Long

For i = 0 To UBound(data)

iIndex = CRC16Lo Xor data(i)

CRC16Lo = CRC16Hi Xor GetCRCLo(iIndex) '低位处理

CRC16Hi = GetCRCHi(iIndex) '高位处理

Next i

Dim ReturnData(1) As Byte

ReturnData(0) = CRC16Hi 'CRC高位

ReturnData(1) = CRC16Lo 'CRC低位

CRC16 = ReturnData

End Function

'CRC低位字节值表

Function GetCRCLo(Ind As Long) As Byte

GetCRCLo = Choose(Ind + 1, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1,

&HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81,

&H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1,

&H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0,

&HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, _

&H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40)

End Function

'CRC高位字节值表

Function GetCRCHi(Ind As Long) As Byte

GetCRCHi = Choose(Ind + 1, &H0, &HC0, &HC1, &H1, &HC3, &H3,

&H2, &HC2, &HC6, &H6, &H7, &HC7, &H5, &HC5, &HC4, &H4, &HCC, &HC, &HD, &HCD, &HF, &HCF, &HCE, &HE, &HA, &HCA, &HCB, &HB, &HC9, &H9, &H8, &HC8, &HD8, &H18, &H19, &HD9, &H1B, &HDB, &HDA, &H1A, &H1E, &HDE, &HDF, &H1F, &HDD, &H1D, &H1C, &HDC, &H14, &HD4, &HD5,

&H15, &HD7, &H17, &H16, &HD6, &HD2, &H12, &H13, &HD3, &H11, &HD1, &HD0, &H10, &HF0, &H30, &H31, &HF1, &H33, &HF3, &HF2, &H32, &H36, &HF6, &HF7, &H37, &HF5, &H35, &H34, &HF4, &H3C, &HFC, &HFD, &H3D, &HFF, &H3F, &H3E, &HFE, &HFA, &H3A, &H3B, &HFB, &H39, &HF9, &HF8, &H38, &H28, &HE8, &HE9, &H29, &HEB, &H2B, &H2A, &HEA, &HEE, &H2E, &H2F, &HEF, &H2D, &HED, &HEC, &H2C, &HE4, &H24, &H25, &HE5, &H27, &HE7, &HE6, &H26, &H22, &HE2, &HE3, &H23, &HE1, &H21, &H20, &HE0, &HA0, &H60, _

&H61, &HA1, &H63, &HA3, &HA2, &H62, &H66, &HA6, &HA7, &H67, &HA5, &H65, &H64, &HA4, &H6C, &HAC, &HAD, &H6D, &HAF, &H6F, &H6E, &HAE, &HAA, &H6A, &H6B, &HAB, &H69, &HA9, &HA8, &H68, &H78, &HB8, &HB9, &H79, &HBB, &H7B, &H7A, &HBA, &HBE, &H7E, &H7F, &HBF, &H7D, &HBD, &HBC, &H7C, &HB4, &H74, &H75, &HB5, &H77, &HB7, &HB6, &H76, &H72, &HB2, &HB3, &H73, &HB1, &H71, &H70, &HB0, &H50, &H90, &H91, &H51, &H93, &H53, &H52, &H92, &H96, &H56, &H57, &H97, &H55, &H95, &H94,

&H54, &H9C, &H5C, &H5D, &H9D, &H5F, &H9F, &H9E, &H5E, &H5A, &H9A, &H9B, &H5B, &H99, &H59, &H58, &H98, &H88, &H48, &H49, &H89, &H4B,

&H8B, &H8A, &H4A, &H4E, &H8E, &H8F, &H4F, &H8D, &H4D, &H4C, &H8C, &H44, &H84, &H85, &H45, &H87, &H47, &H46, &H86, &H82, &H42, &H43,

&H83, &H41, &H81, &H80, &H40)

End Function

以上程序在Win98,VB6下调试通过。

CRC校验实验报告

实验三CRC校验 一、CRC校验码的基本原理 编码过程: CRC校验码的编码方法是用待发送的二进制数据t(x)除以生成 多项式g(x),将最后的余数作为CRC校验码。 其实现步骤如下: 1 设待发送的数据块是m位的二进制多项式t(x),生成多项式 为r阶的g(x)。在数据块的末尾添加r个0,数据块的长度增 加到m+r位。 2 用生成多项式g(x)去除,求得余数为阶数为r-1

