当前位置:文档之家› 高分子物理大纲

高分子物理大纲

高分子物理大纲
高分子物理大纲

二. 课程教育目标

通过本课程的教学工作,使同学掌握以下主要内容:

1. 聚合物结构:包括:链结构、凝聚态结构、分子量与分子量分布。

2. 松弛与转变:包括:玻璃化转变、结晶转变、次级转变。

3. 热力学:包括:高分子溶液、高分子合金、橡胶弹性。

4. 聚合物的性能:包括:粘弹性、流变性能、极限力学性能和电(光、热)性能。

牢固掌握:

结构、转变、性能的基本概念,结构与性能关系的基本原理。表征与测定方法的基本原理。能够建立自己的表达方式。描述结构、转变、性能的定理、公式及应用,性质、性能的影响因素。能够重复课堂、书本中的内容,灵活运用、适当做到举一反三。

了解:建立物理模型的基本假定,必要的数学推导过程,学科前沿知识。

通过本课程的学习,能够建立高分子材料设计、高分子改性、加工与选择的理论基础。

三. 理论教学内容与要求(含学时分配)

1.绪论1学时

(1)本学科简史。

(2)高分子材料的特点、在国民经济与高科技领域中的应用。

(3)课程内容、学习方法、学习目的。

要求:

(1)了解高分子物理学所研究的对象及课程发展历史;

(2)了解高分子的特征、与小分子的不同之处;

(3)了解课程的在高分子材料与工程专业中的地位;

2.高分子链的结构6学时

(1)单个高分子链的基本化学结构;

(2)构型的概念;

(3)构象的概念;

(4)高分子链的柔顺性的概念及主要影响因素;

(5)均方末端距的几何计算法;

(6)高分子链柔顺性的表征;

(7)晶体和溶液中的构象;

(8)一般了解蠕虫状链;

3.高分子的聚集态结构6学时

(1)聚能密度的概念;

(2)晶体结构的基本概念;

(3)各种结晶形态和形成条件;

(4)聚合物晶态结构模型;

(5)结晶度及其测定方法;

(6)非晶态结构模型(Yeh两相球粒模型和Flory无规线团模型);

(7)液晶态的基本概念;

(8)液晶的结构特征和形成条件;

(9)液晶的特性和应用;

(10)聚合物的取向现象、取向机理、取向度的表征和应用;

(11)高分子合金的概念、相容性和组分含量与织态结构的关系;

(12)非相容高分子合金的增容方法和相容性表征;

4.高分子溶液6学时

(1)聚合物的溶解过程;

(2)溶剂的选择原则;

(3)溶解度参数的概念和测定;

(4)Flory—Huggins晶格模型理论的基本假设和高分子溶液热力学相关的基本公式;(5)相互作用参数(c1)和第二维力系数(A2)的物理意义;

(6)q溶液的含义和q条件;

(7)渗透压的概念及公式的应用;

(8)高分子溶液及多组分聚合物的相图和相分离机理;

(9)高分子浓溶液在聚合物增塑和溶液纺丝中的应用;

(10)溶胶与冻胶的概念;

(11)了解聚电解质溶液的特点和基本应用;

5.高聚物的分子量和分子量分布5学时

(1)各种平均分子量的统计意义和表达式;

(2)分子量分布宽度的表示方法(多分散系数、多分散指数、微分分布曲线、积分分布曲线);

(3)端基分析法、气相渗透法、粘度法测分子量的基本原理、基本公式、测试方法、所测分子量的为哪一种平均分子量和分子量范围;

(4)聚合物的沉淀与溶解分级方法、原理,画出积分分布曲线和微分分布曲线;(5)GPC的分离机理、实验方法、数据处理;

6.聚合物的转变与松弛 7学时

(1)聚合物分子热运动的主要特点;

(2)模量(或形变)—温度曲线上的各种力学状态和转变所对应的分子运动情况;(3)玻璃化转变的现象、自由体积理论,一般了解热力学和动力学理论;

(4)玻璃化温度的测定方法和影响因素及调节;

(5)聚合物的分子结构和结晶能力的关系;

(6)等温结晶动力学方程和应用;

(7)结晶聚合物的熔融过程的特点和熔点的影响因素;

7.橡胶弹性4学时

(1)橡胶弹性的特点;

(2)通过热力学分析掌握橡胶弹性的本质;

(3)橡胶状态方程及一般修正;

(4)一般了解“幻影网络”理论和和唯象理论;

(5)熟习橡胶和热塑性弹性体结构与性能关系;

8.聚合物的粘弹性 6学时

(1)聚合物的粘弹性现象和分子机理(包括蠕变现象、应力松弛现象、滞后现象、力学损耗);

(2)粘弹性的力学模型理论(Maxwell 模型、Kelvin模型和多元件模型);

(3)弛时间谱和推迟时间谱的物理意义;

(4)一般了解分子理论;

(5)Boltzmann叠加原理及应用;

(6)时温等效原理(WLF方程)及应用;

(7)测定高聚物粘弹性的实验方法;

(8)掌握储能模量、损耗模量、损耗角正切、对数减量之间关系;

(9)建立分子运动与动态力学谱之间的关系;

9.聚合物的屈服和断裂 6学时

(1)聚合物应力—应变曲线、从该曲线所能获得的重要信息,以及各种因素对应力—应变曲线影响;

(2)屈服现象和机理,银纹、剪切带的概念,了解屈服判据;

(3)聚合物的强度、韧性和疲劳等概念;

(4)格理非斯的脆性断裂理论;

(5)聚合物强度的影响因素、增强方法和增强机理;

(6)聚合物韧性的影响因素、增韧方法和增韧机理;

10.聚合物的流变性4学时

(1)聚合物粘性流动的特点;

(2)非牛顿流体的概念和种类及产生的原因;

(3)聚合物熔体剪切粘度的主要测定方法;

(4)影响高聚物熔体剪切粘度的因素;

(5)聚合物熔体的弹性现象和原因;

(6)一般了解拉伸流动;

