当前位置:文档之家› 大学物理习题答案第十三章

大学物理习题答案第十三章

大学物理习题答案第十三章
大学物理习题答案第十三章

[习题解答]

13-2光源S1 和S2 在真空中发出的光都是波长为l的单色光,现将它们分别放于折射率为n1 和n2的介质中,如图13-5所示。界面上一点P到两光源的距离分别为r1 和r2。

(1)两束光的波长各为多大?

(2)两束光到达点P的相位变化各为多大?

(3)假如S1 和S2 为相干光源,并且初相位相同,求点P

图13-5

干涉加强和干涉减弱的条件。

(1)已知光在真空中的波长为λ,那么它在折射率为n的介质中的波长λ'可以表示为

,

所以,在折射率为n1和n2的介质中的波长可分别表示为

和.

(2)光传播r的距离,所引起的相位的变化为

,

所以,第一束光到达点P相位的变化为

,

第二束光到达点P相位的变化为

.

(3)由于两光源的初相位相同,则两光相遇时的相位差是由光程差决定的,所以,点P干涉加强的条件是

, ;

点P干涉减弱的条件是

, .

13-3若用两根细灯丝代替杨氏实验中的两个狭缝,能否观察到干涉条纹?为什么?

解观察不到干涉条纹,因为它们不是相干光源。

13-4在杨氏干涉实验中,双缝的间距为0.30 mm,以单色光照射狭缝光源,在离开双缝1.2 m 处的光屏上,从中央向两侧数两个第5条暗条纹之间的间隔为22.8 mm。求所用单色光的波长。

解在双缝干涉实验中,暗条纹满足

,

第5条暗条纹的级次为4,即,所以

,

其中。两个第5条暗条纹的间距为

,

等于22.8 mm,将此值代入上式,可解出波长为

.

13-5在杨氏干涉实验中,双缝的间距为0.30 mm,以波长为6.0 102nm的单色光照射狭缝,求在离双缝50 cm远的光屏上,从中央向一侧数第2条与第5条暗条纹之间的距离。

解因为第1条暗条纹对应于,所以第2条暗条纹和第5条暗条纹分别对应于和。根据双缝干涉的规律,暗条纹的位置应满足

.

所以,第2条与第5条暗条纹之间的距离为

.

13-7在空气中垂直入射到折射率为1.40的薄膜上的白光,若使其中的紫光(波长为400 nm)成分被薄膜的两个表面反射而发生干涉相消,问此薄膜厚度的最小值应为多大?

解光从第一个表面反射要产生半波损失,但从第二个表面反射无半波损失,所以光程差应表示为

,

式中e为薄膜的厚度,此厚度应为最小值,干涉级次k最小应取1,因为当时,薄膜的厚度必须取零,上式才能成立。将k = 1代入上式,并从中解出薄膜厚度的最小值为

.

13-8在空气中肥皂膜的厚度为0.32 mm,折射率为1.33。若用白光垂直照射,肥皂膜呈什么颜色?

解反射光的颜色是由反射光干涉加强的光波波长所决定的。干涉加强的条件是

,

由此解得

.

当时,;

当时,;

当时,.

在以上干涉加强的光波中,l1是红外光,λ3是紫外光,只有λ2处于可见光范围内,且为黄光。

13-9在观察薄膜干涉时常说使用面光源,这是为什么?能否使用点光源呢?

解在观察薄膜干涉时,可以使用点光源。使用面光源可以增大干涉条纹的衬比度。具体分析见上面的[概念阐释]。

13-10试分析一下等倾干涉条纹可能是什么形状?

解因为等倾干涉图样定位于无限远处,使用透镜则呈现于透镜的焦面上。又因为等倾干涉条纹是以相同角度入射和出射的平行光在光屏上会聚点的轨迹。如果屏面与焦面重合,则干涉条纹为同心圆环。若屏面不与透镜光轴相垂直,干涉条纹的形状可能是椭圆、双曲线等圆锥截线。

13-11两块矩形的平板玻璃叠放于桌面上,将一薄纸条从一边塞入它们之间,使两玻璃板之间形成一个劈形气隙。用钠光(波长为589 nm)垂直照射,将观察到干涉条纹。沿垂直于劈棱的方向上每厘米有10条亮纹(或暗纹),求劈形气隙的角度。

解设相邻亮条纹或相邻暗条纹的间距为l,劈角为θ,因为相邻亮条纹或相邻暗条纹所对应的气隙厚度差为半波长,所以下面的关系成立

.

根据已知条件,,代入上式,得

.

13-12两块矩形的平板玻璃叠放在一起,使其一边相接触,在与此边相距20 cm处夹一直径为5.0?10-2 mm的细丝,如图13-6所示,于是便形成一劈形气隙。若用波长为589 nm的钠光垂直照射,劈形气隙表面出现干涉条纹,求相邻暗条纹之间的间距。

解设相邻亮条纹或相邻暗条纹的间距为l,劈角为θ,下面的关系成立

.

所以

图13-6

.

13-13若用波长为589 nm的钠光观察牛顿环,发现k级暗环的半径为2.0′10-3 m,而其外侧第5个暗环的半径为3.0?10-3 m。求透镜凸面的曲率半径和k的值。

解第k个暗环的半径为

, (1)

当时,为中心的暗点,当时,为第1条暗环,等等。第k个暗环之外的第5个暗环,对应于,其半径为

(2)

将以上两式平方后相除,得

,

将数值代入并求出k值,得

,

.

将k值代入式(1),可求得透镜凸面的曲率半径,为

.