的二进制 多项式y(x)。此二进制多项式y(x)就是t(x)经过生成多项式 g(x)编码的CRC校验码。 3 将y(x)的尾部加上校验码,得到二进制多项式。就是包含 了CRC校验码的待发送字符串。 解码过程: 从CRC的编码规则可以看出,CRC编码实际上是将代发送的m位 二进制多项式t(x)转换成了可以被g(x)除尽的m+r位二进制多项式 所以解码时可以用接收到的数据去除g(x),如果余数位零,则

表示传输过程没有错误;如果余数不为零,则在传输过程中肯定 存在错误。许多CRC的硬件解码电路就是按这种方式进行检错的。 同时,可以看做是由t(x)和CRC校验码的组合,所以解码时将接 收到的二进制数据去掉尾部的r位数据,得到的就是原始数据。 解码过程示例:

运行结果: 附录(实现代码):using System; using ; namespace CRC

{ public abstract class Change { oString("x2").ToUpper(); } } return returnStr; } um; } (databuff);eight < max1) && (data[j].Parent == -1)) { max2 = max1; tmp2 = tmp1; tmp1 = j; max1 =

CRC16校验程序

CRC16校验程序 -------------------------------------------------------------------------------- 作者:转载 //CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的3种 //实现方法进行测试。方法1选用了一种常见的查表方法,类似的还有512字 //节、256字等查找表的,至于查找表的生成,这里也略过。 // ---------------- POPULAR POLYNOMIALS ---------------- // CCITT:x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005 // -------------------------------------------------------------- // CRC16计算方法1:使用2个256长度的校验表 // -------------------------------------------------------------- const BYTE chCRCHTalbe[] = // CRC 高位字节值表{ 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const BYTE chCRCLTalbe[] = // CRC 低位字节值表{ 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,

CRC 校验码编码实验

实验四CRC校验码编码实验 班级:姓名:学号: 一、实验目的 1.学习CRC编码基本流程,学会调试循环冗余校验码编码程序。 2.掌握CRC校验码的编码原理,重点掌握按字节(Byte)编码方法。 二、实验内容 1.根据实验原理掌握CRC校验码编码/解码基本流程。 2.在C++编译器下能够调试编码算法每一个步骤,重点掌握按字节编码的过程。 三、实验仪器、设备 1.计算机-系统最低配置256M内存、P4CPU。 2.C++编程软件-Visual C++7.0(Microsoft Visual Studio2003)、Visual C++ 8.0(Microsoft Visual Studio2005) 四、实验原理 1.CRC校验码介绍 CRC校验的基本思想是利用线性编码理论,在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的监督码(CRC码)r位,并附在信息后边,构成一个新的二进制码序列数共(k+r)位,最后发送出去。在接收端,则根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。 16位的CRC码产生的规则是先将要发送的二进制序列数左移16位(乘以216)后,再除以一个多项式,最后所得到的余数既是CRC码。求CRC码所采用模2加减运算法则,既是不带进位和借位的按位加减,这种加减运算实际上就是逻辑上的异或运算,加法和减法等价,乘法和除法运算与普通代数式的乘除法运算是一样,符合同样的规律。接收方将接收到的二进制序列数(包括信息码和CRC码)除以多项式,如果余数为0,则说明传输中无错误发生,否则说明传输有误。 2.按位计算CRC 一个二进制序列数可以表示为 求此二进制序列数的CRC码时,先乘以216后(左移16位),再除以多项式G(X),所得的余数就是所要求的CRC码。 可以设: 其中Q n(X)为整数,R n(X)为16位二进制余数,将上式代入前式得: 再设:

