当前位置:文档之家› 时间序列数据挖掘中特征表示与相似性度量研究综述

时间序列数据挖掘中特征表示与相似性度量研究综述

时间序列数据挖掘中特征表示与相似性度量研究综述
时间序列数据挖掘中特征表示与相似性度量研究综述

数据挖掘研究现状综述

数据挖掘 引言 数据挖掘是一门交叉学科,涉及到了机器学习、模式识别、归纳推理、统计学、数据库、高性能计算等多个领域。 所谓的数据挖掘(Data Mining)指的就是从大量的、模糊的、不完全的、随机的数据集合中提取人们感兴趣的知识和信息,提取的对象一般都是人们无法直观的从数据中得出但又有潜在作用的信息。从本质上来说,数据挖掘是在对数据全面了解认识的基础之上进行的一次升华,是对数据的抽象和概括。如果把数据比作矿产资源,那么数据挖掘就是从矿产中提取矿石的过程。与经过数据挖掘之后的数据信息相比,原始的数据信息可以是结构化的,数据库中的数据,也可以是半结构化的,如文本、图像数据。从原始数据中发现知识的方法可以是数学方法也可以是演绎、归纳法。被发现的知识可以用来进行信息管理、查询优化、决策支持等。而数据挖掘是对这一过程的一个综合性应用。

目录 引言 (1) 第一章绪论 (3) 1.1 数据挖掘技术的任务 (3) 1.2 数据挖掘技术的研究现状及发展方向 (3) 第二章数据挖掘理论与相关技术 (5) 2.1数据挖掘的基本流程 (5) 2.2.1 关联规则挖掘 (6) 2.2.2 .Apriori算法:使用候选项集找频繁项集 (7) 2.2.3 .FP-树频集算法 (7) 2.2.4.基于划分的算法 (7) 2.3 聚类分析 (7) 2.3.1 聚类算法的任务 (7) 2.3.3 COBWEB算法 (9) 2.3.4模糊聚类算法 (9) 2.3.5 聚类分析的应用 (10) 第三章数据分析 (11) 第四章结论与心得 (14) 4.1 结果分析 (14) 4.2 问题分析 (14) 4.2.1数据挖掘面临的问题 (14) 4.2.2 实验心得及实验过程中遇到的问题分析 (14) 参考文献 (14)

基于数据挖掘的符号序列聚类相似度量模型

—178 — 基于数据挖掘的符号序列聚类相似度量模型 郑宏珍,初佃辉,战德臣,徐晓飞 (哈尔滨工业大学智能计算中心,264209) 摘 要:为了从消费者偏好序列中发现市场细分结构,采用数据挖掘领域中的符号序列聚类方法,提出一种符号序列聚类的研究方法和框架,给出RSM 相似性度量模型。调整RSM 模型参数,使得RSM 可以变为与编辑距离、海明距离等价的相似性度量。通过RSM 与其他序列相似性度量的比较,表明RSM 具有更强的表达相似性概念的能力。由于RSM 能够表达不同的相似性概念,从而使之能适用于不同的应用环境,并在其基础上提出自组织特征映射退火符号聚类模型,使得从消费者偏好进行市场细分结构研究的研究途径在实际应用中得以实现。 关键词:符号序列聚类;数据挖掘;相似性模型 Symbolic Sequence Clustering Regular Similarity Model Based on Data Mining ZHENG Hong-zhen, CHU Dian-hui, ZHAN De-chen, XU Xiao-fei (Intelligent Computing Center, Harbin Institute of Technology, Harbin 264209) 【Abstract 】From a consumer point of the sequence of preference, data mining is used in the field of symbolic sequence clustering methods to detect market segmentation structure. This paper proposes a symbolic sequence clustering methodology and framework, gives the similarity metric RSM model. By adjusting RSM model, parameters can be changed into RSM and edit distance, Hamming distance equivalent to the similarity metric. RSM is compared with other sequence similarity metric, and is more similar to the expression of the concept of capacity. As to express different similarity, the concept of RSM can be applied to different applications environment. Based on the SOM annealing symbol clustering model, the consumer preference for market segmentation can be studied in the structure, which means it is realized in practical application. 【Key words 】symbolic sequence clustering; data mining; similarity model 计 算 机 工 程Computer Engineering 第35卷 第1期 V ol.35 No.1 2009年1月 January 2009 ·人工智能及识别技术·文章编号:1000—3428(2009)01—0178—02文献标识码:A 中图分类号:TP391 1 概述 在经济全球化的环境下,面对瞬息万变的市场和技术发展,企业要想在国内外市场竞争中立于不败之地,必须对客户和市场需求做出快速响应。目前,通过市场调研公司或企业自身的信息系统,收集来自市场和消费者的数据相对容易,而如何理解数据反映的市场细分结构和需求规律却是相当困难的。 为解决这一问题,许多研究者选择消费者的职业、收入、年龄、性别等特征数据作为细分变量,利用统计学传统聚类方法得到市场细分结构[1-2]。在实际应用中,不同的细分变量会导致不同的市场细分结果[3]。 为此,本文从用户偏好序列数据对市场进行细分。通过对符号序列数据相似性的研究,给出一个可形式化的RSM 相似性度量模型和算法概要。该度量模型考虑了2对象之间相似与相异2个方面的因素,通过参数的调整,可以根据问题的具体性质表达不同的相似性概念。并在此基础上,将在数值型数据领域表现良好的SOM 神经网络引入到符号序列数据的聚类问题上,给特征符号序列的机器自动识别提供了可能性。 2 符号序列聚类问题 序列聚类问题作为发现知识的一种重要的探索性技术,受到数据挖掘与知识发现研究领域的极大重视。企业决策者在进行市场和产品相关战略时,迫切需要某些技术手段来理解序列数据,这也正是本文研究的序列聚类问题的工程背景。 下面给出符号序列的相关定义。 定义1 设12{,,,}n A a a a ="为有限符号表,A 中的l 个符号12,,,l a a a "构成的有序集称为符号序列,记为s = 12{,,,}l a a a ",并称l 是s 的长度,记为s 。A 上所有有限长 度符号序列集合记为A *。例如:符号表{a , b , c , d , e , f , g },则, 是符号序列。 定义2 设12{,,,,,}t n P S S S S ="",S t 是A *上的某个符号序列。符号序列聚类是指寻找P 上的划分P 1, P 2,…, P k ,使属于同一划分的符号序列间的相似性尽量大,而属于不同划分的符号序列间相似性尽量小。 3 符号序列的正则相似度量模型 相似性度量往往与问题的应用背景具有紧密联系,并影响符号序列聚类结果。为此建立符号序列形式化的相似性度量模型,并在此基础上研究符号序列的聚类问题。 3.1 正则相似度量模型 下面给出形式化的相似度量模型——正则相似度量模型 基金项目:国家“863”计划基金资助项目“CIMS 模型驱动的智能化软构件与软件生成技术”(2006AA01Z167) 作者简介:郑宏珍(1967-),女,副教授,主研方向:数据挖掘,智能计算;初佃辉,副教授、硕士;战德臣、徐晓飞,教授、博士 收稿日期:2008-06-24 E-mail :hithongzhen@https://www.doczj.com/doc/e714610540.html,