11.聚合物的电性能、热性能、光学性能和其他性能(根据情况介绍)3学时了解聚合物的电性能、热性能、光学性能等与高分子结构之间的关系。

高分子物理实验

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 《高分子物理实验》是高分子科学体系的重要组成部分,是从事高分子科学与材料研究的最基础的实验技术,是研究和表征聚合物结构和性能关系的一门实验科学,是高分子材料与工程专业的一门专业必修课。本实验课的主要内容是使学生掌握研究和表征聚合物的结构、力学性能、电性能、热性能及溶液性质的基本方法和手段,掌握基础的相关实验技能与数据分析处理方法。通过实验使学生能够理论结合实践,进一步加深高分子物理专业知识的理解,使学生基本掌握高分子物理实验的基本原理、操作过程、数据采集、数据分析与处理,实验知识和技能,提高学生的动手能力与实验技能,培养学生严谨的科学态度与思维方法,为后续的高分子材料与科学的相关实践和毕业设计打下基础。 2.设计思路: 本课程实验内容主要包括以下几个方面:高聚物结构的表征与分析(包括实验一、五、六、七、九、十),力学性能的表征与分析(包括实验二、三、四),电性能(实验十一、十二)及热性能(实验七与实验九涉及到了材料的热性能)。实验中既有基本实验技能的操作,又有实验报告、数据处理分析及相应的思考题,使学生通过实验原理学习、实验操作、数据分析与讨论,掌握高分子物理结构与性能研究的基本方法与过程、操作技能、数据分析处理能力,分析解决问题能力,加深对实际科研实践的认识,提高理论知识的综合运用能力和实践能力,为后续的实验、实践和毕业设计打下基础。 - 6 -

3. 课程与其他课程的关系 先修课程:高分子化学、高分子物理。本课程需要学习材料与化学的相关基础课程,这些课程是学习高分子化学与高分子物理的基础,因此在此不再列出。 二、课程目标 本实验课的目的是使学生掌握测定和研究聚合物的结构、力学性能、电性能、热性能及溶液性质的方法和手段,对聚合物结构与性能之间关系获得初步认识。通过本课程的学习使学生增加感性认识,加深理论知识的理解,提高学生的动手能力和实验技能,培养学生的科学态度和工作作风。使学生逐步具备一定的从事科学研究的思维方法和实验能力。 基本要求: 1、使学生进一步理解高分子物理学中的一些基本概念与相关理论知识。 2、使学生掌握测定和表征聚合物结构与性能的基本方法的原理、正确进行仪器操作与使用。 3、能够互相配合完成实验过程,处理实验过程中遇到的简单问题。 4、能够独立进行数据处理分析,并完成实验报告。 三、学习要求 高分子物理实验是理论基础上的实验操作技能课,有利于学生加深对基础理论的理解与实际运用,对提高学生的实验动手能力与实践能力非常重要。另外,课程在实验室进行,因此必须严格遵守实验室的相关规章制度,保障实验过程中的实验安全与人身安全。具体要求如下: 1、学生必须严格遵守实验室的相关规章制度,严禁违反实验室安全要求的任何行为。 2、实验前认真阅读讲义,实验前进行预习,就实验目的、原理、实验注意事项等书写预习报告。实验必须准时,不能擅自更换实验时间。 3、实验时要认真操作,认真观察现象,做好记录。必须准备实验记录本,所有原始记录(实验数据及现象)均记录在记录本上,不允许记在他处。不允许篡改,编造实验数据与记录。 4、实验时,遵守操作规程,注意安全。有与实验相关问题,及时与老师交流,未 - 6 -

高分子物理典型计算题汇总

四、计算题 1、某碳链聚α-烯烃,平均分子量为00(1000M M M =为链节分子量,试计算以下各项数值:(1)完全伸直时大分子链的理论长度;(2)若为全反式构象时链的长度;(3)看作Gauss 链时的均方末端距;(4)看作自由旋转链时的均方末端距;(5)当内旋转受阻时(受阻函数438.0cos =?)的均方末端距;(6)说明为什么高分子链在自然状态下总是卷曲的,并指出此种聚合物的弹性限度。 解:设此高分子链为—(—CH 2—CHX —)n —,键长l=0.154nm,键角θ=109.5 。 . 25)/(,,)()6(6.15)(7.242438.01438 .013/113/11154.02000cos 1cos 1cos 1cos 1)5(86.94cos 1cos 1)4(35.47154.02000)3(5.2512 5 .109sin 154.020002 sin )2(308154.0)1000(2)1(2 ,2/12max 2/122 2222 2 2 ,2 222 000 max 倍弹性限度是它的理论状态下是卷曲的所以大分子链处于自然因为或反式反式反式≈==-+?-+?=-+?-+==-+==?===?===?==r f r f h L h L L nm h nm nl h nm nl h nm nl h nm nl L nm M M nl L φφφ??θθθ θ θ 2、 假定聚乙烯的聚合度2000,键角为109.5°,求伸直链的长度l max 与自由旋转链的根均 方末端距之比值,并由分子运动观点解释某些高分子材料在外力作用下可以产生很大形变的原因。 解:对于聚乙烯链Lmax=(2/3)1/2 nl l n h r f 2) (2 /12 ,= N=2×2000=4000(严格来说应为3999) 所以 5.363/40003/) m ax /(2 /12,===n h L r f 可见,高分子链在一般情况下是相当卷曲的,在外力作用下链段运动的结果是使分子趋于伸展。于是在外力作用下某些高分子材料可以产生很大形变,理论上,聚合度为2000 的聚乙烯完全伸展可产生36.5倍形变。 注意:公式中的n 为键数,而不是聚合度,本题中n 为4000,而不是2000。 3、计算相对分子质量为106 的线形聚苯乙烯分子的均方根末端距。(1)假定链自由取向

高分子物理知识点总结

高分子物理知识点总结 导读:我根据大家的需要整理了一份关于《高分子物理知识点总结》的内容,具体内容:高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。高分子链的构型有旋光异构和几何异构两种类型。旋光异构是由于主链中的不对称碳原子形成的,有全同... 高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。 高分子链的构型有旋光异构和几何异构两种类型。 旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。)。 全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接 无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接 几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。构象:原子或原子基团围绕单键内旋转而产生的空间分布。 链段:把若干个键组成的一段链作为一个独立运动的单元 链节(又称为重复单元):聚合物中组成和结构相同的最小单位

高分子可以分为线性、支化和交联三种类型。其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。 交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。 高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。 单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。这种不规则的卷曲的高分子构象称为无规线团。 高分子链的内旋转并不是完全自由的,有键角和空间位阻的限制。 自由结合链的内旋转没有键角和位垒限制;自由旋转链有键角限制,但没有空间位阻的限制。自由结合链和自由旋转链都是假想的理想链,实际中是不存在的。 实际的高分子链既不是自由结合链,也不是自由旋转链,但可以看作是一个等效的自由结合链。 柔顺性:高分子链能够改变其构象的性质 末端距:线性高分子的一端到另一端的距离 内聚能:克服分子间的作用力,把1mol液体或者固体移到其分子间的引力范围之外所需要的能量(单位体积内的内聚能则称为内聚能密度) 聚合物在不同的条件下结晶,可以形成不同的形态。 聚合物的单晶一般只能在极稀溶液中(浓度小于0.1%)缓慢结晶才能形成。