CRC检验码实验报告

CRC 检验码实验报告 一 实验题目 (1) 实现CRC 的校验过程,生成多项式为CRC12,要求设计简单的图形界面。 (2) 完成内容包括:输入发送数据序列,根据生成多项式完成余数计算,输出带有校验码的发送数据序列。模拟正确发送、出现离散的一位错、离散的两位错以及长度小于12的突发错,给出相应的输出。 二 实验工具及环境 实验语言:JAVA 实验工具:eclipese 三 实验思路 (1) 实验原理 CRC 校验码的编码方法是用待发送的二进制数据t(x)移位生成多项式位数,其结果r(x)除以生成 多项式g(x),将最后的余数与上r(x)作为CRC 校验码。 (2) 实验思路 1.实现过程分 实验类图 2.计算CRC 检验码: 1)用户输入发送数据比特序列A; 2)默认为12位CRC 生成多项式,用户可根据需要自行修改CRC 生成多项式B; 3)根据B 的位数,对A 进行左移位相应的位数(相当于做2^n 的乘积运算),形成C; 实现计算CRC 校验码与实现模拟出错的算法类 选择应用主界面类,包括模拟CRC 出错与计算CRC 校验 计算CRC 校验码界面 模拟CRC 出错

4)对生成多项式和发送数据流进行异或运算,计算余数D; 5)余数D+C就形成了带有CRC检验码的数据比特序列。 3.CRC检验码出错模拟: 用户输入原CRC检验码的数据比特序列A,选择待模拟的错误类型;程序给出相应模拟出错结果。

四实验结论 1.优点 1)实现了多种生成多项式CRC检验码的生成与检验 2)检验与计算分开,功能明确 3)可对用户输入数据进行检查,动态交互 2.缺点 1)在检验CRC校验码时,只能有用户手动输入数据,不能粘贴复制,比较麻烦 2)页面布局与外观有待提高

CRC16校验-C语言代码

//CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的3种 //实现方法进行测试。方法1选用了一种常见的查表方法,类似的还有512字 //节、256字等查找表的,至于查找表的生成,这里也略过。 // ---------------- POPULAR POLYNOMIALS ---------------- // CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005 // -------------------------------------------------------------- // CRC16计算方法1:使用2个256长度的校验表 // -------------------------------------------------------------- const BYTE chCRCHTalbe[] = // CRC 高位字节值表 { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const BYTE chCRCLTalbe[] = // CRC 低位字节值表{ 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9,

CRC16校验C语言程序源码-(附完整的可执行的C语言代码)

CRC16校验C语言程序源码-(附完整的可执行的C语言代码)

CRC16校验C语言程序源码(附完整的可执行的C语言代码) //CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的2种 //实现方法进行测试。 方法一:查表法(256长度的校验表) 速度快,准确,但是对于单片机设备存储占用大,且校验表长度大,输入时容易出现错误。 // ---------------- POPULAR POLYNOMIALS ---------------- // CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005 const BYTE chCRCHTalbe[] = // CRC 高位字节值表 { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const BYTE chCRCLTalbe[] = // CRC 低位字节值表 { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,

CRC编码实验实验报告

实验三 CRC编码实验实验报告 班级:通信162班 姓名:李浩坤学号:163977 实验名称:CRC编码实验实验日期:6.7 一. 实验目的 1、复习matlab的基本编写方法。 2、学习CRC编码基本流程, 学会调试循环冗余校验码编码程序。 3、根据给出的资料,掌握CRC校验码的编码原理。 二. 实验原理及内容 原理: 1.CRC码简介: 循环冗余码校验英文名称为Cyclical Redundancy Check,简称CRC,它是利用除法及余数的原理来作错误侦测(Error Detecting)的。实际应用时,发送装置计算出CRC值并随数据一同发送给接收装置,接收装置对收到的数据重新计算CRC并与收到的CRC相比较,若两个CRC值不同,则说明数据通讯出现错误。 2.循环冗余校验码(CRC)的基本原理: 在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式 G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。 几个需要提前了解的基本概念: 1)、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x^4+x^3+x+1,可转换为二进制数码11011。 而发送信息位 1111,可转换为数据多项式为C(x)=x^3+x^2+x+1。 2)、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做模2除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做模2除,应使余数循环。 3)、模2除(按位除) 模2除做法与算术除法类似,但每一位除(减)的结果不影响其它位,即不向上一位借位。所以实际上就是异或。然后再移位移位做下一位的模2减。步骤如下: a、用除数对被除数最高几位做模2减,没有借位。 b、除数右移一位,若余数最高位为1,商为1,并对余数做模2减。若余数最高位为0,商为0,除数继续右移一位。 c、一直做到余数的位数小于除数时,该余数就是最终余数。 三. 实验步骤 1.了解crc编码原理,分析理解检验crc程序的含义。 2.运行mycrc编码程序,观察结果,计算验证程序是否正确。 3.完成练习题。