13-14一平凸透镜的凸面曲率半径为1.2 m,将凸面朝下放在平玻璃板上,用波长为650 nm 的红光观察牛顿环。求第三条暗环的直径。

解第3条暗环对应的k值为3,其半径为

,

所以,第3条暗环的直径为。

13-15在单缝夫琅禾费衍射中,单缝宽度a = 1.0′10-4 m,透镜焦距f = 50 cm。分别用λ1 = 400 nm和λ2= 760 nm的单色平行光垂直入射,问中央亮条纹的宽度分别为多大?

解两个第一暗条纹中心的距离,就是中央亮条纹的宽度。而第一暗条纹的衍射角?0,就是中央亮条纹的半角宽度,即角宽度的一半。根据式(13-51)

,

对应于两种波长l1和λ2,中央亮条纹的宽度分别为

;

.

13-16单缝被氦氖激光器产生的激光(波长为632.8 nm)垂直照射,所得夫琅禾费衍射图样的第一级暗条纹对单缝法线的夹角为5?,求单缝的宽度。

解第1级暗条纹对单缝法线的夹角,就是第1级暗条纹的衍射角?0,并且根据衍射的规律有

.

所以,可以求得单缝的宽度为

.

13-17一束波长为600 nm的平行光垂直照射到透射平面衍射光栅上,在与光栅法线成45?角的方向上观察到该光的第二级谱线。问该光栅每毫米有多少刻痕?

解根据光栅方程

,

式中?= 45?、k = 2,于是可求得光栅常量为

,所以,该光栅每毫米的刻痕数为

.

13-18可见光的波长范围大约从400 nm到760 nm,将这个范围的可见光垂直入射到每厘米有6000条刻痕的平面光栅上,求第一级可见光谱的角宽度。

解在光栅方程

中,取k = 1,?就是波长为λ的光的衍射角。分别求出波长为400 nm和760 nm的衍射角?1和?2,两者之差就是第一级可见光谱的角宽度。这从教材第500页的图13-25中可以看得很清楚。

,

;

,

.

所以,第一级可见光谱的角宽度为

.

13-19有一透射平面光栅每毫米有500条刻痕,并且刻痕间距是刻痕宽度的两倍。若用波长为600 nm的平行光垂直照射该光栅,问最多能观察到几条亮条纹?并求出每一条亮条纹的衍射角。

解根据已知条件可以求得光栅常量

m .

由光栅方程,得

,

于是求得

,

取整数,为

.

这表示,在无限大的光屏上可能出现k值为0、±1、±2和±3的七条亮条纹。

但是由于缺级现象,有些亮条纹消失了。由于刻痕间距(a)是刻痕宽度(b)的两倍,所以

.

消失的亮条纹的k值为

,

当时,,这表示,在光屏上消失的亮条纹的级次为。这样,出现在无限大光屏上的亮条纹只有5条,它们的级次分别是。

根据光栅方程,可以求得各亮条纹的衍射角:

的亮条纹

, ;

的亮条纹

,?1 = ± 17?28' ;

的亮条纹

,?2= ± 36?52' .

13-20波长为0.296 nm的X射线投射到一块晶体

上,产生的第一级衍射线偏离入射线方向为31.7?,求相应于

此衍射线的晶面间距。

图13-7

解晶面、入射方向、衍射方向以及晶面法线之间的关系,如图13-7所示。由图可见,X射线的掠射角θ= 31.7? / 2 = 15?51¢。根据布拉格公式

,

取,则有

.

13-21有一直径为5.0 cm、焦距为25 cm的会聚透镜,用波长为550 nm的光观察远处的两个物点,刚好能分辨。问这两个物点在透镜焦面上中央亮斑的中心相距多远?

解既然两个物点刚好能分辨,那么它们对透镜中心的张角,就是最小分辨角θ0,并可以表示为

.

在透镜焦面上这两个物点的中央亮斑的中心间距为

.

13-22设人眼瞳孔的直径为3.0 mm,对于可见光中波长为6.0 ?10-7 m的光,试求:

(1)人眼的最小分辨角;

(2)在明视距离25 cm处人眼能分辨的最小距离。

(1)人眼的最小分辨角

.

(2)在明视距离25 cm处人眼能分辨的最小距离为

.

13-25水的折射率为1.33,玻璃的折射率为1.50。当光由水中射向玻璃而被界面反射时,起偏角为多大?当光由玻璃中射向水而被界面反射时,起偏角又为多大?

解设水的折射率为n1 (= 1.33 ),玻璃的折射率为n2(= 1.50 )。光由水射向玻璃的起偏角i0 为

, ;

光由玻璃射向水的起偏角i0'为

, .

13-26两偏振片的透振方向成30°角,透射光强度为I1 。若入射光不变而使两偏振片的透振方向之间的夹角变为45?角,求透射光的强度。

解设透过第一个偏振片的光强为I0 ,当两个偏振片的透振方向成α = 30?角时,透过第二个偏振片的光强为I1 ,并有下面的关系

,

所以

.

当两个偏振片的透振方向夹角变为α2= 45?时,透射光强I2为

.

13-27两偏振片A和B放置在使光完全不能透过的相对位置上,现在A、B之间插入第三块偏振片C,光就能部分地通过,并当C旋转时,透射光的强度也随着变化。设透过偏振片A的光强度为I0 ,求当偏振片A和C的透振方向夹角为α时透射光的强度。

解根据题意,只有当A与B的透振方向互相垂直时,光才完全不能通过。所以,当C与A 成α角时,C与B必成(90?-α )角。由马吕斯定律,透过C的光强为

,

式中I0 为透过A的光强。透过B的光强为

.