GIS技术的研究现状及未来发展趋势.

GIS 技术的研究现状及未来发展趋势 摘要:GIS 是随着计算机技术发展而形成的一门新兴技术,其应用程度和范围也随之渗透、延伸,得到了人们的广泛关注。该文综述了地理信.息的发展现状,从多个角度分析当前 GIS 技术发展存在的不足,并在此基础上研究分析了 GIS 技术的未来发展趋势。 关键词:GIS 研究现状发展趋势 0 引言 随着计算机技术的飞速发展、空间技术的日新月异及计算机图形学理论的日渐完善, GIS(Geographic Information System技术也日趋成熟,并且逐渐被人们所认识和接受。近年来, GIS 被世界各国普遍重视,尤其是“数字地球”概念的提出,使其核心技术 GIS 更为各国政府所关注。目前,以管理空间数据见长的 GIS 已经在全球变化与监测、军事、资源管理、城市规划、土地管理、环境研究、农作物估产、灾害预测、交通管理、矿产资源评价、文物保护、湿地制图以及政府部门等许多领域发挥着越来越重要的作用。当前 GIS 正处于急剧发展和变化之中,研究和总结 GIS 技术发展,对进一步开展 GIS 研究工作具有重要的指导意义。因此,本文就目前 GIS 技术的研究现状及未来发展趋势进行总结和分析。 1 GIS 研究现状及其分析 1.1 GIS研究现状 世纪 90年代以来,由于计算机技术的不断突破以及其它相关理论和技术的完善, GIS 在全球得到了迅速的发展。在海量数据存储、处理、表达、显示及数据共享技术等方面都取得了显著的成效,其概括起来有以下几个方面 [1]:①硬件系统采用服务器 /客户机结构,初步形成了网络化、分布式、多媒体 GIS ; ②在 GIS 的设计中, 提出了采用“开放的 CIS 环境” 的概念, 最终以实现资源共享、数据共享为目标; ③高度重视数据标准化与数据质量的问题, 并已形成一些较为可行的数据标准; ④ 面向对象的数据库管理系统已经问世, 正在发展称之为“对象 --关系 DBMS (数据库