CRC校验解读

三种常用的CRC16校验算法的C51程序的优化2009-10-10 09:34:17| 分类:技术知识| 标签:|字号大 CRC校验又称为循环冗余校验,是数据通讯中常用的一种校验算法。它可以有效的判别出数据在传输过程中是否发生了错误,从而保障了传输的数据可靠性。 CRC校验有多种方式,如:CRC8、CRC16、CRC32等等。在实际使用中,我们经常使用CRC16校验。CRC16校验也有多种,如:1005多项式、1021多项式(CRC-ITU)等。在这里我们不讨论CRC算法是怎样产生的,而是重点落在几种算法的C51程序的优化上。 计算CRC校验时,最常用的计算方式有三种:查表、计算、查表+计算。一般来说,查表法最快,但是需要较大的空间存放表格;计算法最慢,但是代码最简洁、占用空间最小;而在既要求速度,空间又比较紧张时常用查表+计算法。 下面我们分别就这三种方法进行讨论和比较。这里以使用广泛的51单片机为例,分别用查表、计算、查表+计算三种方法计算1021多项式(CRC-ITU)校验。原始程序都是在网上或杂志上经常能见到的,相信大家也比较熟悉了,甚至就是正在使用或已经使用过的程序。 编译平台采用Keil C51 7.0,使用小内存模式,编译器默认的优化方式。 常用的查表法程序如下,这是网上经常能够看到的程序范例。因为篇幅关系,省略了大部分表格的内容。 code unsigned int Crc1021Table[256] = { 0x0000, 0x1021, 0x2042, 0x3063,... 0x1ef0 }; unsigned int crc0(unsigned char *pData, unsigned char nLength) { unsigned int CRC16 = 0;

基于FPGA的CRC校验设计

《数字电路课程设计》实验报告 题目:基于FPGA的CRC校验设计 班级: 学号: 姓名: 完成时间: 实验地点:

摘要 在通信的过程中,由于外界干扰或者电路本身不稳定因素的影响,通信系统中不可避免的会产生噪声(如热噪声等),噪声有时候会严重影响信息的发送,造成信息发送失败。因此在接收方确定自己是否接收到了正确的信息尤为重要。本文就CRC校验这一校验方法利用FPGA进行模拟仿真,完成整个CRC校验的过程。

目录第一章实验任务与原理 1.1实验任务 1.2 实验原理 第二章设计思路、方法及方案 2.1设计思路 2.2设计方法及方案 第三章FPGA模块设计 第四章系统调试及硬件检查 第五章结束语 附录程序源代码

第一章 实验任务与原理 1.1、 实验任务 本实验设计完成一个完整的CRC 校验过程,其中包括发送端对原始数据生成、编码、按照RS-232的传输协议组帧、接收端对RS-232传输帧格式解析和解码过程。 1.2、 实验原理 本次实验要完成整个CRC 校验过程,从产生数据到最后的校验完毕,因此实验原理共分为5个部分:数据源产生、CRC 编码、组帧、帧解析、CRC 校验。 图1 CRC 校验系统结构 1、 CRC 校验介绍 CRC (循环冗余校验码)是一种非常适于检错的信道编码。由于其检错能力 强,它对随机错误和突发错误都能以较低冗余度进行严格检验,且编码和译码检错电路的实现都相当简单,故在数据通信和移动通信中都得到了广泛的应用。 在数据通信与网络通信中,通常信息码元的数目k 相当大,由一千甚至数千 数据位构成一帧,而后采用循环码的生成多项式产生r 位的校验位。这时,信息码元和校验位构成的码字不一定是严格定义的循环码,而且主要是利用其误码检测特性进行错误检出,因此就可广泛采用CRC 码。它是从循环码中分出的一类检错码。循环码的已编码码字可被生成多项式g(x)整除。收端可以利用这一特点进行检错,若接收码字不能被g(x)整除,则有错。 2、实验原理介绍 任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’或‘1’的多项式一一对应,例如‘1010111’对应的多项式为6421x x x x ++++。 CRC 码集选择的原则:若设码字长度为N ,信息字段长度为K ,校验字段