13-28两偏振片A和B的透振方向成45?角,强度为I0的入射光是线偏振光,且振动方向与偏振片A的透振方向相平行。分别求入射光沿从A至B的方向和沿从B至A的方向透过两个偏振片后的光强。

(1)当入射光沿A?B的方向通过A和B时:因为入射光的振动方向与A的透振方向平行,而与B的透振方向成45?角,所以光通过A后强度不变,通过B后的光强为

;

(2)当入射光沿B ? A的方向通过B和A时:入射光通过B后的光强为

.

强度为I'的光的振动方向与B的透振方向一致,而与A的透振方向成45?角,所以通过A后的光强为

.

13-29如何将自然光转变为椭圆偏振光和圆偏振光?椭圆偏振光和圆偏振光各在什么情况下

转变为线偏振光?

解自然光通过起偏器变为线偏振光,线偏振光垂直入射至1/4波片,出射光便是椭圆偏振光;当线偏振光垂直入射至1/4波片时,且使其振动方向与1/4波片的光轴成45°时,出射光便是圆偏振光。

圆偏振光垂直入射至1/4波片后,出射光变为线偏振光;椭圆偏振光垂直入射至1/4波片时,且使椭圆的主轴与波片的光轴相平行,则出射光为线偏振光。

13-30在一对正交的偏振片之间放一块1/4波片,用自然光入射。

(1)转动1/4波片光轴方向,出射光的强度怎样变化?

(2)如果有强度极大和消光现象,那么1/4波片的光轴应处于什么方向?这时从1/4波片射出的光的偏振状态如何?

(1)转动1/4波片光轴方向出射光强度的变化情形:

a)当1/4波片转至其光轴与第一个偏振片的透振方向相平行时,从1/4波片出射的光是振动方向与光轴同方向的线偏振光,不能通过第二个偏振片,故产生消光现象;

b)当1/4波片转至其光轴与第一个偏振片的透振方向有一夹角a时,从1/4波片出射的光是以其光轴为主轴的椭圆偏振光,当α角很小时,通过第二个偏振片的光强也很小;

c)随着α的增大,通过第二个偏振片的光强增加,当α= 45?时,从1/4波片出射的光是圆偏振光,通过第二个偏振片的光强达到最大值;

d)随着α的继续增大,通过第二个偏振片的光强又逐渐减小;

e)当1/4波片转至其光轴与第二个偏振片的透振方向相平行时,从1/4波片出射的光为垂直于光轴的线偏振光,则不能通过第二个偏振片,所以再次出现消光现象。

f)以后继续转动1/4波片所出现的现象,重复上面的过程。

(2)光强极大对应于1/4波片的光轴与两个偏振片的透振方向都成45?的位置,这时从1/4波片射出的光是圆偏振光。

出现消光现象时,1/4波片的光轴应处在两个位置上,即分别平行于两个偏振片的透振方向。当1/4波片的光轴与第一个偏振片的透振方向相平行时,从1/4波片射出的光是线偏振光,其振动方向平行于1/4波片的光轴,而与第二个偏振片的透振方向相垂直;当1/4波片的光轴与第二个偏振片的透振方向相平行时,即1/4波片的光轴与第一个偏振片的透振方向相垂直,从1/4波片射出的光是线偏振光,

其振动方向垂直于1/4波片的光轴,也与第二个偏振片的透振方向相垂直。

13-31椭圆偏振光通过1/4波片,在一般情况下仍然为椭圆偏振光,对此应如何解释?

解椭圆偏振光可以看成是两个互相垂直的线偏振光的合成,这两个互相垂直的线偏振光可以表示为

,

式中φ是不为0和±π的任意角。当椭圆偏振光通过1/4波片后,这两个互相垂直的线偏振光都要分解为平行于光轴和垂直于光轴的两个线偏振光,并且这两个线偏振光存在π /2的相位差。于是就得到了四个线偏振光,其中两个平行于光轴方向振动,它们之间存在φ的相位差,另外两光垂直于光轴方向振动,它们之间也存在f的相位差。无论平行于光轴方向的两个振动的合成,还是垂直于光轴方向的两个振动的合成,都属于同一直线上的两个同频率振动的合成。最后仍然得到振动方向分别平行于光轴和垂直于光轴的两个线偏振光,不过它们之间的相位差一般不再是π /2,还与每个方向的合成结果有关,一般情况下是不为0和±π的任意角,故仍为椭圆偏振光。

若光轴平行于椭圆偏振光

的主轴,则两个互相垂直的线偏振光相位差变为π /2,通过1/4波片后成为线偏振光。

13-32将石英晶片放置在透振方向互相平行的两偏振片之间,波长为435.8 nm的蓝光正好不能通过。已知石英对此波长蓝光的旋光率为41.5?mm-1 ,求石英片的厚度。

解根据题意,石英晶片使光的偏振面旋转了θ = 90?,代入公式

,

即可求得石英片的厚度,为

.

13-33某种物质的吸收系数为α = 3.1′10-3 m-1 ,求透射光强分别为入射光强的0.2、0.4、0.6和0.8时物质的厚度。

解根据朗伯定律

,

可以推得

,

.

当透射光强之比为0.2时,代入上式可求得物质的厚度为

.

同样可以求得

;

;

.