空间聚类的研究现状及其应用_戴晓燕

空间聚类的研究现状及其应用* 戴晓燕1 过仲阳1 李勤奋2 吴健平1 (1华东师范大学教育部地球信息科学实验室 上海 200062) (2上海市地质调查研究院 上海 200072) 摘 要 作为空间数据挖掘的一种重要手段,空间聚类目前已在许多领域得到了应用。文章在对已有空间聚类分析方法概括和总结的基础上,结合国家卫星气象中心高分辨率有限区域分析预报系统产品中的数值格点预报(HLAFS)值,运用K-均值法对影响青藏高原上中尺度对流系统(MCS)移动的散度场进行了研究,得到了一些有意义的结论。 关键词 空间聚类 K-均值法 散度 1 前言 随着GPS、GI S和遥感技术的应用和发展,大量的与空间有关的数据正在快速增长。然而,尽管数据库技术可以实现对空间数据的输入、编辑、统计分析以及查询处理,但是无法发现隐藏在这些大型数据库中有价值的模式和模型。而空间数据挖掘可以提取空间数据库中隐含的知识、空间关系或其他有意义的模式等[1]。这些模式的挖掘主要包括特征规则、差异规则、关联规则、分类规则及聚类规则等,特别是聚类规则,在空间数据的特征提取中起到了极其重要的作用。 空间聚类是指将数据对象集分组成为由类似的对象组成的簇,这样在同一簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大,即相异度较大。作为一种非监督学习方法,空间聚类不依赖于预先定义的类和带类标号的训练实例。由于空间数据库中包含了大量与空间有关的数据,这些数据来自不同的应用领域。例如,土地利用、居住类型的空间分布、商业区位分布等。因此,根据数据库中的数据,运用空间聚类来提取不同领域的分布特征,是空间数据挖掘的一个重要部分。 空间聚类方法通常可以分为四大类:划分法、层次法、基于密度的方法和基于网格的方法。算法的选择取决于应用目的,例如商业区位分析要求距离总和最小,通常用K-均值法或K-中心点法;而对于栅格数据分析和图像识别,基于密度的算法更合适。此外,算法的速度、聚类质量以及数据的特征,包括数据的维数、噪声的数量等因素都影响到算法的选择[2]。 本文在对已有空间聚类分析方法概括和总结的基础上,结合国家卫星气象中心高分辨率有限区域分析预报系统产品中的数值格点预报(HLAFS)值,运用K-均值法对影响青藏高原上中尺度对流系统(MCS)移动的散度场进行了研究,得到了一些有意义的结论。 2 划分法 设在d维空间中,给定n个数据对象的集合D 和参数K,运用划分法进行聚类时,首先将数据对象分成K个簇,使得每个对象对于簇中心或簇分布的偏离总和最小[2]。聚类过程中,通常用相似度函数来计算某个点的偏离。常用的划分方法有K-均值(K-means)法和K-中心(K-medoids)法,但它们仅适合中、小型数据库的情形。为了获取大型数据库中数据的聚类体,人们对上述方法进行了改进,提出了K-原型法(K-prototypes method)、期望最大法EM(Expectation Maximization)、基于随机搜索的方法(ClAR ANS)等。 K-均值法[3]根据簇中数据对象的平均值来计算 ——————————————— *基金项目:国家自然科学基金资助。(资助号: 40371080) 收稿日期:2003-7-11 第一作者简介:戴晓燕,女,1979年生,华东师范大学 地理系硕士研究生,主要从事空间数 据挖掘的研究。 · 41 · 2003年第4期 上海地质 Shanghai Geology

文献综述_数据挖掘

数据挖掘简介 数据挖掘的任务 数据挖掘的任务就是从实例集合中找出容易理解的规则和关系。这些规则可以用于预测未来趋势、评价顾客、评估风险或简单地描述和解释给定的数据。通常数据挖掘的任务包括以下几个部分: 数据总结目的是对数据进行浓缩,给出它的紧凑描述。传统的也是最简单的数据总结方法是计算出数据库的各个字段上的求和值、平均值、方差值等统计值,或者用直方图、饼图等图形方式表示。数据挖掘主要关心从数据泛化的角度来讨论数据总结。数据泛化是一种把数据库中的有关数据从低层次抽象到高层次上的过程。数据泛化目前主要有两种技术:多维数据分析方法和面向属性的归纳方法。 多维数据分析方法是一种数据仓库技术,也称作联机分析处理(OLAP,onLineAnalysisProeess)。数据仓库是面向决策支持的、集成的、稳定的、不同时间的历史数据集合。决策的前提是数据分析。在数据分析中经常要用到诸如求和、总计、平均、最大、最小等汇集操作,这类操作的计算量特别大。因此一种很自然的想法是,把汇集操作结果预先计算并存储起来,以便于决策支持系统使用。存储汇集操作结果的地方称作多维数据库。多维数据分析技术已经在决策支持系统中获得了成功的应用,如著名的SAS数据分析软件包、Businessobject公司的决策支持系统Businessobjeet,以及IBM公司的决策分析工具都使用了多维数据分析技术。 采用多维数据分析方法进行数据总结,它针对的是数据仓库,数据仓库存储的是脱机的历史数据。为了处理联机数据,研究人员提出了一种面向属性的归纳方法。它的思路是,直接对用户感兴趣的数据视图(用一般的SQL查询语言即可获得)进行泛化,而不是像多维数据分析方法那样预先就存储好了泛化数据。方法的提出者对这种数据泛化技术称之为面向属性的归纳方法。原始关系经过泛化操作后得到的是一个泛化关系,它从较高的层次上总结了在低层次上的原始关系。有了泛化关系后,就可以对它进行各种深入的操作而生成满足用户需要的知识,如在泛化关系基础上生成特性规则、判别规则、分类规则,以及关联规则等。数据挖掘的分类 数据挖掘所能发现的知识有如下几种: .广义型知识,反映同类事物共同性质的知识; .特征型知识,反映事物各方面的特征知识; .差异型知识,反映不同事物之间属性差别的知识; .关联型知识,反映事物之间依赖或关联的知识; .预测型知识,根据历史的和当前的数据推测未来数据; .偏离型知识。揭示事物偏离常规的异常现象。 所有这些知识都可以在不同的概念层次上被发现,随着概念树的提升,从微观到中观再到宏观,以满足不同用户、不同层次决策的需要。例如,从一家超市的数据仓库中,可以发现的一条典型关联规则可能是“买面包和黄油的顾客十有八九也买牛奶”,也可能是“买食品的顾客几乎都用信用卡”,这种规则对于商家开发和实施客户化的销售计划和策略是非常有用的。 数据挖掘的方法 数据挖掘并非一个完全自动化的过程。整个过程需要考虑数据的所有因素和其预定的效用,然后应用最佳的数据挖掘方法。数据挖掘的方法很重要。在数据挖掘的领域里.有一点已经被广泛地接受,即不管你选择哪种方法,总存在着某种协定。因此对实际情况,应该具体分析,根据累积的经验和优秀的范例选择最佳的方法。数据挖掘中没有免费的午餐,也没