CRC码生成与校验电路的设计

目录 第1章总体设计方案 (1) 1.1设计原理 (1) 1.2设计思路 (2) 1.3设计环境 (3) 第2章详细设计方案 (5) 2.1顶层方案图的设计与实现 (5) 2.1.1创建顶层图形设计文件 (6) 2.1.2器件的选择与引脚锁定 (6) 2.1.3编译、综合、适配 (8) 2.2功能模块的设计与实现 (8) 2.2.1模2除法器的设计与实现 (8) 2.2.2移位寄存器的设计与实现 (10) 2.3仿真调试 (11) 第3章编程下载与硬件测试 (14) 3.1编程下载 (14) 3.2硬件测试及结果分析 (14) 参考文献 (15) 附录(电路原理图) (16)

第1章 总体设计方案 1.1 设计原理 循环冗余校验码(cyclic redundancy check,CRC)简称为循环码或CRC 码。二进制信息沿一条信号线逐位在设备之间传送称为串行传送,CRC 码常用于串行传送过程中的检错与纠错。 CRC 码的编码格式如图1.1所示,是在k 位有效数据之后添加r 位校验码,形成总长度为n 的CRC 码,简写作C(n,k)码。CRC 编码的关键技术在于如何从k 位信息简便的得到r 位校验码,并根据总长度为n 的CRC 码进行纠错。 图1.1 设被校验的数据0121...D D D D D k k --=是一个k 位的二进制代码,将它 表示为一个(k-1)阶的多项式 0112211......)(D x D x D x D x M k k k k +++++=---- (1-1) 多项式(1-1)中的系数D 的取值为0或1,与被校验的数据M 一一对应;式中的x 是一个伪变量,用i x 指明各位的位置。 设校验码P 长度为r ,将被校验数据D 左移r 位后的结果为 位 r k k D D D D 00...00...0121-- 将D 左移r 位的目的是给D 右边添加r 个0,形成(k+r)位长度二进制代码, 其多项式形式为M(x )×r x 。如图1.1所示,CRC 码由k 位数据D 和r 位校验码 P 组成,求校验码P 的多项式R(X)的方法如下: ) () ()()()(x G x R x Q x G x x M r + =? (1-2)

CRC终于搞成了

今晚看了好久CRC,最后还有没有很明白。但是做为一个做工程的,有结果就好了。 我要用的不是标准的CRC公式,是X8+1这个,呵呵。下面开始总结。 CRC用到的主要是模2除法,开始看得一头雾水,只有把这个弄清楚了,后来才有了思路。才知道CRC的计算过程。(此处是重点,我费了很多劲儿理解,省去若干字。)不知道计算过程,程序是绝对不能看懂的。 还有这么一句话:多项式的MSB略去不记,因其只对商有影响而不影响余数。就是说对于CRC-CCITT=X16+X12+X5+1,可以只用0x1021,bit16位的1不要了,只留下bit12、5、0。(参考一篇modbus的说明) 记住这两点,再参考下面一段话: 生成CRC-16校验字节的步骤如下: ①装如一个16位寄存器,所有数位均为1。 ②该16位寄存器的高位字节与开始8位字节进行“异或”运算。运算结果放入这个16位寄存器。 ③把这个16寄存器向右移一位。 ④若向右(标记位)移出的数位是1,则生成多项式1010000000000001和这个寄存器进行“异或” 运算;若向右移出的数位是0,则返回③。 ⑤重复③和④,直至移出8位。 ⑥另外8位与该十六位寄存器进行“异或”运算。 ⑦重复③~⑥,直至该报文所有字节均与16位寄存器进行“异或”运算,并移位8次。 ⑧这个16位寄存器的内容即2字节CRC错误校验,被加到报文的最高有效位。 别的都是弯路,以上是最清楚的、实惠的解释了。本文最后,附上另一位网游的文章,也给我很大启发。 下面是成功的程序: unsigned short crc(unsigned char *addr, int num) { int i; while (num--) { crc8 ^= *addr++;

