当前位置:文档之家› 陶瓷电容MLCC漏电失效分析

陶瓷电容MLCC漏电失效分析

陶瓷电容MLCC漏电失效分析
陶瓷电容MLCC漏电失效分析

MLCC漏电失效分析

1.案例背景

客户端在老化实验测试阶段发现MLCCB现漏电失效,其不良比率不详,该MLC(焊接工艺为回流焊接工艺。

2.分析方法简述

通过外观检查0K样品与NG样品表面未见明显异常。?

通过X射线透视检查,0K羊品和NG羊品内部均未发现裂纹孔洞等异常。

将0K样品和NG样品分别切片,然后在金相显微镜下放大拍照观察MLC(内部结构,NG 样品电容内部存在镍瘤及热应力裂纹,而0K样品未见异常。

通过对样品剖面SEM/ED分析,NG样品电容内部电极层不连续,存在明显镍瘤;其镍瘤周围多条向外延伸裂纹并在裂缝通道内发现明显碳化痕迹(EDS结果中C含量高达50%,此应为热应力裂纹,裂纹的存在直接导致电容性能异常;而0K样品电容内部电极层连续,陶瓷介质层致密未发现孔洞及镍瘤,电容性能良好。

3.分析与讨论

失效模式分析:

多层陶瓷电容器(MLCC本身的内在可靠性十分优良,可长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对可靠性产生严重的影响。陶瓷多层电容器(MLCC失效的原因一般分为外部因素和内在因素。内在因素包括:陶瓷介质内空洞、介质层分层;外部因素包括:热应力裂纹及机械应力裂纹。

1)陶瓷介质内的孔洞

所谓的陶瓷介质内的孔洞是指在相邻电极间的介质层中存在较大的孔洞,这些孔洞由于内部可能含有水汽或离子,在端电极间施加电压时,降低此处的耐压强度,导致此处发生过电击穿现象。

2)介质层分层

多层陶瓷电容的烧结为多层材料堆叠共烧,烧结温度在1000 r以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。值得一提的是,某些分层还可能导致陶瓷介质内部产生裂纹,或在介质层内出现断续的电极颗粒等,这些都与电容器的生产工艺有关。分层的直接影响是绝缘电阻降低,电容量减小。

3)热应力裂纹

实际使用中各种温度冲击往往容易产生热应力,热应力产生的裂纹主要分布区域为陶瓷靠近端电极的两侧,常见的表现形式为贯穿瓷体的裂纹,有的裂纹与内电极呈现90°。需要强调的是,这些裂纹产生后,不一定在现场就表现出实效,大多数是在使用一段时间后,水汽或离子进入裂纹内部,致使电容的绝缘电阻降低而导致电容失效。

4)机械应力裂纹

多层陶瓷电容器(MLCC的特点是能够承受较大的压应力,但抵抗弯曲能力比较差。器件组装过程中任何可能产生弯曲变形的操作都可能导致器件开裂。常见的应力源有:工艺过程电路板流转操作;流转过程中的人、设备、重力等因素;元件接插操作;电路测试;单板分割;电路板安装;电路板定位铆接;螺丝安装等。该裂纹一般源于器件上下金属化端子,沿45°向器件内部扩展,详见图23。

案例失效分析与讨论

通过外观检查0K样品与NG样品表面均完好,未见裂纹、破损等异常。

通过X-ray透视检查,0K样品和NG样品内部均未发现裂纹孔洞等异常。

将0K样品和NG样品分别切片,然后在金相显微镜下放大拍照观察MLC(内部结构,NG 样品电容内部存在镍瘤及热应力裂纹,而0K样品未见异常。

通过对样品剖面SEM/ED分析,NG样品电容内部电极层不连续,存在明显镍瘤;其镍瘤周围多条向外延伸裂纹并在裂缝通道内发现明显碳化痕迹(EDS结果中C含量高达50%,此应为热应力裂纹,裂纹的存在直接导致电容性能异常;而OK样品电容内部电极层连续,陶瓷介质层致密未发现孔洞及镍瘤,电容性能良好。