相似性和相异性的度量

相似性和相异性的度量 相似性和相异性是重要的概念,因为它们被许多数据挖掘技术所使用,如聚类、最近邻分类和异常检测等。在许多情况下,一旦计算出相似性或相异性,就不再需要原始数据了。这种方法可以看作将数据变换到相似性(相异性)空间,然后进行分析。 首先,我们讨论基本要素--相似性和相异性的高层定义,并讨论它们之间的联系。为方便起见,我们使用术语邻近度(proximity)表示相似性或相异性。由于两个对象之间的邻近度是两个对象对应属性之间的邻近度的函数,因此我们首先介绍如何度量仅包含一个简单属性的对象之间的邻近度,然后考虑具有多个属性的对象的邻近度度量。这包括相关和欧几里得距离度量,以及Jaccard和余弦相似性度量。前二者适用于时间序列这样的稠密数据或二维点,后二者适用于像文档这样的稀疏数据。接下来,我们考虑与邻近度度量相关的若干重要问题。本节最后简略讨论如何选择正确的邻近度度量。 1)基础 1. 定义 两个对象之间的相似度(similarity)的非正式定义是这两个对象相似程度的数值度量。因而,两个对象越相似,它们的相似度就越高。通常,相似度是非负的,并常常在0(不相似)和1(完全相似)之间取值。 两个对象之间的相异度(dissimilarity)是这两个对象差异程度的数值度量。对象越类似,它们的相异度就越低。通常,术语距离(distance)用作相异度的同义词,正如我们将介绍的,距离常常用来表示特定类型的相异度。有时,相异度在区间[0, 1]中取值,但是相异度在0和之间取值也很常见。 2. 变换 通常使用变换把相似度转换成相异度或相反,或者把邻近度变换到一个特定区间,如[0, 1]。例如,我们可能有相似度,其值域从1到10,但是我们打算使用的特定算法或软件包只能处理相异度,或只能处理[0, 1]区间的相似度。之所以在这里讨论这些问题,是因为在稍后讨论邻近度时,我们将使用这种变换。此外,这些问题相对独立于特定的邻近度度量。 通常,邻近度度量(特别是相似度)被定义为或变换到区间[0, 1]中的值。这样做的动机是使用一种适当的尺度,由邻近度的值表明两个对象之间的相似(或相异)程度。这种变换通常是比较直截了当的。例如,如果对象之间的相似度在1(一点也不相似)和10(完全相似)之间变化,则我们可以使用如下变换将它变换到[0, 1]区间:s' = (s-1)/9,其中s和s'分别是相似度的原值和新值。一般来说,相似度到[0, 1]区间的变换由如下表达式给出:s'=(s-min_s) / (max_s - min_s),其中max_s和min_s分别是相似度的最大

【文献综述】时间序列预测――在股市预测中的应用

文献综述 信息与计算科学 时间序列预测――在股市预测中的应用 时间序列是一种重要的高维数据类型, 它是由客观对象的某个物理量在不同时间点的采样值按照时间先后次序排列而组成的序列, 在经济管理以及工程领域具有广泛应用. 例如证券市场中股票的交易价格与交易量、外汇市场上的汇率、期货和黄金的交易价格以及各种类型的指数等, 这些数据都形成一个持续不断的时间序列. 利用时间序列数据挖掘, 可以 ]1[ 获得数据中蕴含的与时间相关的有用信息, 实现知识的提取. 时间序列分析方法最早起源于1927年, 数学家耶尔(Yule)提出建立自回归(AR)模型来预测市场变化的规律, 接着, 在1931年, 另一位数学家瓦尔格(Walker)在A R模型的启发下, 建立了滑动平均(MA)模型和自回归、滑动平均(ARMA)混合模型, 初步奠定了时间序列分析方法的基础, 当时主要应用在经济分析和市场预测领域. 20世纪60年代,时间序列分析理论和方法迈入了一个新的阶段, 伯格(Burg)在分析地震信号时最早提出最大熵谱(MES)估计理论, 后来有人证明AR模型的功率谱估计与最大熵谱估计是等效的, 并称之为现代谱估计. 它克服了用传统的傅里叶功率谱分析(又称经典谱分析)所带来的分辨率不高和频率漏泄严重等固有的缺点, 从而使时间序列分析方法不仅在时间域内得到应用, 而且扩展到频率域内, 得到更加广泛的应用, 特别是在各种工程领域内应用功率谱的概念更加方便和普遍. 到20世纪70年代以后, 随着信号处理技术的发展, 时间序列分析方法不仅在理论上更趋完善, 尤其是在参数估计算法、定阶方法及建模过程等方面都得到了许多改进, 进一步地迈向实用化, 各种时间序列分析软件也不断涌现, 逐渐成为分析随机数据序列不可缺少的有效工具 ]2[ 之一. 随着时间序列分析方法的日趋成熟, 其应用领域越来越广泛, 主要集中在预报预测领域, 例如气象预报、市场预测、地震预报、人口预测、汛情预报、产量预测, 等等. 另一个应用领域是精密测控, 例如精密仪器测量、精密机械制造、航空航天轨道跟踪和监控,以及遥控遥测、精细化工控制等. 再一个应用领域是安全检测和质量控制. 在工程施工和维修中经常会出现异常险情, 采用仪表监测和时间序列分析方法可以随时发现问题, 及早排除故障, 以保证生产安全和质量要求. 以上仅仅列举了某些应用领域,实际上还有许多应用, 不胜 ]4,3[ 枚举. 股票市场在中国社会经济生活中起着越来越重要的作用. 截至2006年底, 沪深两市总市值为89403.89亿元, 市值规模上升至全球第10位, 亚洲第3位. 由于中国股票市场在国民经济中的地位和作用不断提高, 无论是从政府宏观决策层面还是从具体投资者微观层面