13-34某光学玻璃在可见光范围内为正常色散,对波长为435.8 nm的蓝光和波长为546.1 nm 的绿光的折射率分别为1.65250和1.62450。试确定科希公式中的常数A和B,并计算此光学玻璃对波长为589.3 nm的钠黄光的折射率和色散率。

解科希公式可以表示为

,

将蓝光和绿光的波长及相应的折射率代入上式,可得到两个方程式

;

.

两式联立可以解得

,

.

将A、B和钠黄光的波长代入科希公式,可求得此光学玻璃对钠黄光的折射率,为

;

色散率为

.

13-36在一根长为32 cm的玻璃管内盛有含烟雾的气体,某波长的光通过后强度为入射光的56%,若将烟雾除去,透射光的强度为入射光的88%。如果烟雾对该波长的光只散射无吸收,而气体却只吸收无散射,试计算含烟雾气体的吸收系数和散射系数。

解设入射光的强度为I0,该光通过含烟雾的气体后的光强为I,该光通过无烟雾气体后的光强为I¢。根据散射和吸收的规律可以列出下面的两个方程式

; (1)

.(2)

两式联立可解得气体的吸收系数,为

;气体的散射系数为

.

大学物理下册选择题练习题

( 1 ) 边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O处的场 强值和电势值都等于零,则:(C) (A)顶点a、b、c、d处都是正电荷. (B)顶点a、b处是正电荷,c、d处是负电荷. (C)顶点a、c处是正电荷,b、d处是负电荷. (D)顶点a、b、c、d处都是负电荷. (3) 在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将 (B) (A)向下偏. (B)向上偏. (C)向纸外偏. (D)向纸内偏. (4) 关于高斯定理,下列说法中哪一个是正确的? (C) (A)高斯面内不包围自由电荷,则面上各点电位移矢量D 为零. (B)高斯面上处处D 为零,则面内必不存在自由电荷. (C)高斯面的D 通量仅与面内自由电荷有关. (D)以上说法都不正确. (5) 若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明:(A) (A)该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行. (B)该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C)该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直. (D)该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直. (6) 关于电场强度与电势之间的关系,下列说法中,哪一种是正确的? (C)

(A)在电场中,场强为零的点,电势必为零 . (B)在电场中,电势为零的点,电场强度必为零 . (C)在电势不变的空间,场强处处为零 . (D)在场强不变的空间,电势处处相等. (7) 在边长为a的正方体中心处放置一电量为Q的点电荷,设无穷远处为电势零点,则 在一个侧面的中心处的电势为: (B) (A)a Q 04πε. (B)a Q 02πε. (C)a Q 0πε. (D)a Q 022πε. (8) 一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会 发生? (A) (A)在铜条上a、b两点产生一小电势差,且Ua >Ub . (B)在铜条上a、b两点产生一小电势差,且Ua <Ub . (C)在铜条上产生涡流. (D)电子受到洛仑兹力而减速. : (9) 把A,B两块不带电的导体放在一带正电导体的电场中,如图所示.设无限远处为电势 零点,A的电势为UA ,B的电势为UB ,则 (D) (A)UB >UA ≠0. (B)UB >UA =0. (C)UB =UA . (D)UB <UA .

大学物理A第九章 简谐振动

第九章 简谐振动 填空题(每空3分) 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=×10-2cos(T π2t+4 π ) (SI) , X 2=×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=×10-2cos(T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡 位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最大位移处的势能为 。(3210J -?) 9-11一质点做谐振动,其振动方程为6cos(4)x t ππ=+(SI ),则其周期为 。

大学物理复习题(电磁学)

【课后习题】 第12章 一、填空题 1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。 2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。 3、真空环境中正电荷q 均匀地分布在半径为R 的细圆环上,在环环心O 处电场强度为____0________,环心的电势为__R q o πε4/_________。 4、高斯定理表明磁场是 无源 场,而静电场是有源场。任意高斯面上的静电场强度通量积分结果仅仅取决于该高斯面内全部电荷的代数和。现有图1-1所示的三个闭合曲面 S 1、S 2、S 3,通过这些高斯面的电场强度通量计算结果分别为: ???=Φ1 1S S E d , ???=Φ2 2S S E d , ???=Φ3 3S S E d ,则 1=___o q ε/_______;2+3=___o q ε/-_______。 5、静电场的场线只能相交于___电荷或无穷远________。 6、两个平行的无限大均匀带电平面,其电荷面密度分别如图所示,则A 、B 、C 三个区域的电场强度大小分别为:E A =_o εσ/4________;E B =_o εσ/________;E C =__o εσ/4_______。

7、由一根绝缘细线围成的边长为l的正方形线框,使它均匀带电,其电荷线密度为,则在正方形中心处的电场强度的大小E=____0____________. 8、初速度为零的正电荷在电场力的作用下,总是从__高____电势处向_低____电势处运动。 9、静电场中场强环流为零,这表明静电力是__保守力_________。 10、如图所示,在电荷为q的点电荷的静电场中,将一电荷为q0的试验电荷从a点经任意路径移动到b点,外力所作的功 W=___?? ? ? ? ? - 1 2 1 1 4r r Qq πε ___________. 11、真空中有一半径为R的均匀带电半园环,带电量为Q,设无穷远处为电势零点,则圆心 O处的电势为___ R Q 4πε _________;若将一带电量为q的点电荷从无穷远处移到O点,电场 力所作的功为__ R qQ 4πε __________。 12、电场会受到导体或电介质的影响,通常情况下,导体内部的电场强度__处处为零 _______;电介质内部电场强度将会减弱,其减弱的程度与电介质的种类相关, ____ ε_________越大,其电场场强越小。 13、导体在__电场_______作用下产生电荷重新分布的现象叫做__静电感应___________;而电介质在外电场作用下产生极化面电荷的现象叫做__电介质的极化_________。 14、在静电场中有一实心立方均匀导体,边长为a.已知立方导体中心O处的电势为U0,则 立方体顶点A的电势为____ U________.