高分子物理知识点总结与习题

聚合物的结构(计算题:均方末端距与结晶度) 1.简述聚合物的层次结构。 答:聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构(一级结构)和远程结构(二级结构)。一级结构包括化学组成、结构单元链接方式、构型、支化与交联。二级结构包括高分子链大小(相对分子质量、均方末端距、均方半径)和分子链形态(构象、柔顺性)。三级结构属于凝聚态结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。 构型:是指分子中由化学键所固定的原子在空间的几何排列。 (要改变构型,必须经过化学键的断裂和重组。) 高分子链的构型有旋光异构和几何异构两种类型。 旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。)。 全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成 间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接 无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接 几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。 构象:原子或原子基团围绕单键内旋转而产生的空间分布。 链段:把若干个键组成的一段链作为一个独立运动的单元 链节(又称为重复单元):聚合物中组成和结构相同的最小单位 高分子可以分为线性、支化和交联三种类型。其中支化高分子的性质与线性高分子相似,

可以溶解,加热可以熔化。但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。 交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。 高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。 单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。 这种不规则的卷曲的高分子构象称为无规线团。 高分子链的内旋转并不是完全自由的,有键角和空间位阻的限制。 自由结合链的内旋转没有键角和位垒限制;自由旋转链有键角限制,但没有空间位阻的限制。 自由结合链和自由旋转链都是假想的理想链,实际中是不存在的。 实际的高分子链既不是自由结合链,也不是自由旋转链,但可以看作是一个等效的自由结合链。 柔顺性:高分子链能够改变其构象的性质 末端距:线性高分子的一端到另一端的距离 内聚能:克服分子间的作用力,把1mol液体或者固体移到其分子间的引力范围之外所需要的能量(单位体积内的内聚能则称为内聚能密度)

最新高分子物理重要知识点复习课程

高分子物理重要知识点 第一章高分子链的结构 1.1高分子结构的特点和内容 高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。 英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。 与低分子相比,高分子化合物的主要结构特点是: (1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布; (2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性; (3)高分子结构不均一,分子间相互作用力大; (4)晶态有序性较差,但非晶态却具有一定的有序性。 (5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。 高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1): 表1-1高分子的结构层次及其研究内容 由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。 此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构 高分子链的化学结构可分为四类: (1)碳链高分子,主链全是碳以共价键相连:不易水解 (2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性 (4)梯形和螺旋形高分子:具有高热稳定性 由单体通过聚合反应连接而成的链状分子,称为高分子链。聚合度:高分子链中重复单元的数目; 除结构单元的组成外,端基对聚合物的性能影响很大:提高热稳定性 链接结构是指结构单元在高分子链的联接方式(主要对加聚产物而言,缩聚产物的链接方式一般是明确的)。

《高分子物理实验讲义》

实验1 平衡溶胀法测定交联聚合物的溶度参数与交联度 溶度参数是与物质的内聚能密度有关的热力学参数,实际上也是表征分子间作用力的物理量。在高分子溶液性质的研究中以及生产实际中,常常凭借溶度参数来判断非极性体系的互溶性。例如,溶度参数对聚合物的溶解、油漆和涂料的稀释、胶黏剂的配制、塑料的增塑、聚合物的相容性、纤维的溶液纺丝等等,都有一定的参考价值。 对于交联聚合物,与交联度直接相关的有效链平均分子量 C M 是一个重要的结构参数,C M 的大小对交联聚合物的物理机械性能具有很大的影响。 因此,测定和研究聚合物的溶度参数与交联度十分重要,平衡溶胀法是间接测定交联聚合物的溶度参数与有效链平均分子量 C M 的一种简单易行的方法。另外还可间接测得高分子-溶剂的相互作用参数1x 。 一、实验目的: (1)了解溶胀法测聚合物溶度参数及 C M 的基本原理。 (2)掌握重量法测交联聚合物溶胀度的实验技术。 (3)粗略地测出交联聚合物的溶度参数、C M 及1x 。 二、实验原理: 聚合物的溶度参数不像低分子化合物可直接从汽化热测出,因为聚合物分子间的相互作用能很大,欲使其汽化,势必裂解为小分子,所以只能用间接的方法测定,平衡溶胀法是其中的一种方法。交联结构的聚合物不能为溶剂所溶解,但能吸收大量的溶剂而溶胀。溶胀过程中,溶剂分子渗入聚合物内使体积膨胀,以致引起三维分子网的伸展,而分子网受到应力产生了弹性收缩力,阻止溶剂进入网状链。当这两种相反的倾向相互抵消时,即溶剂分子进入交联网的速度与被排出的速度相等,就达到了溶胀平衡态。 溶胀的凝胶实际上是聚合物的溶解液,能溶胀的条件与线性聚合物形成溶液相同。根据热力学原理,聚合物能够在液体中溶胀的必要调节是混合自由能 m F <0 ,而