数据挖掘算法综述

数据挖掘方法综述 [摘要]数据挖掘(DM,DataMining)又被称为数据库知识发现(KDD,Knowledge Discovery in Databases),它的主要挖掘方法有分类、聚类、关联规则挖掘和序列模式挖掘等。 [关键词]数据挖掘分类聚类关联规则序列模式 1、数据挖掘的基本概念 数据挖掘从技术上说是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程。这个定义包括好几层含义: 数据源必须是真实的、大量的、含噪声的、发现的是用户感兴趣的知识, 发现的知识要可接受、可理解、可运用, 并不要求发现放之四海皆准的知识, 仅支持特定的发现问题, 数据挖掘技术能从中自动分析数据进行归纳性推理从中发掘出潜在的数据模式或进行预测, 建立新的业务模型帮助决策者调整策略做出正确的决策。数据挖掘是是运用统计学、人工智能、机器学习、数据库技术等方法发现数据的模型和结构、发现有价值的关系或知识的一门交叉学科。数据挖掘的主要方法有分类、聚类和关联规则挖掘等 2、分类 分类(Classification)又称监督学习(Supervised Learning)。监

督学习的定义是:给出一个数据集D,监督学习的目标是产生一个联系属性值集合A和类标(一个类属性值称为一个类标)集合C的分类/预测函数,这个函数可以用于预测新的属性集合(数据实例)的类标。这个函数就被称为分类模型(Classification Model),或者是分类器(Classifier)。分类的主要算法有:决策树算法、规则推理、朴素贝叶斯分类、支持向量机等算法。 决策树算法的核心是Divide-and-Conquer的策略,即采用自顶向下的递归方式构造决策树。在每一步中,决策树评估所有的属性然后选择一个属性把数据分为m个不相交的子集,其中m是被选中的属性的不同值的数目。一棵决策树可以被转化成一个规则集,规则集用来分类。 规则推理算法则直接产生规则集合,规则推理算法的核心是Separate-and-Conquer的策略,它评估所有的属性-值对(条件),然后选择一个。因此,在一步中,Divide-and-Conquer策略产生m条规则,而Separate-and-Conquer策略只产生1条规则,效率比决策树要高得多,但就基本的思想而言,两者是相同的。 朴素贝叶斯分类的基本思想是:分类的任务可以被看作是给定一个测试样例d后估计它的后验概率,即Pr(C=c j︱d),然后我们考察哪个类c j对应概率最大,便将那个类别赋予样例d。构造朴素贝叶斯分类器所需要的概率值可以经过一次扫描数据得到,所以算法相对训练样本的数量是线性的,效率很高,就分类的准确性而言,尽管算法做出了很强的条件独立假设,但经过实际检验证明,分类的效果还是

数据挖掘在中国的现状和发展研究

数据挖掘在中国的现状和发展研究 导读:本文以科学引文索引数据库(SCI)、工程索引数据库(EI)以及清华全文数据库(CNKI)中有关“数据挖掘”研究文章的统计数据为研究基础,对数据挖掘在我国研究的总体趋势、研究热点、研究分支三个方面进行分析和研究。本文分析了数据挖掘在我国的发展,并对进一步发展我国数据挖掘的理论研究和实际应用提出了建议。 关键字:数据挖掘 0 引言 近年来,随着计算机对数据的生成、收集、存贮和处理能力的大大提高,数据量与日俱增,传统的数据分析工具对海量数据的处理力不从心,数据挖掘技术应运而生。 中国科研工作者近几年来积极开展了对数据挖掘的研究,并在理论研究和实际应用上取得了一定的成绩,但是有关数据挖掘的成功应用还比较少。本文通过对中国有关数据挖掘研究文章数量的统计,对数据挖掘在中国发展的现状及发展趋势进行分析和研究,通过分析有关论文的发表,对数据挖掘在中国的理论研究和实际应用提出建议。 1 数据挖掘的应用与研究发展 数据挖掘是指从存放在数据库、数据仓库或其他信息库中的大量数据中挖掘有用知识的过程。数据挖掘是一门新兴的边缘学科,近年来引起了中国学术界和产业界的广泛关注。 数据挖掘出现于20世纪80年代后期,90年代有了突飞猛进的发展。2001年,Gartner Group的一次高级技术调查将数据挖掘和人工智能列为“未来三到五年内将对工业产生深远影响的五大关健技术”之首,并且还将并行处理体系和数据挖掘列为未来五年内投资焦点的十大新兴技术前两位。美国麻省理工学院在2001年1月份的《科技评论》(Technology Review)提出将在未来5年对人类产生重大影响的10大新兴技术,其中第3项就是数据挖掘。 数据挖掘技术已被广泛的应用于各个领域,其中一些典型应用如加州理工学院喷气推进实验室与天文科学家合作开发的SKICAT系统,能够帮助天文学家发现遥远的类星体,是人工智能技术在天文学和空间科学上的第一批成功应用之一;生物学研究中用数据挖掘技术对DNA进行分析利用数据挖掘技术识别顾客的购买行为模式,对客户进行了分析;对银行或商业上经常发生的诈骗行为进行预测IBM公司