精选新版2019年大学物理实验完整考试题库200题(含标准答案)

2019年《大学物理》实验题库200题[含参考答案] 一、选择题 1.用电磁感应法测磁场的磁感应强度时,在什么情形下感应电动势幅值的绝对值最大 ( ) A :线圈平面的法线与磁力线成?90角; B :线圈平面的法线与磁力线成?0角 ; C :线圈平面的法线与磁力线成?270角; D :线圈平面的法线与磁力线成?180角; 答案:(BD ) 2.选出下列说法中的正确者( ) A :牛顿环是光的等厚干涉产生的图像。 B :牛顿环是光的等倾干涉产生的图像。 C :平凸透镜产生的牛顿环干涉条纹的间隔从中心向外逐渐变密。 D :牛顿环干涉条纹中心必定是暗斑。 答案:(AC ) 3.用三线摆测定物体的转动惯量实验中,在下盘对称地放上两个小圆柱体可以得到的结果:( ) A :验证转动定律 B :小圆柱的转动惯量; C :验证平行轴定理; D :验证正交轴定理。 答案:(BC) 4.测量电阻伏安特性时,用R 表示测量电阻的阻值,V R 表示电压表的内阻,A R 表示电流表的内阻,I I ?表示内外接转换时电流表的相对变化,V V ?表示内外接转换时电压表的相对变化,则下列说法正确的是: ( ) A:当R <?时宜采用电流表内接;

D :当V V I I ?>?时宜采用电流表外接。 答案:(BC ) 5.用模拟法测绘静电场实验,下列说法正确的是: ( ) A :本实验测量等位线采用的是电压表法; B :本实验用稳恒电流场模拟静电场; C :本实验用稳恒磁场模拟静电场; D :本实验测量等位线采用电流表法; 答案:(BD ) 6.时间、距离和速度关系测量实验中是根据物体反射回来的哪种波来测定物体的位置。 ( ) A :超声波; B :电磁波; C :光波; D :以上都不对。 答案:(B ) 7.在用UJ31型电位差计测电动势实验中,测量之前要对标准电池进行温度修正,这是 因为在不同的温度下:( ) A :待测电动势随温度变化; B :工作电源电动势不同; C :标准电池电动势不同; D :电位差计各转盘电阻会变化。 答案:(CD ) 8.QJ36型单双臂电桥设置粗调、细调按扭的主要作用是:( ) A:保护电桥平衡指示仪(与检流计相当); B:保护电源,以避免电源短路而烧坏; C:便于把电桥调到平衡状态; D:保护被测的低电阻,以避免过度发热烧坏。 答案:(AC ) 9.声速测定实验中声波波长的测量采用: ( ) A :相位比较法 B :共振干涉法; C :补偿法; D :;模拟法 答案:(AB ) 10.电位差计测电动势时若检流计光标始终偏向一边的可能原因是: ( ) A :检流计极性接反了。 B :检流计机械调零不准

大学物理电磁学练习题及答案

大学物理电磁学练习题 球壳,内半径为R 。在腔内离球心的距离为d 处(d R <),固定一点电荷q +,如图所示。用导线把球壳接地后,再把地线撤 去。选无穷远处为电势零点,则球心O 处的电势为[ D ] (A) 0 (B) 04πq d ε (C) 04πq R ε- (D) 01 1 () 4πq d R ε- 2. 一个平行板电容器, 充电后与电源断开, 当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:[ C ] (A) 12U 减小,E 减小,W 减小; (B) 12U 增大,E 增大,W 增大; (C) 12U 增大,E 不变,W 增大; (D) 12U 减小,E 不变,W 不变. 3.如图,在一圆形电流I 所在的平面内, 选一个同心圆形闭合回路L (A) ?=?L l B 0d ,且环路上任意一点0B = (B) ?=?L l B 0d ,且环路上 任意一点0B ≠ (C) ?≠?L l B 0d ,且环路上任意一点0B ≠ (D) ?≠?L l B 0d ,且环路上任意一点B = 常量. [ B ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感应强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。现测得导体上下两面电势差为V ,则此导体的霍尔系数等于[ C ] (A) IB V D S (B) B V S ID (C) V D IB (D) IV S B D 5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为 l 。当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、 c 两点间的电势差a c U U -为 [ B ] (A)2 0,a c U U B l εω=-= (B) 2 0,/2a c U U B l εω=-=- (C)22 ,/2a c B l U U B l εωω=-= (D)2 2 ,a c B l U U B l εωω=-= 6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ A ] (A) 位移电流是由变化的电场产生的; (B) 位移电流是由线性变化的磁场产生的; (C) 位移电流的热效应服从焦耳——楞次定律; (D) 位移电流的磁效应不服从安培环路定理.