高分子物理计算题

由文献查得涤纶树脂的密度ρc =1.50×103kg ·m -3,和 ρa =1.335×103kg ·m -3,内聚能ΔΕ=66.67kJ ·mol -1(单元).今有一块1.42×2.96×0.51×10-6m 3的涤纶试样,重量为2.92×10-3kg ,试由以上数据计算: (1)涤纶树脂试样的密度和结晶度; (2)涤纶树脂的内聚能密度. 解 (l) 密 度 )(10362.110 )51.096.242.1(1092.2336 3---??=???==m kg V W ρ 结 晶 度 %8.21335 .150.1335 .1362.1=--=--= a c a V c f ρρρρ 或 %3.23=--?=a c a c W c f ρρρρρρ (2) 内 聚 能 密 度 )(473192 )10362.1/1(1067.663 33 0-?=???= ??=cm J M V E CED 文献值CED =476(J ·cm -3 ) 完全非晶的PE 的密度ρa =0.85g /cm 3 ,如果其内聚能为2.05千卡/摩尔重复单元,试计算它的内聚能密度? 解 : 摩 尔 体 积 mol cm cm g mol g V 33 94.3285.028== ∴mol cm mol cal V E CED 394.32100005.2~?=?= 32.62cm cal = m J 8 10 6.2?= 试从等规聚丙烯结晶(α型)的晶胞参数出发,计算完全结晶聚丙烯的比容和密度。 解:由X 射线衍射法测得IPP 的晶胞参数为 a =0.665nm , b =2.096nm , c =0.650nm ,β=99°20ˊ, 为单斜晶系,每个晶胞含有四条H31螺旋链。 比容()043sin ~M N abc W V V A ??== β 42 1210023.60299sin 650.0096.2665.023???'????= 3068.1cm g = (或33 10068.1m kg -?) 密度3936.0~1 cm g V ==ρ (或3 310936.0m kg -?) 文献值3939.0cm g c =ρ 例2-5 有全同立构聚丙烯试样一块,体积为1.42×2.96×0.51cm 3 ,重量为1.94g ,试计算其比容和结晶度。已知非晶态 PP 的比容 g cm V a 3174.1=,完全结晶态PP 的比容c V 用 上题的结果。 解 : 试 样 的 比 容 g cm V 3105.194 .151.096.242.1~=??= ∴ 651.0068.1174.1105 .1174.1=--=--= c a a w c V V V V X 7.2.1 状态方程 例7-9 一交联橡胶试片,长2.8cm ,宽1.0cm ,厚0.2cm ,重0.518g ,于25℃时将它拉伸一倍,测定张力为1.0公斤,估算试样的网链的平均相对分子 质量。 解:由橡胶状态方程21c RT M ρσ λλ? ? = - ?? ? 21c RT M ρλσλ?? = - ??? ∵ 52 4 1 4.9100.2110 f k g m A σ-= ==??? 336 0.518109250.21 2.810W kg m V ρ--?===??? 2,8.314,298 R J mol K T λ==?= 每 mol 体积 每mol 重量

高分子物理学(吴其晔)课后答案

高分子物理答案详解(第三版) 第1章高分子的链结构 1.写出聚氯丁二烯的各种可能构型。 等。 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。

3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象? 答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不是橡胶? 答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。 6.从结构出发,简述下列各组聚合物的性能差异: (1)聚丙烯睛与碳纤维; (2)无规立构聚丙烯与等规立构聚丙烯; (3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。(4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。 (1)线性高分子梯形高分子 (2 非晶高分子结晶性高分子 (3)柔性 (4)高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000 个主链 C 原子中约含15~35 个短支链),结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。

高分子物理实验讲解--实用.doc

实验 1 平衡溶胀法测定交联聚合物的溶度参数与交联度 溶度参数是与物质的内聚能密度有关的热力学参数,实际上也是表征分子 间作用力的物理量。在高分子溶液性质的研究中以及生产实际中,常常凭借溶度参数来判断非极性体系的互溶性。例如,溶度参数对聚合物的溶解、油漆和涂料的稀释、胶黏剂的配制、塑料的增塑、聚合物的相容性、纤维的溶液纺丝等等, 都有一定的参考价值。 对于交联聚合物,与交联度直接相关的有效链平均分子量M C是一个重要的结构参数, M C的大小对交联聚合物的物理机械性能具有很大的影响。 因此,测定和研究聚合物的溶度参数与交联度十分重要,平衡溶胀法是间接 测定交联聚合物的溶度参数与有效链平均分子量M C的一种简单易行的方法。另外还可间接测得高分子-溶剂的相互作用参数x1。 一、实验目的: (1)了解溶胀法测聚合物溶度参数及M C的基本原理。 (2)掌握重量法测交联聚合物溶胀度的实验技术。 (3)粗略地测出交联聚合物的溶度参数、M C及x1。 二、实验原理: 聚合物的溶度参数不像低分子化合物可直接从汽化热测出,因为聚合物分 子间的相互作用能很大,欲使其汽化,势必裂解为小分子,所以只能用间接的方法测定,平衡溶胀法是其中的一种方法。交联结构的聚合物不能为溶剂所溶解, 但能吸收大量的溶剂而溶胀。溶胀过程中,溶剂分子渗入聚合物内使体积膨胀, 以致引起三维分子网的伸展,而分子网受到应力产生了弹性收缩力,阻止溶剂进入网状链。当这两种相反的倾向相互抵消时,即溶剂分子进入交联网的速度与被 排出的速度相等,就达到了溶胀平衡态。 溶胀的凝胶实际上是聚合物的溶解液,能溶胀的条件与线性聚合物形成溶液相同。根据热力学原理,聚合物能够在液体中溶胀的必要调节是混合自由能 F m<0,而

高分子物理重要知识点

高分子物理重要知识点 (1人评价)|95人阅读|8次下载|举报文档 高分子物理重要知识点 (1人评价)|96人阅读|8次下载|举报文档 1 高分子物理重要知识点第一章高分子链的结构 1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对

分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容 名称内容备注链结构一级结构(近程结构)结构单元的化学组成键接方式构型(旋光异构,几何异构)几何形状(线形,支化,网状等)共聚物的结构指单个大分子与基本结构单元有关的结构二级结构(远程结构)构象(高分子链的形状)相对分子质量及其分布指由若干重复单元组成的链段的排列形状三级结构(聚集态结构、聚态结构、超分子结构)晶态非晶态取向态液晶态织态指在单个大分子二级结构的基础上,许多这样的大分子聚集在一起而成的聚合物材料的结构由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构高分子链的化学结构可分为四类:(1)碳链高分子,主链全是碳以共价

高分子物理知识点

构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。 链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。 2一般分子链越长,构象数越多,链的柔顺性越好。 3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。分子链的规整性好,结晶,从而分子链表现不出柔性。 控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。 聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却 3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶; 7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。 结晶的必要条件: 1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。 结晶速度的影响因素: 1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长; 2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M 小结晶速度块,M 大结晶速度慢; 熔融热焓?H m :与分子间作用力强弱有关。作用力强,?H m 高 熔融熵?S m :与分子间链柔顺性有关。分子链越刚,?S m 小 聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系: 结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。 取向:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。 取向机理: 1高弹态:单键的内旋转。外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。外力作用下,分子链取向;外力解除,分子链解取向 3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向 取向度: 高分子合金又称多组分聚合物, 在该体系中存在两种或两种以上不同的聚合物, θ θθ22sin 2 3 1)1cos 3(2 1-=-=f