距离和相似度度量

在数据分析和数据挖掘的过程中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如K最近邻(KNN)和K均值(K-Means)。当然衡量个体差异的方法有很多,最近查阅了相关的资料,这里整理罗列下。 为了方便下面的解释和举例,先设定我们要比较X个体和Y个体间的差异,它们都包含了N个维的特征,即X=(x1, x2, x3, … x n),Y=(y1, y2, y3, … y n)。下面来看看主要可以用哪些方法来衡量两者的差异,主要分为距离度量和相似度度量。 距离度量 距离度量(Distance)用于衡量个体在空间上存在的距离,距离越远说明个体间的差异越大。 欧几里得距离(Euclidean Distance) 欧氏距离是最常见的距离度量,衡量的是多维空间中各个点之间的绝对距离。公式如下: 因为计算是基于各维度特征的绝对数值,所以欧氏度量需要保证各维度指标在相同的刻度级别,比如对身高(cm)和体重(kg)两个单位不同的指标使用欧式距离可能使结果失效。 明可夫斯基距离(Minkowski Distance) 明氏距离是欧氏距离的推广,是对多个距离度量公式的概括性的表述。公式如下: 这里的p值是一个变量,当p=2的时候就得到了上面的欧氏距离。 曼哈顿距离(Manhattan Distance) 曼哈顿距离来源于城市区块距离,是将多个维度上的距离进行求和后的结果,即当上面的明氏距离中p=1时得到的距离度量公式,如下:

切比雪夫距离(Chebyshev Distance) 切比雪夫距离起源于国际象棋中国王的走法,我们知道国际象棋国王每次只能往周围的8格中走一步,那么如果要从棋盘中A格(x1, y1)走到B格(x2, y2)最少需要走几步?扩展到多维空间,其实切比雪夫距离就是当p趋向于无穷大时的明氏距离: 其实上面的曼哈顿距离、欧氏距离和切比雪夫距离都是明可夫斯基距离在特殊条件下的应用。 马哈拉诺比斯距离(Mahalanobis Distance) 既然欧几里得距离无法忽略指标度量的差异,所以在使用欧氏距离之前需要对底层指标进行数据的标准化,而基于各指标维度进行标准化后再使用欧氏距离就衍生出来另外一个距离度量——马哈拉诺比斯距离(Mahalanobis Distance),简称马氏距离。 相似度度量 相似度度量(Similarity),即计算个体间的相似程度,与距离度量相反,相似度度量的值越小,说明个体间相似度越小,差异越大。 向量空间余弦相似度(Cosine Similarity) 余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间 差异的大小。相比距离度量,余弦相似度更加注重两个向量在方向上的差异,而非距离或长度上。公式如下: 皮尔森相关系数(Pearson Correlation Coefficient) 即相关分析中的相关系数r,分别对X和Y基于自身总体标准化后计算空间向量的余弦夹角。公式如下:

数据挖掘期末

(一)概述 为什么要数据挖掘(Data Mining)? 存在可以广泛使用的大量数据,并且迫切需要将数据转转换成有用的信息和知识 什么是数据挖掘? 数据挖掘(Data Mining)是指从大量数据中提取或“挖掘”知识。 对何种数据进行数据挖掘? 关系数据库、数据仓库、事务数据库 空间数据 超文本和多媒体数据 时间序列数据 流数据 (二)数据预处理 为什么要预处理数据? 为数据挖掘过程提供干净、准确、简洁的数据,提高数据挖掘的效率和准确性,是数据挖掘中非常重要的环节; 数据库和数据仓库中的原始数据可能存在以下问题: 定性数据需要数字化表示 不完整 含噪声 度量单位不同 维度高 数据的描述 度量数据的中心趋势:均值、加权均值、中位数、众数 度量数据的离散程度:全距、四分位数、方差、标准差 基本描述数据汇总的图形显示:直方图、散点图 度量数据的中心趋势 集中趋势:一组数据向其中心值靠拢的倾向和程度。 集中趋势测度:寻找数据水平的代表值或中心值。 常用的集中趋势的测度指标: 均值: 缺点:易受极端值的影响 中位数:对于不对称的数据,数据中心的一个较好度量是中位数 特点:对一组数据是唯一的。不受极端值的影响。 众数:一组数据中出现次数最多的变量值。 特点:不受极端值的影响。有的数据无众数或有多个众数。