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理选择题大全

第一章 质点运动学 习题(1) 1、下列各种说法中,正确的说法是: ( ) (A )速度等于位移对时间的一阶导数; (B )在任意运动过程中,平均速度 2/)(0t V V V +=; (C )任何情况下,;v v ?=? r r ?=? ; (D )瞬时速度等于位置矢量对时间的一阶导数。 2、一质点作直线运动,某时刻的瞬时速度 m/s 2=v ,瞬时加速度2m/s 2-=a ,则一秒钟后质点的速度为: ( ) (A)等于0m/s ; (B)等于 -2m/s ; (C)等于2m/s ; (D)不能确定。 3、 一物体从某一确定高度以 0V 的速度水平抛出(不考虑空气阻力),落地时的速 度为t V ,那么它运动的时间是: ( ) (A) g V V t 0 -或g V V t 2 02- ; (B) g V V t 0 -或 g V V t 2202- ; (C ) g V V t 0 - 或g V V t 202- ; (D) g V V t 0 - 或g V V t 2202- 。 4、一质点在平面上作一般曲线运动,其瞬 时速度为 V ,瞬时速率为v ,某一段时间内的平均速度为V ,平均速率为V , 它们之间的关系必定是 ( ) (A) V V V V == ,;(B) V V V V =≠ ,;(C)V V V V ≠= ,;(D) V V V V ≠≠ ,。 5、下列说法正确的是: ( ) (A )轨迹为抛物线的运动加速度必为恒 量; (B )加速度为恒量的运动轨迹

可能是抛物线; (C )直线运动的加速度与速度的方向一 致; (D )曲线运动的加速度必为变量。 第一章 质点运动学 习题(2) 1、 下列说法中,正确的叙述是: ( ) a) 物体做曲线运动时,只要速度大小 不变,物体就没有加速度; b) 做斜上抛运动的物体,到达最高点 处时的速度最小,加速度最大; (C )物体做曲线运动时,有可能在某时刻法向加速度为0; (D )做圆周运动的物体,其加速度方向一定指向圆心。 2、质点沿半径为R 的圆周的运动,在自然 坐标系中运动方程为 22 t c bt s -=,其中 b 、 c 是常数且大于0,Rc b >。其切向加速度和法向加速度大小达到相等所用 最短时间为: ( ) (A) c R c b + ; (B) c R c b - ; (C) 2cR c b -; (D) 22cR cR c b +。 3、 质点做半径为R 的变速圆周运动时的加 速度大小为(v 表示任一时刻质点的速率) ( ) (A ) t v d d ; (B )R v 2 ; (C ) R v t v 2 +d d ; (D ) 2 22)d d (??? ? ??+R v t v 。 第二章 牛顿定律 习题 1、水平面上放有一质量m 的物体,物体与水平面间的滑动摩擦系数为μ,物体在图示 恒力F 作用下向右运动,为使物体具有最大的加速度,力F 与水平面的夹角θ应满 足 : ( ) (A )cosθ=1 ; (B )sinθ=μ ; (C ) tan θ=μ; (D) cot θ=μ。

大学物理-电磁学部分-试卷及答案word版本

学习资料 大学物理试卷 (考试时间 120分钟 考试形式闭卷) 年级专业层次 姓名 学号 一.选择题:(共30分 每小题3分) 1.如图所示,两个“无限长”的共轴圆柱面,半径分别为R 1和R 2,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间,距离轴线为r 的P 点处的场强大小E 为: (A )r 012πελ. (B )r 0212πελλ+. (C ))(2202r R -πελ. (D )) (2101R r -πελ. 2.如图所示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功 (A ) A < 0且为有限常量.(B ) A > 0且为有限常量. (C ) A =∞.(D ) A = 0. 3.一带电体可作为点电荷处理的条件是 (A )电荷必须呈球形分布. (B )带电体的线度很小. (C )带电体的线度与其它有关长度相比可忽略不计. (D )电量很小. 4.下列几个说法中哪一个是正确的? (A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向. (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.

学习资料 (C )场强方向可由q F E /ρρ=定出,其中q 为试探电荷的电量,q 可正、可负,F ρ 为试探 电荷所受的电场力. (D )以上说法都不正确. 5.在图(a )和(b )中各有一半径相同的圆形回路1L 、2L ,圆周内有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,P 1、P 2为两圆形回路上的对应点,则: (A )212 1 ,d d P P L L B B l B l B =?=???ρρρρ (B )212 1 ,d d P P L L B B l B l B =?≠???ρ ρρρ (C )212 1 ,d d P P L L B B l B l B ≠?=???ρρρρ (D )212 1 ,d d P P L L B B l B l B ≠?≠???ρ ρρρ 6.电场强度为E ρ的均匀电场,E ρ 的方向与X 轴正向平行,如图所示.则通过图中一半径 为R 的半球面的电场强度通量为 (A )E R 2π.(B )E R 22 1 π. (C )E R 22π. (D )0 7.在静电场中,有关静电场的电场强度与电势之间的关系,下列说法中正确的是: (A )场强大的地方电势一定高. (B )场强相等的各点电势一定相等. (C )场强为零的点电势不一定为零. (D )场强为零的点电势必定是零. 8.正方形的两对角上,各置点电荷Q ,在其余两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为 (A )q Q 22-=. (B )q Q 2-=. (C )q Q 4-=. (D )q Q 2-=. 9.在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将 (A )向下偏. (B )向上偏. (C )向纸外偏. (D )向纸内偏.