4.结论

综合测试分析可知,导致产品测试异常的原因为:NG失效的根本原因在于电容本身质量

问题,其内部存在镍瘤,镍瘤的存在使热应力裂纹的萌生产生了可能。

建议:对MLC(每批来料进行抽检做切片分析,观察其内部结构是否存在来料不良问题。

电容失效分析详解

陶瓷电容失效分析: 多层片状陶介电容器由陶瓷介质、端电极、金属电极三种材料构成,失效形式为金属电极和陶介之间层错,电气表现为受外力(如轻轻弯曲板子或用烙铁头碰一下)和温度冲击(如烙铁焊接)时电容时好时坏。 多层片状陶介电容器具体不良可分为: 1、热击失效 2、扭曲破裂失效 3、原材失效三个大类 (1)热击失效模式: 热击失效的原理是:在制造多层陶瓷电容时,使用各种兼容材料会导致内部出现张力的不同热膨胀系数及导热率。当温度转变率过大时就容易出现因热击而破裂的现象,这种破裂往往从结构最弱及机械结构最集中时发生,一般是在接近外露端接和中央陶瓷端接的界面处、产生最大机械张力的地方(一般在晶体最坚硬的四角),而热击则可能造成多种现象: 第一种是显而易见的形如指甲狀或U-形的裂縫 第二种是隐藏在内的微小裂缝

第二种裂缝也会由裸露在外的中央部份,或陶瓷/端接界面的下部开始,并随温度的转变,或于组装进行时,顺着扭曲而蔓延开来(见图4)。 第一种形如指甲狀或U-形的裂縫和第二种隐藏在内的微小裂缝,两者的 区别只是后者所受的张力较小,而引致的裂缝也较轻微。第一种引起的破裂 明显,一般可以在金相中测出,第二种只有在发展到一定程度后金相才可测。 (2)扭曲破裂失效 此种不良的可能性很多:按大类及表现可以分为两种: 第一种情况、SMT阶段导致的破裂失效 当进行零件的取放尤其是SMT阶段零件取放时,取放的定中爪因为磨损、对位不准确,倾斜等造成的。由定中爪集中起来的压力,会造成很大的压力 或切断率,继而形成破裂点。

这些破裂现象一般为可见的表面裂缝,或2至3个电极间的内部破裂;表面破裂一般会沿着最强的压力线及陶瓷位移的方向。 真空检拾头导致的损坏或破裂﹐一般会在芯片的表面形成一个圆形或半月形的压痕面积﹐并带有不圆滑的边缘。此外﹐这个半月形或圆形的裂缝直经也和吸头相吻合。 另一个由吸头所造成的损环﹐因拉力而造成的破裂﹐裂缝会由组件中央的一边伸展到另一边﹐这些裂缝可能会蔓延至组件的另一面﹐并且其粗糙的裂痕可能会令电容器的底部破损。 第二种、SMT之后生产阶段导致的破裂失效 电路板切割﹑测试﹑背面组件和连接器安装﹑及最后组装时,若焊锡组件受到扭曲或在焊锡过程后把电路板拉直,都有可能造成‘扭曲破裂’这类的损坏。 在机械力作用下板材弯曲变形时,陶瓷的活动范围受端位及焊点限制,破裂就会在陶瓷的端接界面处形成,这种破裂会从形成的位置开始,从45°角向端接蔓延开来。

铝电解电容失效分析报告

400V47电解电容失效分析报告 客户供应商问题发生处 市场反馈品 产品名/型号 400V47uF 部品名铝电解电容器收到反馈 品 时 间 Discipline1 组织成员 ***(技术部长)*** ( 品保部长) *** (工艺工程师) *** (材料工程师)***(制造部长)***(品质主管) 日期/时间:2009年12月29日 Discipline2 问题描述 收到***司400V47uF市场反馈品(14只,见下图1)。 图1 Discipline3 原因分析 一.外观质量: 1.不良品生产年代分类情况: 序号 套管线号 生产时间 数量 NO1 U-5 2006年 1 NO2 V-3 2007年 10 NO3 W-H 2008年 3 从以上不良品套管表面标识可知,反馈产品为本司2006年-2008年生产产品, 与前几次市场反馈品为同时期生产产品。