度量数据的离散程度 反映各变量值远离其中心值的程度(离散程度),从另一个侧面说明了集中趋势测度值的代表程度。 常用指标: 全距(极差):全距也称极差,是一组数据的最大值与最小值之差。 R=最大值-最小值 组距分组数据可根据最高组上限-最低组下限计算。 受极端值的影响。 四分位距 (Inter-Quartilenge, IQR):等于上四分位数与下四分位数之差(q3-q1) 反映了中间50%数据的离散程度,数值越小说明中间的数据越集中。 不受极端值的影响。 可以用于衡量中位数的代表性。 四分位数: 把顺序排列的一组数据分割为四(若干相等)部分的分割点的数值。 分位数可以反映数据分布的相对位置(而不单单是中心位置)。 在实际应用中四分位数的计算方法并不统一(数据量大时这些方法差别不大)。对原始数据: SPSS中四分位数的位置为(n+1)/4, 2(n+1)/4, 3 (n+1)/4。 Excel中四分位数的位置分别为(n+3)/4, 2(n+1)/4,(3 n+1)/4。 如果四分位数的位置不是整数,则四分位数等于前后两个数的加权平均。 方差和标准差:方差是一组数据中各数值与其均值离差平方的平均数,标准差是方差正的平方根。 是反映定量数据离散程度的最常用的指标。 基本描述数据汇总的图形显示 直方图(Histogram):使人们能够看出这个数据的大体分布或“形状” 散点图 如何进行预处理 定性数据的数字化表示: 二值描述数据的数字化表示 例如:性别的取值为“男”和“女”,男→1,女→0 多值描述数据的数字化表示 例如:信誉度为“优”、“良”、“中”、“差” 第一种表示方法:优→1,良→2,中→3,差→4 第二种表示方法:

数据挖掘课程论文综述

海南大学 数据挖掘论文 题目:股票交易日线数据挖掘 学号:20100602310002 姓名: 专业:10信管 指导老师: 分数:

目录 目录 (2) 1. 数据挖掘目的 (3) 2.相关基础知识 (3) 2.1 股票基础知识 (3) 2.2 数据挖掘基础知识 (4) 2.2.2数据挖掘的任务 (5) 3.数据挖掘方案 (6) 3.1. 数据挖掘软件简介 (6) 3.2. 股票数据选择 (7) 3.3. 待验证的股票规律 (7) 4. 数据挖掘流 (8) 4.1数据挖掘流图 (8) 4.2规律验证 (9) 4.2.2规律2验证 (10) 4.2.3规律三验证 (12) 4.3主要节点说明 (14) 5.小结 (15)

1.数据挖掘目的 数据挖掘的目的就是得出隐藏在数据中的有价值的信息,发现数据之间的内在联系与规律。对于本次数据挖掘来说,其目的就是学会用clementine对股票的历史数据进行挖掘,通过数据的分析,找出存在股票历史数据中的规律,或者验证已存在的股票规律。同时也加深自己对股票知识的了解和对clementine软件的应用能力。为人们决策提供指导性信息,为公司找出其中的客户为公司带来利润的规律,如二八原则、啤酒与尿布的现象等。 2.相关基础知识 2.1 股票基础知识 2.1.1 股票 是一种有价证券,是股份公司在筹集资本时向出资人公开或私下发行的、用以证明出资人的股本身份和权利,并根据持有人所持有的股份数享有权益和承担义务的凭证。股票代表着其持有人(股东)对股份公司的所有权,每一股同类型股票所代表的公司所有权是相等的,即“同股同权”。股票可以公开上市,也可以不上市。在股票市场上,股票也是投资和投机的对象。对股票的某些投机炒作行为,例如无货沽空,可以造成金融市场的动荡。 2.1.2 开盘价 开盘价又称开市价,是指某种证券在证券交易所每个交易日开市后的第一笔买卖成交价格。世界上大多数证券交易所都采用成交额最大原则来确定开盘价。 2.1.3 收盘价 收盘价是指某种证券在证券交易所一天交易活动结束前最后一笔交易的成交价格。如当日没有成交,则采用最近一次的成交价格作为收盘价,因为收盘价是当日行情的标准,又是下一个交易日开盘价的依据,可据以预测未来证券市场行情;所以投资者对行情分析时,一般采用收盘价作为计算依据。