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间内合力作功 为A 1,32t t →时间内合力作功为A 2,43t t → (C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间内,其平 均速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D )T R π2, 0 5、质点在恒力F ρ作用下由静止开始作直线运动。已知在时间1t ?内,速率由0增加到υ; 在2t ?内,由υ增加到υ2。设该力在1t ?内,冲量大小为1I ,所作的功为1A ;在2t ?内, 冲量大小为2I ,所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直 线运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力 F 的大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理题库之近代物理答案

大学物理题库------近代物理答案 一、选择题: 01-05 DABAA 06-10 ACDBB 11-15 CACBA 16-20 BCCCD 21-25 ADDCB 26-30 DDDDC 31-35 ECDAA 36-40 DACDD 二、填空题 41、见教本下册p.186; 42、c ; 43. c ; 44. c , c ; 45. 8106.2?; 46. 相对的,相对运动; 47. 3075.0m ; 48. 181091.2-?ms ; 49. 81033.4-?; 51. s 51029.1-?; 52. 225.0c m e ; 53. c 23, c 2 3; 54. 2 0) (1c v m m -= , 202c m mc E k -=; 55. 4; 56. 4; 57. (1) J 16109?, (2) J 7105.1?; 58. 61049.1?; 59. c 32 1; 60. 13108.5-?, 121004.8-?; 61. 20 )(1l l c -, )( 02 0l l l c m -; 62. 1 1082.3?; 63. λ hc hv E ==, λ h p = , 2 c h c m νλ = = ; 64. V 45.1, 151014.7-?ms ; 65. )(0v c e h -λ ; 66. 5×1014,2; 67. h A /,e h /)(01νν-; 68. 5.2,14 100.4?; 69. 5.1; 70. J 261063.6-?,1341021.2--??ms kg ; 71. 21E E >, 21s s I I <; 72. 5.2,14100.4?; 73. π,0; 74. 负,离散; 75. 定态概念, 频率条件(定态跃迁); 76. —79. 见教本下册p.246--249; 80. (1)4,1;(2)4, 3; 81. J m h E k 21 2 210 29.32?== λ;

大学物理”力学和电磁学“练习题附答案

部分力学和电磁学练习题(供参考) 一、选择题 1. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间, 圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. [ C ] 2. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ A ] 3. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 0 12εq . (C) 024εq . (D) 0 48εq . [ C ] 4. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板 的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为 (A) d S q q 0212ε+. (B) d S q q 02 14ε+. (C) d S q q 021 2ε-. (D) d S q q 02 14ε-. [ C ] 5. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C . [ D ] 6. 均匀磁场的磁感强度B ? 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2πr 2B . (B) πr 2B . (C) 0. (D) 无法确定的量. [ B ] 7. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上, 稳恒电流I 从a 端流入而从d 端流出,则磁感强度B ? 沿图中闭合路径L 的积 分??L l B ? ?d 等于 (A) I 0μ. (B) I 03 1 μ. (C) 4/0I μ. (D) 3/20I μ. [ D ] O M m m - P 0 A b c q d A S q 1q 2 C B A I I a b c d 120°

大学物理考试题库-大学物理考试题

马文蔚( 112 学时) 1-9 章自测题 第 1 部分:选择题 习题 1 1-1 质点作曲线运动,在时刻t质点的位矢为r ,速度为 v ,t 至 t t 时间内的位移为r ,路程为s,位矢大小的变化量为r (或称r ),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有() (A )r s r (B )(C)(D )r s r ,当t0 时有 dr ds dr r r s ,当t0 时有 dr dr ds r s r ,当t0 时有 dr dr ds (2)根据上述情况,则必有() (A )(C)v v, v v( B)v v, v v v v, v v(D )v v, v v 1-2 一运动质点在某瞬间位于位矢r ( x, y) 的端点处,对其速度的大小有四种意见,即 (1)dr ;( 2) dr ;(3) ds ;(4)( dx )2( dy )2 dt dt dt dt dt 下列判断正确的是: (A )只有( 1)(2)正确(B )只有( 2)正确 (C)只有( 2)(3)正确(D )只有( 3)( 4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度, a 表示加速度,s表示路程,a t表示切向加速度。对下列表达式,即 (1)dv dt a ;(2) dr dt v ;(3) ds dt v ;(4)dv dt a t。 下述判断正确的是() (A )只有( 1)、( 4)是对的(B )只有( 2)、(4)是对的 (C)只有( 2)是对的( D)只有( 3)是对的 1-4 一个质点在做圆周运动时,则有() (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C)切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变 1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ= . (C) 204r Q E επ= ,r Q U 04επ= . (D) 204r Q E επ= ,R Q U 04επ=. [ ] 2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ]

3.在磁感强度为B ?的均匀磁场中作一半径为r 的半球面S ,S 边线所在 平面的法线方向单位矢量n ?与B ? 的夹角为? ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) ?r 2B . . (B) 2??r 2B . (C) -?r 2B sin ?. (D) -?r 2B cos ?. [ ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势 ? y z x I 1 I 2

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理力学题库及答案

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 (A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向. [ D ] 2、一质点沿x 轴作直线运动,其v -t 曲 线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ B ] 3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分 别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ D ] 4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=, 则一秒钟后质点的速度 (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定. [ D ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中 a 、 b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运 动. [ B ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x [ D ] 1 4.5432.52-112 t (s) v (m/s) O c b a p

大学物理电磁学部分练习题讲解

大学物理电磁学部分练习题 1.在静电场中,下列说法中哪一个是正确的?(D ) (A )带正电荷的导体,其电势一定是正值. (B )等势面上各点的场强一定相等. (C )场强为零处,电势也一定为零. (D )场强相等处,电势梯度矢量一定相等. 2.当一个带电导体达到静电平衡时:D (A )表面上电荷密度较大处电势较高. (B )表面曲率较大处电势较高. (C )导体内部的电势比导体表面的电势高. (D )导体内任一点与其表面上任一点的电势差等于零. 3. 一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布 为(r 表示从球心引出的矢径): ( 0 r r R 3 02εσ) =)(r E )(R r <, =)(r E )(R r >. 4.电量分别为q 1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R ,则b 点处的电势U = )22(813210q q q R ++πε 5.两个点电荷,电量分别为+q 和-3q ,相距为d ,试求: (l )在它们的连线上电场强度0=E 的点与电荷量为+q 的点电荷相距多远? (2)若选无穷远处电势为零,两点电荷之间电势U = 0的点与电荷量为+q 的点电荷相距多远? .解:设点电荷q 所在处为坐标原点O ,X 轴沿两点电荷的连线. (l )设0=E 的点的坐标为x ′,则 d q +q 3-