43.7nF 95.7 837 33.37nF 261.6 1540 测试结论:容量小、损耗及漏电流大。 有引线产品X线图片 断引线产品图片

透视检查结论: 以上X线透视检查结果表明:反馈品除芯包鼓凸外,其他内部结构无异常。 四、解剖电容器内部结构: 解剖电容器内部结构:橡皮塞老化变形、表面局部有电解液残余(图3),芯包发热干 枯、电解液挥发,但铝壳内壁无击穿打火痕迹(图4)。进一步展开检查芯包内部结构,电 解纸发热局部部位呈焦黄色、阳极箔片脆干,但电解纸及箔片表面无击穿点,而且引线与 箔片铆接质量良好(图5)。 图3 图4 图5 五、原因分析: 以上测试、解析结果表明:此次反馈不良品大部分为同时期生产产品,而且不良现象基本相同,均为典型的长时间使用后的发热失效品。根据电容器发热失效机理,以及我们对该产品的材料工艺配套和制程的进一步追溯分析、组织相关部门的多方讨论意见等,我们分析认为造成该产品多次市场失效的可能原因是: 1.该产品生产时间偏长。虽然 08年才开始陆续使用,存在一定的装机、储存、发运或后续

陶瓷电容MLCC漏电失效分析

MLCC漏电失效分析 1. 案例背景 客户端在老化实验测试阶段发现MLCC出现漏电失效,其不良比率不详,该MLCC焊接工艺为回流焊接工艺。 2. 分析方法简述 通过外观检查OK样品与NG样品表面未见明显异常。 通过X射线透视检查,OK样品和NG样品内部均未发现裂纹孔洞等异常。 将OK样品和NG样品分别切片,然后在金相显微镜下放大拍照观察MLCC内部结构,NG样品电容内 部存在镍瘤及热应力裂纹,而OK样品未见异常。 通过对样品剖面SEM/EDS分析, NG样品电容内部电极层不连续,存在明显镍瘤;其镍瘤周围多条向外延伸裂纹并在裂缝通道内发现明显碳化痕迹(EDS结果中C含量高达50%),此应为热应力裂纹,裂纹的存在直接导致电容性能异常;而OK样品电容内部电极层连续,陶瓷介质层致密未发现孔洞及镍瘤,电容性能良好。 3. 分析与讨论 失效模式分析: 多层陶瓷电容器(MLCC)本身的内在可靠性十分优良,可长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对可靠性产生严重的影响。陶瓷多层电容器(MLCC)失效的原因一般分为外部因素和内在因素。内在因素包括: 陶瓷介质内空洞、介质层分层;外部因素包括:热应力裂纹及机械应力裂纹。 1)陶瓷介质内的孔洞 所谓的陶瓷介质内的孔洞是指在相邻电极间的介质层中存在较大的孔洞,这些孔洞由于内部可能含有水汽或离子,在端电极间施加电压时,降低此处的耐压强度,导致此处发生过电击穿现象。 2)介质层分层 多层陶瓷电容的烧结为多层材料堆叠共烧,烧结温度在1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。值得一提的是,某些分层还可能导致陶瓷介质内部产生裂纹,或在介质层内出现断续的电极颗粒等,这些都与电容器的生产工艺有关。分层的直接影响是绝缘电阻降低,电容量减小。 3)热应力裂纹 实际使用中各种温度冲击往往容易产生热应力,热应力产生的裂纹主要分布区域为陶瓷靠近端电极的两侧,常见的表现形式为贯穿瓷体的裂纹,有的裂纹与内电极呈现90°。需要强调的是,这些