2016高分子物理实验复习

高分子物理实验复习 实验一橡胶的表面电阻系数与体积电阻系数的测定 1.为什么测量时仪器的读数总是不稳? 一般的材料其导电性不是严格像标准电阻样在一定的电压下有很稳定的电流,有很多材料特别是防静电材料其导电性不符合欧姆定律,所以在测量时其读数不稳。 这不是仪器的问题,而是被测量物体的性能决定的。有的标准规定以测量1分钟时间的读数为准。通常在测量高电阻或微电流时测量准确度因重复性不好,对测量读数只要求2位或3位。另外在测量大电阻时如果**不好也会因外界的电磁信号对仪器测量结果造成读数不稳 体积电阻率表面电阻率测试仪工作原理: 根据欧姆定律,被测电阻R等于施加电压V除以通过的电流I。即V=R/I传统的仪器的工作原理是测量电压V固定,通过测量流过被测物体的电流I以标定电阻的刻度来读出电阻值。从上式可以看出,由于电流I是与电阻成反比,而不是成正比,所以电阻的显示值是非线性的,即电阻无穷大时,电流为零,即表头的零位处是∞,其附近的刻度非常密,分辨率很低。整个刻度是非线性的。又由于测量不同的电阻时,其电压V也会有些变化,所以普通的高阻计的精度是很难提高的。 2.为什么测量同一物体时用不同的电阻量程有不同的读数? 误差区间不一样 实验二橡胶抗张力实验 实验速度对拉伸强度有什么影响? 速度快,强度高,伸长率小,数据不稳定,测试时间短 速度慢,强度低,伸长率大,数据相对稳定,测试时间长 具体的还是要根据材料的特性来定速度 实验三DMA动态力学分析仪操作实验 1.DMA主要测量的基本物理量是?其在高分子材料测试方面的应用是什么?

样品受到变化着的外力作用时,产生相应的应变,在这种外力作用下,对样品的应力-应变关系随温度等条件的变化进行分析 2.DMA的夹具有哪些,他们对尺寸的要求分别是什么? 3.以下两个DMA曲线图,分别是丙烯酸丁酯? 实验四塑料冲击性能测试 实验五偏光显微镜法测高聚物球晶形态 1.为什么说球晶是多晶体? 因为球晶是以一个晶核为中心沿各径向方向生长而成的。由于各方向上的生长速度相同,因而生成一圆球状的多晶聚集体。球晶的尺寸约为0.1μm到几毫米,通常为1μm到100μm之间。球晶是聚合物最常见的、最重要的一类结晶形态。所以说它是多晶体。 2.解释球晶在偏光显微镜中出现十字消光图像和同心圆消光图像的原因? 答:当偏振光照射到各向异性的晶体表面时,会发生双折射现象,即原来的一束偏正光会分解为振动平面互相垂直的光线,由于两束光线在两个方向上的折射率不同,从而光线通过样品时的速度也不同,这样两束光就就会产生一定的相位差,发生干涉现象,这样有些光线可以通过检偏器,而有些光线不能通过检偏器,在照片上就形成了明暗的区域,即所谓的黑十字现象、又由于球晶中各个径向发射堆砌的条状晶片有时按照一定的周期规则的螺旋形扭转,使得球晶在偏振显微镜中呈现出一系列的消光同心圆环。 2.说明选择结晶温度的理论依据? 刚好达到熔点,缓慢降温,生成少量晶核,以便生成大球晶 实验六小角激光光散射法观察聚合物球晶 1.与光学显微镜相比,用小角激光光散射法研究结晶态聚合物的球晶结构有什么优点?

高分子物理典型计算题总结

高分子物理典型计算题总结

————————————————————————————————作者:————————————————————————————————日期:

四、计算题 1、某碳链聚α-烯烃,平均分子量为00(1000M M M =为链节分子量,试计算以下各项数值:(1)完全伸直时大分子链的理论长度;(2)若为全反式构象时链的长度;(3)看作Gauss 链时的均方末端距;(4)看作自由旋转链时的均方末端距;(5)当内旋转受阻时(受阻函数438.0cos =?)的均方末端距;(6)说明为什么高分子链在自然状态下总是卷曲的,并指出此种聚合物的弹性限度。 解:设此高分子链为—(—CH 2—CHX —)n —,键长l=0.154nm,键角θ=109.5 。 . 25)/(,,)()6(6.15)(7.242438.01438 .013/113/11154.02000cos 1cos 1cos 1cos 1)5(86.94cos 1cos 1)4(35.47154.02000)3(5.2512 5 .109sin 154.020002 sin )2(308154.0)1000(2)1(2 ,2/12max 2/122 2222 2 2 ,2 222 000 max 倍弹性限度是它的理论状态下是卷曲的所以大分子链处于自然因为或反式反式反式≈==-+?-+?=-+?-+==-+==?===?===?==r f r f h L h L L nm h nm nl h nm nl h nm nl h nm nl L nm M M nl L φφφ??θθθ θ θ 2、 假定聚乙烯的聚合度2000,键角为109.5°,求伸直链的长度l max 与自由旋转链的根均 方末端距之比值,并由分子运动观点解释某些高分子材料在外力作用下可以产生很大形变的原因。 解:对于聚乙烯链 Lmax=(2/3)1/2 nl l n h r f 2) (2 /12,= N=2×2000=4000(严格来说应为3999) 所以 5.363/40003/) m ax /(2 /12,===n h L r f 可见,高分子链在一般情况下是相当卷曲的,在外力作用下链段运动的结果是使分子趋于伸展。于是在外力作用下某些高分子材料可以产生很大形变,理论上,聚合度为2000 的聚乙烯完全伸展可产生36.5倍形变。 注意:公式中的n 为键数,而不是聚合度,本题中n 为4000,而不是2000。 3、计算相对分子质量为106的线形聚苯乙烯分子的均方根末端距。(1)假定链自由取向

高分子物理知识点

构象:具有一定组成与构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。 链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。 2一般分子链越长,构象数越多,链的柔顺性越好。 3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。分子链的规整性好,结晶,从而分子链表现不出柔性。 控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性与规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。 聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却 3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶; 7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。 结晶的必要条件: 1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。 结晶速度的影响因素: 1温度——最大结晶温度:低温有利于晶核形成与稳定,高温有利于晶体生长; 2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M小结晶速度块,M大结晶速度慢; 熔融热焓?H m :与分子间作用力强弱有关。作用力强,?H m高 熔融熵?S m:与分子间链柔顺性有关。分子链越刚,?S m小 聚合物的熔点与熔限与结晶形成的温度T c有一定的关系: 结晶温度Tc低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。 取向:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。 取向机理: 1高弹态:单键的内旋转。外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。外力作用下,分子链取向;外力解除,分子链解取向 3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向 取向度: 高分子合金又称多组分聚合物,在该体系中存在两种或两种以上不同的聚合物,不论组分就是否以化学键相连接 θ θ θ 2 2sin 2 3 1 )1 cos 3( 2 1 - = - = f