0)'(43'42 02 0=-- = i d x q i x q E πεπε 可得 0'2'222=-+d dx x 解出 d x )31(21'1+-=和 d x )13(21' 2-= 其中'1x 符合题意,'2x 不符合题意,舍去. (2)设坐标x 处 U = 0,则 ) (43400x d q x q U -- = πεπε 0]) (4[40 =--= x d x x d q πε 得 4/04d x x d ==- 6.一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小. 解答:将半球面分成由一系列不同半径的带电圆环组成,带电半球面在圆心O 点处的电场就是所有这些带电圆环在O 点的电场的叠加。 今取一半径为r ,宽度为Rd θ的带电细圆环。 带电圆环在P 点的场强为:() 3222 01 ?4qx E r a x πε= + 在本题中,cos x h R θ==,a r = 所以可得:() 33 222 0044hdq hdq dE R r h πεπε= = + 上式中()222sin dq r Rd R d σπθπσθθ== 即:33 00 2sin cos sin cos 42R d dE d R σπθθθσ θθθπεε== 整个半球面为:2000sin cos 24E dE d π σ σθθθεε===????,方向沿半径向外 7. 电荷q 均匀地分布在一半径为R 的圆环上。计算在圆环的轴线上任一给定点 P 的场强。

大学物理考试试题

一、选择题 (每小题2分,共20分) 1. 关于瞬时速率的表达式,正确的是 ( B ) (A) dt dr =υ; (B) dt r d = υ; (C) r d =υ; (D) dr dt υ= r 2. 在一孤立系统内,若系统经过一不可逆过程,其熵变为S ?,则下列正确的是 ( A ) (A) 0S ?>; (B) 0S ?< ; (C) 0S ?= ; (D) 0S ?≥ 3. 均匀磁场的磁感应强度B 垂直于半径为r 的圆面,今以该圆面为边界,作以半球面S ,则通过S 面的磁通量的大小为 ( B ) (A )2πr 2B; (B) πr 2B; (C )0; (D )无法确定 4. 关于位移电流,有下面四种说法,正确的是 ( A ) (A )位移电流是由变化的电场产生的; (B )位移电流是由变化的磁场产生的; (C )位移电流的热效应服从焦耳—楞次定律; (D )位移电流的磁效应不服从安培环路定律。 5. 当光从折射率为1n 的介质入射到折射率为2n 的介质时,对应的布儒斯特角b i 为 ( A ) 2 1 1 2 (A)( );(B)( );(C) ;(D)02 n n arctg arctg n n π 6. 关于电容器的电容,下列说法正确..的是 ( C ) (A) 电容器的电容与板上所带电量成正比 ; (B) 电容器的电容与板间电压成反比; (C)平行板电容器的电容与两板正对面积成正比 ;(D) 平行板电容器的电容与两板间距离成正比 7. 一个人站在有光滑转轴的转动平台上,双臂水平地举二哑铃。在该人把二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统 ( C ) (A )机械能守恒,角动量不守恒; (B )机械能守恒,角动量守恒; (C )机械能不守恒,角动量守恒; (D )机械能不守恒,角动量也不守恒; 8. 某气体的速率分布曲线如图所示,则气体分子的最可几速率v p 为 ( A ) (A) 1000 m ·s -1 ; (B )1225 m ·s -1 ; (C) 1130 m ·s -1 ; (D) 1730 m ·s -1 得分

大学物理电磁学复习题含答案

题8-12图 8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2 σ 解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E )(21210 σσε-= 1σ面外, n E )(21210 σσε+- = 2σ面外, n E )(21210 σσε+= n :垂直于两平面由1σ面指为2σ面. 8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E , ρ- 球在O 点产生电场'd π4π343 03 20 OO r E ερ= ∴ O 点电场'd 33 030 r E ερ= ; (2) ρ +在O '产生电场d π4d 343 03 1E ερπ=' ρ-球在O '产生电场002='E ∴ O ' 点电场 03ερ= 'E 'OO

题8-13图(a) 题8-13图(b) (3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r (如题8-13(b)图) 则 3ερr E PO = , 0 3ερr E O P ' - =' , ∴ 0033)(3ερερερd r r E E E O P PO P = ='-=+=' ∴腔内场强是均匀的. 8-14 一电偶极子由q =1.0×10-6C d=0.2cm ,把这电偶极子放 在1.0×105N ·C -1 解: ∵ 电偶极子p 在外场E 中受力矩 E p M ?= ∴ qlE pE M ==max 代入数字 4536max 100.2100.1102100.1---?=?????=M m N ? 8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm , 需作多少功? 解: ? ? == ?= 2 2 2 1 0212021π4π4d d r r r r q q r r q q r F A εε )11(2 1r r - 61055.6-?-=J 外力需作的功 61055.6-?-=-='A A J 题8-16图 8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 解: 如题8-16图示 0π41 ε= O U 0)(=-R q R q

相关主题
文本预览
相关文档 最新文档