MLCC的质量控制与失效分析

无源元件(passive component) 在电子产品中占有十分重要的地位。虽然很多无源元件在整个电子产品中所占的物料价值并不高,但任何一个微不足道的元器件的失效都可能导致整个系统的失效。一般电子产品中有源元器件(IC)和无源元件的比例约为1:10-20。从该数据可以看出无源元件质量控制的重要性。 无源元件的类型很多,多层陶瓷电容器(MLCC)是其中最重要,也是用量最大的产品之一。MLCC的典型结构中导体一般为Ag或AgPd,陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。器件端头镀层一般为烧结 Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn 发生反应),再在Ni层上制备Sn或SnPb层用以焊接。近年来,也出现了端头使用Cu的MLCC产品。 根据MLCC的电容数值及稳定性,MLCC划分出NP1、COG、 X7R、 Z5U等。根据MLCC的尺寸大小,可以分为1206,0805,0603,0402,0201等。 MLCC 的常见失效模式 多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。 陶瓷多层电容器失效的原因分为外部因素和内在因素 内在因素主要有以下几种: 1.陶瓷介质内空洞 (Voids) 导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。 2.烧结裂纹 (firing crack) 烧结裂纹常起源于一端电极,沿垂直方向扩展。主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。 3.分层 (delamination) 多层陶瓷电容器的烧结为多层材料堆叠共烧。烧结温度可以高达1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。 外部因素主要为:

(整理)陶瓷电容失效分析

多层陶瓷电容器(MLCC)的典型结构中导体一般为Ag或AgPd,陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。器件端头镀层一般为烧结 Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn 发生反应),再在Ni层上制备Sn或SnPb层用以焊接。近年来,也出现了端头使用Cu的MLCC产品。 根据MLCC的电容数值及稳定性,MLCC划分出NP1、COG、 X7R、 Z5U 等。根据MLCC的尺寸大小,可以分为1206,0805,0603,0402,0201等。 MLCC 的常见失效模式 多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。 陶瓷多层电容器失效的原因分为外部因素和内在因素 内在因素主要有以下几种: 1.陶瓷介质内空洞 (Voids) 导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。 2.烧结裂纹 (firing crack) 烧结裂纹常起源于一端电极,沿垂直方向扩展。主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。 3.分层 (delamination) 多层陶瓷电容器的烧结为多层材料堆叠共烧。烧结温度可以高达1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。 外部因素主要为: 1.温度冲击裂纹(thermal crack) 主要由于器件在焊接特别是波峰焊时承受温度冲击所致,不当返修也是导致温度冲击裂纹的重要原因。

陶瓷电容器的特性及选用

陶瓷电容器的特性及选用 陶瓷电容器是目前电子设备中使用最广泛的一种电容器,占整个电容器使用数量的50%左右,但由于许多人对其特性了解不足导致在使用上缺乏应有的重视。为达到部品使用的规范化和标准化要求,下面对陶瓷电容器的特性及我司使用中需要注意的事项做一概况说明: 一、陶瓷电容器特性分类: 陶瓷电容器具有耐热性能好,绝缘性能优良,结构简单,价格低廉等优点,但不同陶瓷材料其特性有非常大的差异,必须根据使用要求正确选用。陶瓷电容按频率特性分有高频瓷介电容器(1类瓷)和低频瓷介电容器(2类瓷);按耐压区分有高压瓷介电容器(1KV DC以上)和低压瓷介电容器(500V DC以下),现分述如下: 1.高频瓷介电容器(亦称1类瓷介电容器) 该类瓷介电容器的损耗在很宽的范围内随频率的变化很小,并且高频损耗值很小,(tanδ≤0.15%,f=1MHz),最高使用频率可达1000MHz以上。同时该类瓷介电容器温度特性优良,适用于高频谐振、滤波和温度补偿等对容量和稳定度要求较高的电路。其国标型号为CC1(低压)和CC81(高压),目前我司常用的温度特性组别有CH(NP0)和SL 组,其常规容量范围对应如下: 表中温度系数α C =1/C(C 2 -C 1 /t 2 -t 1 )X106(PPM/°C),是指在允许温度范围内,温度每变 化1°C,电容量的相对变化率。由上表看出,1类瓷介电容器的温度系数很小,尤其是CH特性,因此也常把1类瓷介电容器中CH电容称为温度补偿电容器。但由于该类陶瓷材