大数据时代的空间数据挖掘综述

第37卷第7期测绘与空间地理信息 GEOMATICS &SPATIAL INFORMATION TECHNOLOGY Vol.37,No.7收稿日期:2014-01-22 作者简介:马宏斌(1982-),男,甘肃天水人,作战环境学专业博士研究生,主要研究方向为地理空间信息服务。 大数据时代的空间数据挖掘综述 马宏斌1 ,王 柯1,马团学 2(1.信息工程大学地理空间信息学院,河南郑州450000;2.空降兵研究所,湖北孝感432000) 摘 要:随着大数据时代的到来,数据挖掘技术再度受到人们关注。本文回顾了传统空间数据挖掘面临的问题, 介绍了国内外研究中利用大数据处理工具和云计算技术,在空间数据的存储、管理和挖掘算法等方面的做法,并指出了该类研究存在的不足。最后,探讨了空间数据挖掘的发展趋势。关键词:大数据;空间数据挖掘;云计算中图分类号:P208 文献标识码:B 文章编号:1672-5867(2014)07-0019-04 Spatial Data Mining Big Data Era Review MA Hong -bin 1,WANG Ke 1,MA Tuan -xue 2 (1.Geospatial Information Institute ,Information Engineering University ,Zhengzhou 450000,China ; 2.Airborne Institute ,Xiaogan 432000,China ) Abstract :In the era of Big Data ,more and more researchers begin to show interest in data mining techniques again.The paper review most unresolved problems left by traditional spatial data mining at first.And ,some progress made by researches using Big Data and Cloud Computing technology is introduced.Also ,their drawbacks are mentioned.Finally ,future trend of spatial data mining is dis-cussed. Key words :big data ;spatial data mining ;cloud computing 0引言 随着地理空间信息技术的飞速发展,获取数据的手 段和途径都得到极大丰富,传感器的精度得到提高和时空覆盖范围得以扩大,数据量也随之激增。用于采集空间数据的可能是雷达、红外、光电、卫星、多光谱仪、数码相机、成像光谱仪、全站仪、天文望远镜、电视摄像、电子 显微镜、CT 成像等各种宏观与微观传感器或设备,也可能是常规的野外测量、人口普查、土地资源调查、地图扫描、 地图数字化、统计图表等空间数据获取手段,还可能是来自计算机、 网络、GPS ,RS 和GIS 等技术应用和分析空间数据。特别是近些年来,个人使用的、携带的各种传感器(重力感应器、电子罗盘、三轴陀螺仪、光线距离感应器、温度传感器、红外线传感器等),具备定位功能电子设备的普及,如智能手机、平板电脑、可穿戴设备(GOOGLE GLASS 和智能手表等),使人们在日常生活中产生了大量具有位置信息的数据。随着志愿者地理信息(Volunteer Geographic Information )的出现,使这些普通民众也加入到了提供数据者的行列。 以上各种获取手段和途径的汇集,就使每天获取的 数据增长量达到GB 级、 TB 级乃至PB 级。如中国遥感卫星地面站现在保存的对地观测卫星数据资料达260TB ,并以每年15TB 的数据量增长。比如2011年退役的Landsat5卫星在其29年的在轨工作期间,平均每年获取8.6万景影像,每天获取67GB 的观测数据。而2012年发射的资源三号(ZY3)卫星,每天的观测数据获取量可以达到10TB 以上。类似的传感器现在已经大量部署在卫 星、 飞机等飞行平台上,未来10年,全球天空、地空间部署的百万计传感器每天获取的观测数据将超过10PB 。这预示着一个时代的到来,那就是大数据时代。大数据具有 “4V ”特性,即数据体量大(Volume )、数据来源和类型繁多(Variety )、数据的真实性难以保证(Veracity )、数据增加和变化的速度快(Velocity )。对地观测的系统如图1所示。 在这些数据中,与空间位置相关的数据占了绝大多数。传统的空间知识发现的科研模式在大数据情境下已经不再适用,原因是传统的科研模型不具有普适性且支持的数据量受限, 受到数据传输、存储及时效性需求的制约等。为了从存储在分布方式、虚拟化的数据中心获取信息或知识,这就需要利用强有力的数据分析工具来将

数据挖掘文献综述

湘潭大学 本科生专业文献综述 题目: 数据挖掘文献综述 姓名: 林勇 学院: 信心工程学院学院 专业: 自动化 班级: 一班 学号: 2010550113 指导教师: 张莹

0前言 随着计算机技术的迅猛发展,人类正在步入信息社会。面对今天浩如烟海的信息,如何帮助人们有效地收集和选择所感兴趣的信息,更关键的是如何帮助用户在日益增多的信息中自动发现新的概念并自动分析它们之间的关系,使之能够真正地做到信息处理的自动化,这已成为信息技术领域的热点问题。数据挖掘就是为满足这种要求而产生并迅速发展起来的,可用于开发信息资源的一种新的数据处理技术。 1什么是数据挖掘 数据挖掘(Data Mining),也叫数据开采,数据采掘等,是按照既定的业务目标从海量数据中提取出潜在、有效并能被人理解的模式的高级处理过程。在较浅的层次上,它利用现有数据库管理系统的查询、检索及报表功能,与多维分析、统计分析方法相结合,进行联机分析处理,从而得出可供决策参考的统计分析数据。在深层次上,则从数据库中发现前所未有的、隐含的知识。OLAF'的出现早于数据挖掘,它们都是从数据库中抽取有用信息的方法,就决策支持的需要而言两者是相辅相成的。OLAP可以看作一种广义的数据挖掘方法,它旨在简化和支持联机分析,而数据挖掘的目的是便这一过程尽可能自动化。数据挖掘基于的数据库类型主要有:关系型数据库、面向对象数据库、事务数据库、演绎数据库、时态数据库、多媒体数据库、主动数据库、空间数据库、遗留数据库、异质数据库、文本型、Internet信息库以及新兴的数据仓库(Data Warehouse)等。而挖掘后获得的知识包括关联规则、特征规则、区分规则、分类规则、总结规则、偏差规则、聚类规则、模式分析及趋势分析等。 1.1 数据挖掘的任务 数据挖掘的两个高层目标是预测和描述。前者指用一些变量或数据库的若干已知字段预测其它感兴趣的变量或字段的未知的或未来的值;后者指找到描述数据的可理解模式。根据发现知识的不同,我们可以将数据挖掘任务归纳为以下几类: (1)特征规则。从与学习任务相关的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征.例如可以从某种疾病的症状中提取

相关主题
文本预览
相关文档 最新文档