CRC16校验程序-C语言

#include <> /* Table of CRC values for high–order byte */ unsigned char auchCRCHi[] = { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 } ; /* Table of CRC values for low–order byte */ unsigned char auchCRCLo[] = { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40 };

奇偶校验_校验和实验

实验5-1纠错与检错 1.实验内容 读程序,在所有红色的“#”后面添加解释,说明程序的作用 2.实验题目 (1)奇偶校验码 在原始模式上增加一个附加比特位,即奇偶校验位,使最后整个模式中1的个数为奇数(奇校验)或偶数(偶校验)。 本程序用到列表、字符串合并、取模等概念。 code=input("Please input a 7-bit-binary code:") a=0 # for 循环作用是什么 for i in range(0,6,1): if code[i]=='1': a=a+1 print("After odd parity checking the code is:") if a%2==0: print(code+'1') # 这句做了什么 else: print(code) # 这句做了什么 print("After even parity checking the code is:") # 下面 if .. else …作用是什么 if a%2==0: print(code) else: print(code+'1') (2) 垂直水平奇偶校验 如下图所示,14个字符纵向排列形成一个数据块,每个字符占据一列,低位比特在上,高位比特在下,用b8(第8位)作为垂直奇偶校验位,各字符的同一比特位形成一行,每一行的最右边一位作为水平奇偶校验位,这里在垂直和水平方向均采用偶校验。

# 下面的函数做了什么 def oddeven(l): a=0 for i in range(0,len(l),1): if l[i]=='1': a=a+1 if a%2==0: return '0' else: return '1' block=[['0']*15,['0']*15,['0']*15,['0']*15,['0']*15,['0']*15,['0']*15,[' 0']*15] for i in range(0,14,1): vcode=input("Please input a 7-bit-binary code:") for j in range(0,7,1): block[j][i]=vcode[j] block[7][i]=oddeven(vcode) # 这句做了什么 hcode=['0']*14 for j in range(0,8,1): for i in range(0,14,1): hcode[i]=block[j][i] block[j][14]=oddeven(hcode) # 这句做了什么 print(block) (3)循环冗余校验 任何一个二进制位串都可以用一个多项式来表示,多项式的系数只有0和1,n 位长度的码C 可以用下述n -1次多项式表示: ()n 1n 210C x C x C x C x C --=++++L n-1n-21 例如位串1010001可以表示为x 6+x 4 +1。 数据后面附加上冗余码的操作可以用多项式的算术运算来表示。例如,一个k 位的信息码后面附加上r 位的冗余码,组成长度为n=k+r 的码,它对应一个(n -1)次的多项式C(x),信息码对应一个(k -1)次的多项式K(x),冗余码对应一个(r -1)次的多项式R(x),C(x)与K(x)和R(x)之间的关系满足: ()()()r C x x K x R x =+ 由信息码生成冗余码的过程,即由已知的K(x)求R(x)的过程,也是用多项式的算术运 算来实现。其方法是:通过用一个特定的r 次多项式G(x)去除x r K(x),即: () () r x K x G x 得到的r 位余数作为冗余码R(x)。其中G(x)称为生成多项式(generator polynomial ),是由通信的双方预先约定的。除法中使用模2减法(无借位减,相当于作异或运算)。要进行的多项式除法,只要用其相对应的系数进行除法运算即可。 本例中,10位二进制信息位串对应K(x)=x 9+x 8+ x 6+x 4+ x 3 + x+1;CRC_4对应的G(x)=

相关主题
文本预览
相关文档 最新文档