料的介电常数较小,因此其容量值难以做高。因此当需要更高容量值的电容时,则只能在下面介绍的2类瓷介电容中寻找。 2、低频瓷介电容器(亦称2类瓷介电容器) 该类瓷介电容的陶瓷材料介电常数较大,因而制成的电容器体积小,容量范围宽,但频率特性和温度特性较差,因此只适合于对容量、损耗和温度特性要求不高的低频电路做旁路、耦合、滤波等电路使用。国标型号为CT1(低压)和CT81(高压),其常用温度特性组别和常规容量范围对应如下: 中2R组为低损耗电容,由于其自身温升小,频率特性较好,因而可以用于频率较高的场合。 对低压瓷介电容,当容量大于47000pF时,则只能选择3类瓷介电容器(亦称半导体瓷介电容器),例如:我司大量使用的26-ABC104-ZFX,但该类电容温度特性更差,绝缘电阻较低,只是因高介电材料,体积可以做得很小。因此只适用要求较低的工作电路。如选用较大容量电容,而对容量和温度特性又有较高使用要求,则应选用27类有机薄膜电容器。 3、交流瓷介电容器 根据交流电源的安全性使用要求,在2类瓷介电容器中专门设计生产了一种绝缘特性和抗电强度很高的交流瓷介电容器,亦称Y电容,按绝缘等级划分为Y1、Y2、Y3三大系列,其用途和特性分类如下:

电容阻值降低、漏电失效分析

电容阻值降低、漏电失效分析 2014-08-02 摘要: 本文通过无损分析、电性能测试、结构分析和成分分析,得出导致电容阻值下降、电容漏电是多方面原因共同作用的结果:(1)MLCC本身内部存在介质空洞(2)端电极与介质结合处存在机械应力裂纹(3)电容外表面存在破损。 1.案例背景 MLCC电容在使用过程中出现阻值降低、漏电失效现象。 2.分析方法简述 透视检查NG及OK样品均未见裂纹、孔洞等明显异常。 图1.样品X射线透视典型照片

从PCBA外观来看,组装之后的电容均未受到严重污染,但NG样品所受污染程度比OK样品严重,说明电容表面的污染可能是引起电容失效的潜在原因。EDS能谱分析可知,污染物主要为助焊剂与焊锡的混合物,金属锡所占的比例约为16(wt.)%。从电容外观来看,所有样品表面均未见明显异常,如裂纹等。 图2.电容典型外观照片 利用数字万用表分别测试NG电容和OK电容的电阻,并将部分失效样品机械分离、清洗后测试其电阻,对电容进行失效验证。电学性能测试表明,不存在PCB上两焊点间导电物质(污染物)引起失效的可能性,失效部位主要存在于电容内部。

对样品进行切片观察,OK样品和NG样品内部电极层均连续性较差,且电极层存在孔洞,虽然电极层孔洞的存在会影响电容电学性能,但不会造成电容阻值下降,故电极层孔洞不是电容漏电的原因。 对NG样品观察,发现陶瓷介质中存在孔洞,且部分孔洞贯穿多层电极,孔洞内部可能存在水汽或者离子(外来污染),极易导致漏电,而漏电又会导致器件内局部发热,进一步降低陶瓷介质的绝缘性从而导致漏电的增加,形成恶性循环;左下角端电极与陶瓷介质结合处存在机械应力裂纹,可导电的污染物可夹杂于裂纹中,导致陶瓷介质的介电能力下降而发生漏电,使绝缘阻值下降,此外裂纹内空气中的电场强度较周边高,而其击穿电场强度却远比周边绝缘介质低,从而电容器在后续工作中易被击穿,造成漏电;除此之外,电容表面绝缘层存在严重破损,裂纹已延伸至内电极,加之表面污染物的存在,在恶劣潮湿环境下就会与端电极导通,形成漏电。 对比失效样品,OK样品电容内部结构成分一致,内电极为Ni电极,电极层连续性较差,且存在较多细小孔洞。但并未发现贯穿相邻电极的孔洞和机械应力裂纹的存在,电容表面破损程度亦较低,故不存在漏电现象。