高分子物理课程电子教案

《高分子物理》课程电子教案 《高分子物理》课程教学大纲 英文名称: Polymer Physics 课程类别:学科基础课 学时:64 学分:4 适用专业:高分子材料与工程 一、本课程的性质、任务 高分子物理课程包括:高聚物的结构、高高分子物理学是高分子材料与工程专业的基础课。通过本门课程的学习,要求学生对高分子的合成、加工、应用、改性等具有全面的了解。并使学生重点掌握结构、性能及两者之间关系的一些基本概念、必要的知识、分析测试方法、一定的计算能力,从而为专业课的学习打下理论基础,并为高分子材料的合成、加工、选材、应用、改性、性能测试等提供理论依据,进而指导生产实践。高分子物理课程教学包括理论教学和实验教学。结合本门课程的实验,对学生进行相关的基本训练,培养学生分析问题和解决问题的实际工作能力。总之,通过本门课程的学习及实验为后续专业课的学习提供必备的基础知识。 二、本课程的基本要求 本课程包括高分子的链结构和聚集态结构、高分子的溶液性质、高分子的运动和高分子力学性能和电性能四大部分。通过学习,要使学生对教学内容达到“了解”、“认识和理解”、“掌握”和“熟练掌握”层次要求。即通过学习要求学生对基本分析方法、各种测试方法、各种实验的基本原理、高分子尺寸表示方法及其推导要全面了解。对高聚物的结晶结构模型、非晶态结构、液晶结构、织态

结构有明确的认识和理解。掌握高聚物的各种力学状态、力学行为、各种性能曲线的详细分析和典型推导。熟练掌握高聚物结构、性能及两者之间相互关系的基本概念、必要的知识。熟练掌握高聚物的各种特征温度、测定方法。 三、讲授内容 1 高分子链的结构 1.1 概论 1.1.1 高分子科学的诞生与发展 1.I.2 高分子结构的特点 I.1.3 高分子结构的内容 1.2 高分子链的近程结构 1.2.1 结构单元的化学组成 1.2.2 键接结构 1.2.3 支化与交联 1.2.4 共聚物的结构 1.2.5 高分子链的构型 1.3 高分子链的远程结构 1.3.1 高分子的大小 1.3.2 高分子涟的内旋持构象 1.3.3 高分子链的柔顺性 1.4 高分子链的构象统计 1.4.1 均方末端距的几何计算法 1.4.2 均方末端距的统计计算法 1.4.3 高分子链柔顺性的表征 1.4.4 高分子链的均方旋转半径 2 高分子的聚集态结构 2.1 高聚物分子间的作用