电容失效模式和机理

电容的失效模式和失效机理 电容器的常见失效模式有: ――击穿短路;致命失效 ――开路;致命失效 ――电参数变化(包括电容量超差、损耗角正切值增大、绝缘性能下降或漏电流上升等;部分功能失效 ――漏液;部分功能失效 ――引线腐蚀或断裂;致命失效 ――绝缘子破裂;致命失效 ――绝缘子表面飞弧;部分功能失效 引起电容器失效的原因是多种多样的。各类电容器的材料、结构、制造工艺、性能和使用环境各不相同,失效机理也各不一样。 各种常见失效模式的主要产生机理归纳如下。 3.1失效模式的失效机理 3.1.1 引起电容器击穿的主要失效机理 ①电介质材料有疵点或缺陷,或含有导电杂质或导电粒子; ②电介质的电老化与热老化; ③电介质内部的电化学反应; ④银离子迁移; ⑤电介质在电容器制造过程中受到机械损伤; ⑥电介质分子结构改变; ⑦在高湿度或低气压环境中极间飞弧;

⑧在机械应力作用下电介质瞬时短路。 3.1.2 引起电容器开路的主要失效机理 ①引线部位发生“自愈“,使电极与引出线绝缘; ②引出线与电极接触表面氧化,造成低电平开路; ③引出线与电极接触不良; ④电解电容器阳极引出箔腐蚀断裂; ⑤液体电解质干涸或冻结; ⑥机械应力作用下电介质瞬时开路。 3.1.3 引起电容器电参数恶化的主要失效机理 ①受潮或表面污染; ②银离子迁移; ③自愈效应; ④电介质电老化与热老化; ⑤工作电解液挥发和变稠; ⑥电极腐蚀; ⑦湿式电解电容器中电介质腐蚀; ⑧杂质与有害离子的作用; ⑨引出线和电极的接触电阻增大。 3.1.4 引起电容器漏液的主要原因 ①电场作用下浸渍料分解放气使壳内气压上升; ②电容器金属外壳与密封盖焊接不佳; ③绝缘子与外壳或引线焊接不佳;

陶瓷电容失效率计算

Doc. No : MT-FRR8_E Failure rate of Monolithic Ceramic Capacitors QA section, M.L.C.Group FUKUI MURATA MFG, CO.,LTD 1. Basic standards Test of failure rate shall be performed in accordance with MIL-STD-690, MIL-C-39014, MIL-HDBK-217, and JIS-C-5003. 2. Failure mode Failure modes are Open, Short, and other electrical items which are critical defects for Monolithic Ceramic Capacitors. 3. Calculation of failure rate 3-1. Confidence level Failure rate is calculated in the confidence level 60%. 3-2. Formula of failure rate FR = ( r/T ) x K x 109 ( Fit ) FR : Failure rate ( Fit= 0.0001%/1000 hours ) r : Number of accumulated failures ( r x K=0.917, if r=0 ) T : Accumulated component hours K : Coefficient of confidence level 60% ( Please refer to table 1)

Failure samples Coefficient Failure samples Coefficient not applied 4 1.31 1 2.0 2 5 1.26 2 1.56 6 1.22 3 1.39 7 1.20 4. Failure rate at the rated condition Family Rated voltage Temperature Failure rate MTTF 6.3/10(v) Max.operating Temperature 10 Fit 1.0 x 108 hours GRM series Monolithic Ceramic Chip Capacitor 16 to 100(v) Max.operating Temperature 6 Fit 1.6 x 108 hours