高分子物理期末知识点总结

UNIT1.碳链高分子:主链全部由C以共价键相连接;杂链:主链含C,以及O、S等两种或以上的原子以共价键相连接;构造:聚合物分子的各种形状(线形、枝化、交联、梯形、螺旋)构型:由化学键固定的原子在空间几何排列;构像:原子或原子团绕单键内旋转所产生的空间排布。旋光异构体:结构单元为-CH2-CHX-型,包含一个不对称C,所形成的异构体;分为全同:取代基都在主平面一侧或都由一种旋光异构单元键接而成;间同:相间分布于或两种交替链接;无规:不规则分布或两种无规链接。链段:高分子链中的单键旋转时互相牵制,一个键转动,要带动附近的一段链一起运动,把若干个键组成的一段链作为一个独立运动的单元。自由连结链:一个孤立高分子链在旋转时不考虑键角限制和位垒的障碍,每个分子由足够过的不占有体积的化学键自由结合而成的,每个键在任方向取向几率相等的理想模型。自由旋转链:分子链中每个键在键角所允许的方向自由转动,不考虑空间位阻对旋转的影响;等效自由:将一个原来有n个键长为l键角固定旋转不自由的键组成的链可视为Z个长度为b的自由结合链段的的高分子链;链的柔性:分子链能够改变其构象的性质.(不但高分子本身是一个独立运动单元,而且在每个高分子中还存在能独立运动的小单元,他们热运动的结果 使链有强烈的卷曲倾向,这是大分子链具备柔性的最根本内在原因)柔性实质:构象数增,S增,分子链卷曲程度增,分子链在无外力作用下总是自发采取卷曲形态,使构象熵最大。平衡态柔性:热力学平衡条件下的柔性,取决于反式与旁式构象之间的能量差ΔUtg。动态柔性:在外界条件影响下从一种平衡态构象向另一种平衡态构象转变的难易程度,转变速度取决于位能曲线上反式和旁式构象之间的位垒ΔUb与外场作用能之间的关系(ΔUb与kT).影响柔性的因素:分子结构:a主链结构1主链全部由单键组成,一般柔性较好,PE PP;不同单键,柔性不同Si-O>C-N>C-O>C-C.2有孤立双键,柔性大,顺式聚1,4-丁二烯;共轭双键,不能内旋转,分子刚性,聚乙炔,聚苯;有芳杂环,柔性差,芳香尼龙.b取代基1极性大作用力大,内旋转受阻,柔性差,PAN聚氯乙烯>聚1,2-二氯乙烯.3极性取代基的分布对柔性有影响,聚偏二氯乙烯>聚氯乙烯.4非极性取代基,基团体积大,空间位阻大,内旋困难,柔性差,PS1/2不良溶剂。χ1kT的物理意义:把一个溶剂分子放入高聚物中时引起的能量变化。高分子aq与小分子aq区别?什么时候可当成理想aq?比小分子aq溶解的缓慢的多,粘度明显大于小分子aq,性质存在相对摩尔质量的依赖性,而分子量有分散性,故研究很复杂;当链段与溶剂相互作用产生的混合热和混合熵相互抵消时。X1=1/2,U1e=0的溶液才能将此高分子溶液看做是理想溶液,但即使是X1=1/2,高分子溶液的ΔHm也不为0.符合理想溶液条件的高分子溶液混合自由能来源于混合热和混合熵。X1=1/2的高分子溶液宏观上热力学性质遵从理想溶液规律,其微观状态与小分子理想溶液有本质区别。过量化学位:Flory-Krigbaum稀溶液理论:1高分子稀溶液中链段的分布是不均匀的,而是以链段云得形式分布在溶剂中,每一链段云可近似球体.2在连段云内,以质心为中心,链段的径向分布符合高斯分布.3链段云彼此接近要引起自由能的变化,每个高分子链段云有其排斥体积。(引入热参数,令,定义θ=)θ温度:超额混合热/超额混合熵;θ溶液:当T=θ时,Δu1E为零,链段间与溶剂间作用能抵消,无扰状态,排斥体积为零;当T=θ,此时的高分子aq,在宏观上看热力学性质遵从理想aq,但微观状态仍是非理想,因混合热和混合熵均不为零,只是两者的效应刚好抵消,所以Δu1E=0,这一条件为θ条件或θ状态,(θ条件:选择合适的溶剂和温度,可以使溶剂分子对高分子构象所产生的干扰忽略不计(此时高分子“链段”间的相互作用等于”链段”与溶剂分子间的相互作用).在θ条件下测得的高分子尺寸为无干扰尺寸,只有无干扰尺寸才是高分子本身结构的反应)对应为θ溶剂,对应温度为θ温度。。第二维利系数A2:与χ1一样,表征高分子链段与溶剂分子之间的相互作用。凝胶:交联聚合物溶胀体,不熔不溶,既是聚合物浓溶液,又是高弹性固体;冻胶:由范德华力交联形成,加热或拆散可拆散范德华力交联而溶解。 UNIT4.数均分子量Mn:按物质的量统计的平均分子量;重均分子量Mw:按质量统计的平均分子量;Z均分子量Mz:按Z量的统计平均分子量;黏均分子量Mη:用稀溶液黏度法测得的平均分子量(z ≥w≥η≥n)。单分散:z=w=n。为什么z≥w≥η≥n?因为Mn靠近低分子量部分,则低分子量部分对其影响大,Mw靠近高分子量部分,则高分子量对其影响较大,一般用Mw表征比Mn更恰当,聚合物熔体粘度依赖于高分子量部分。分子量测定方法:端基分析(Mn)、沸点升高或冰点降低(Mn)、气相渗透法VPO(Mn)、渗透压法(Mn)、黏度法(Mη)。沸升冰降测的是Mn?是的,通过热力学推导,可知,溶液的沸点升高值ΔTb和冰点降低值ΔTf正比于溶液浓度,即正比于溶质分子数,而与溶质的分子量成反比,由此可推导出高分子数均分子量Mn。稀溶液依数性:沸点升高、冰点下降、蒸汽压下降、渗透压等数值仅与溶液中的溶质数有关,而与溶质的本性无关。特性粘度[η](表示高分子aq的c趋于0时,单位浓度的增加对增比浓度或相对粘度对数的贡献);体积排除色谱法(SEC):又称凝胶渗透色谱法(GPC),分离机理:在分离作用由于大小不同的分子在色谱柱中的多孔性填料中占据的空间体积不同造成的。色谱柱中装填表面和内部有着各种大小不同的空洞和通道的多孔填料,以待测样品的某种溶剂充满柱子,最大的分子,只能留在填料颗粒之间,走的路径最短,先被溶剂冲出来,较大的分子,走颗粒间的路径和颗粒内较大的孔,路径长一些,较后被冲出来,较小的分子,颗粒间、颗粒内的大孔,还进入颗粒内的小孔,走的路径最多,最后被溶剂冲洗出来(大分子Ve小,小分子Ve大)SEM纵坐标记录洗提液与纯溶剂折射率差值Δn,在极稀溶液中,相当与Δc(洗提液的相对浓度),横坐标是保留体积Vr(淋出体积Ve),表征分子尺寸大小。保留体积小,分子尺寸大。 VPO:加入不挥发溶质沸点升高冰点降低蒸汽压下降。由于溶液的依数性,沸点升高值正比于浓度反比与分子量。由于高分子溶液热力学性质与理想溶液偏差,只有无限稀释才符合。所以测各种浓度,外推在恒温密闭容器内充有溶剂饱和蒸汽,将一滴不挥发溶质的溶液滴1和溶剂滴2悬在这个饱和蒸气中。由于1中溶剂的蒸气压较低,就会有溶剂分子从饱和蒸气相凝聚到溶液滴上。并放出凝聚热,使1温度升高。由于依数性,达平衡时,两液滴温差与溶质摩尔分数成正比。ΔT=AX2,ΔT温度差,X2溶质摩尔分数。 UNIT5.分子运动及转变特点:①运功单元的多重性A高分子链的整体运动:分子分子链质量中心的相对移动。B链段运动:区别于小分子的特殊运动形式。质量中心不变,一部分链段通过单键内旋转而相对于另一部分链段运动,使大分子可以伸展或卷曲。C链节、支链、侧击的运动。D晶区内的分子运动②分子运动的时间依耐性:外因作用下,聚合物从一平衡态通过分子运动过渡到另一与外界条件相连的新的平衡总需要时间,原因是整个分子链,链段、链节等运动单元的运动都需要克服内摩擦阻力,不可能瞬间完成③分子运动的温度依耐性:升温,一方面运动单元热运动能量提高,另一方面由于体积膨胀,分子距离增加,运动单元活动空间增大,松弛加快,松弛时间减小。聚合物分子运动特点:a.运动单元的多重性,包括整分子链平移、链段运动、链节支链侧基等小尺寸单元的流动、原子在平衡位置的振动、晶区的运动b.高分子运动的时间依赖性c.分子运动的温度依赖性松弛时间:橡皮由Δx(t)变为Δx(0)的1/e倍时所需要的时间,表征松弛过程快慢。(开始较快,后来越慢)。论述自由体积理论:液体或固体,它的整个体积包括两个部分:一部分是为分子本身占据的,称占有体积;另一部分是分子间的空隙,称自由体积,它以大小不等的空穴无规分布在聚合物中,提供了分子的活动空间,使分子链可能通过转动和位移而调整构象。在玻璃化温度以下,链段运动被冻结,自由体积也处于冻结状态,其空穴尺寸和分布基本上保持固定。聚合物的玻璃化温度为自由体积降至最低值的临界温度。在此温度下,自由体积提供的空间已不足以使聚合物分子链发生构象调整,随着温度升高,聚合物的体积膨胀只是由于分子振幅、链长等的变化,即分子占有体积的膨胀,而在玻璃化温度以上,自由体积开始膨胀,为链段运动提供了空间保障,链段由冻结状态进入运动状态,随着温度升高,聚合物的体积膨胀除了分子占有体积的膨胀之外,还有自由体积的膨胀,体积随温度的变化率比玻璃化温度以下为大。为此,聚合物的比体积-温度曲线在Tg时发生转折,热膨胀系数在Tg发生突变。影响Tg的因素:①主链的柔性:柔性越高,Tg高②取代基:侧基极性强,Tg高;极性基数高,Tg高;取代基位阻高,内旋转受阻程度高,Tg高③构型:全同Tg较低;顺反异构中,反式分子柔性差,Tg较高④分子量:M较低时,M高,Tg高;当分子量超过一定值后,Tg不再依赖分子量⑤外力速率:张力可强迫链段沿张力方向运动,Tg低,压力使分子链运动困难,Tg升高;冷却速率快,Tg高。另外:调节Tg手段:增塑、共聚、共混。聚合物Tg开始时随相对分子质量增大而升高,当达到一定值之后,Tg变为与相之无关的常数?相对分子质量对Tg的影响主要是链端的影响,处于链末端的链段比链中间的链段受的牵制要小些,因而有比较剧烈的运动,链端浓度的增加预期Tg会降低,链端浓度与数均相对分子质量成反比,超过临界相对分子质量后链端的比例很小,其对Tg影响可以忽略。聚合物中加入单体、溶剂、增塑剂等低分子物时导致Tg下降:Tg具有可加和性,这些物质Tg较高分子低许多,所以混和Tg比聚合物低。分子结构与结晶能力的关系(为什么结晶聚合物结晶不完整?)a.链的对称性、规整性越高,结晶能力越强b.共聚,无规共聚降低结晶能力c.链柔性差降低结晶能力,柔性太好不能结晶d.分子间作用力过大降低结晶能力e.交联降低结晶能力f.分子量增大限制结晶。{高压力下形成的结晶高聚物结晶体密度高,拉应力可以加速高聚物结晶}。结晶聚合物边熔融边升温的现象是由于试样中含有完善程度不同的晶体。结晶时,如果降温程度不是足够的慢,随着熔体黏度的增加,分子链的活动性减小,来不及作充分的位置调整,则结晶停留在不同的阶段上;等温结晶过程中,也存在着完善程度不同的晶体。这时再升温,在通常的升温速度下,比较不完善的晶体将在较低的温度下熔融,比较完善的晶体则要在较高的温度下熔融,因而出现较宽的熔融范围。结晶过程的特点:结晶温度区间在Tg与Tm之间;同一聚合物在同一结晶温度下,结晶速度随结晶时间过程而变化;结晶聚合物结晶不完善,没有精确的熔点,存在容限。 UNIT6.什么情况下符合虎克定律?在形变很小时,交联橡胶的应力应变关系才符合虎克定律。 UNIT7.五个区域:玻璃态区、玻璃—橡胶转变区、橡胶—弹性平台区、橡胶流动区、液体流动区。力学松弛:聚合物的各种性能表现出对时间的依赖性。蠕变:一定的温度、较小恒应力持续作用下,材料应变随时间增加而增大的现象(包括瞬时可逆的普弹形变ε1、滞后可逆高弹形变ε2、不可逆的黏性形变ε3;Tg以下,链段运动松弛时间很长,ε2很小;材料本体粘度很大,ε3很小;因此蠕变主要由ε1构成,蠕变量很小。Tg以上,链段运动的松弛时间变短,导致ε2较大,材料的本体粘度η3仍很大,ε3较小,蠕变主要由ε2构成,夹杂少量ε3。同时,ε 3 随时间的发展而发展,导致总形变不断发展)。应力松弛:恒定温度和形变保持不变时,聚合物内部应力随时间增加而逐渐衰减的现象;产生原因:当聚合物受到外力作用发生变形时,分子链段要沿着外力方向伸展与外力相适应,因而在材料内部产生内应力。但是链段的热运动又可以使某些链缠结散开,以至于分子链之间可以产生小的相对滑移;同时链段运动也会调整构象使分子链逐渐地回复到原来蜷曲状态,从而使内应力逐渐地消除掉。(当温度远小于Tg时,链段运动的能力很弱,应力松弛非常慢;当温度太高时,应力松弛过程进行太迅速。只有在Tg温度附近几十度的范围内,应力松弛现象才比较明显)。滞后:聚合物在交变应力作用下形变落后于应力变化的现象;产生原因:链段的运动受到内摩擦阻力作用的结果,当外力变化时,链段的运动受到内摩擦阻力的作用跟不上外力的变化,所以形变总是落后于应力,滞后了一个相位差δ。(外力作用频率适中,链段一方面可以运动,但又不能完全跟上应力的变化,这时滞后现象才能充分体现出来)力学损耗或内耗:在有滞后现象存在时,由于形变的发展落后于应力的变化,当第一周期的形变还没有完全恢复时,材料又会受到第二个周期应力的作用,因此每个周期都会有一部分弹性储能没有释放出来,这部分能量最终转变为热能,以热量的形式释放出来,造成损耗。影响因素:1温度a温度低,分子运动弱,不运动摩擦消耗能量小,内耗小.b温度高,分子运动快,应变跟得上应力变化,δ小,内耗小.c温度适中,跟不上应力变化, δ大,内耗大.2频率a频率快,分子运动跟不上应力的交换频率,摩擦消耗能量小,内耗小b频率很慢,应变跟得上应力变化, δ小,内耗小c频率适中,分子可以运动但跟不上应力频率变化, δ大,内耗大.3次级运动的影响:次级运动越多,所做的功可以通过次级运动耗散掉.时温等效原理:对于同一个力学松弛过程,既可以在较高温度和较短的外力作用时间下表现出来,也可以在较低温度和较长的外力作用时间下表 现出来。即:升高温度与延长外力作用时间对分子运动是等效的,对聚合物的粘弹性是等效的。 UNIT8.非晶态聚合物应力应变曲线:1.弹性形变区:直线斜率即为杨氏模量,此阶段普弹性,由于高分子键长键角和小运动单元的变化产生。2.屈服阶段:应变软化点,超过此点,大外力使本来冻结的链段开始运动,为大形变提供条件。3.大变形区:高弹性形变区,本质上与高弹形变一样是链段运动,它在外力作用发生。4.应变硬化区:分子链取向排列使强度提高。5.断裂。。屈服点以后,材料大变形的分子机理主要是g的链段运动,即在外力作用下,玻璃态p原来被冻结的链段开始运动,g链的伸展提供了材料的大变形,此时,p处于玻璃态,即使去除外力形变不能自动回复,只有升到 Tg以上链段运动解冻,分子链重新蜷曲,形变才可回复)。

相关主题
文本预览
相关文档 最新文档