陶瓷电容耐压不良失效分析

陶瓷电容耐压不良失效分析 美信检测失效分析实验室 摘要: 通过对NG样品、OK样品进行了外观光学检查、金相切片分析、SEM/EDS分析及模拟试验分析,认为造成陶瓷电容耐压不良原因为二次包封模块固化过程中及固化后应力作用造成陶瓷-环氧界面存在间隙,导致其耐压水平降低。 关键词: 陶瓷电容电容耐压不良电容失效电容失效分析耐压失效分析 1. 案例背景 陶瓷电容器客户端耐压不良。 2.分析方法简述 (1)通过对NG样品、OK样品进行了外观光学检查、金相切片分析、SEM/EDS分析及模拟试验后,发现NG样品均存在明显的陶瓷-环氧界面脱壳,产生了气隙,此气隙的存在会严重影响电容的耐压水平。从测试结果,可以明显看到在陶瓷-环氧分离界面的裂缝位置存在明显的碳化痕迹,且碳化严重区域基本集中在边缘封装较薄区域,而OK样品未见明显陶瓷-环氧界面脱壳分离现象。 (2)NG样品与OK样品结构成分一致,未见结构明显异常。失效的样品是将未封样品经焊接组装灌胶,高温固化后组成单元模块进行使用的。取样品外封环氧树脂进行玻璃转化温度测试,发现未封样品的外封环氧树脂玻璃转化温度较低,怀疑因为灌胶的高温超过了陶瓷电容的环氧树脂封体的玻璃转化温度,达到了其粘流态,导致陶瓷基体和环氧界面脱粘产生气隙。随着环氧树脂固化冷却过程体积收缩,产生的内应力以残余应力的形式保留在包封层中,并作用于陶瓷-环氧界面,劣化界面的粘结,此时的形变就很难恢复。然后在外部电场力(耐压加电测试)的作用下,在间隙路径上产生了弱点击穿。

图1.样品外观典型外观 对委托方提供的样品进行金相切片,NG 样品环氧树脂封层和陶瓷基材分层明显,两电极间的裂缝通路上有碳化的痕迹,OK 样品未见异常。 图2. NG 样品金相切片照片(500X, 100X ) 图3. OK 样品金相切片照片(500X, 200X ) 样品切片后,对剖切面进行SEM/EDS 分析,NG 样品环氧树脂和陶瓷基材分层明显,且有明显的碳化痕迹 陶瓷基 外封树脂 电极 碳化严重区域 电极 外封树脂 陶瓷基

电子元器件失效模式总结

元器件的失效模式总结 Beverly Chen 2016-2-4 一、失效分析的意义 失效分析(Failure Analysis)的意义在于通过对已失效器件进行事后检查,确定失效模式,找出失效机理,确定失效的原因或相互关系,在产品设计或生产工艺等方面进行纠正以消除失效的再次发生。 一般的失效原因如下: 二、失效分析的步骤 失效分析的步骤要遵循先无损,后有损的方法来一步步验证。比如先进行外观检查,再进行相关仪器的内部探查,然后再进行电气测试,最后才可以进行破坏性拆解分析。这样可以避免破坏性的拆解破坏证据。拿到失效样品,首先从外观检查开始。 1. 外观检查:收到失效样品后,首先拍照,记录器件表面Marking信息,观察器件颜色外观等有何异常。 2.根据器件类型开始分析:

2.1贴片电阻,电流采样电阻 A: 外观检查,顶面覆盖保护层有针状圆形鼓起或黑色击穿孔->内部电阻层烧坏可能->万用表测量阻值:测得开路或者阻抗偏大->内部电阻层烧毁可能->可能原因:过电压或过电流烧毁—>检查改电阻的稳态功率/电压或者瞬时功率/电压是否已超出spec要求。 Coating 鼓起并开裂黑色击穿点 ●可失效样品寄给供应商做开盖分析,查看供应商失效报告:如发现烧毁位置位于激光切 割线下端,可确定是过电压导致失效。需要考虑调整应用电路,降低电压应力,或者换成能承受更大应力的电阻。 激光切割线 去除coating保护层后,可以看到烧毁位置位于激光切割线旁边,该位置电应力最集中。 B: 外观检查,顶面底面均无异常->万用表测量阻值:测得开路或者阻抗偏大->内部电阻层烧毁或者电极因硫化断开或阻抗增大->检查改电阻的稳态功率或者瞬时功率是否已超出spec要求,如有可能是过电压或过功率烧毁;应力分析在范围内,考虑硫化->失效样品寄给供应商分析。查看供应商失效报告: ●如发现烧毁位置位于激光切割线下端,可确定是过电压导致失效。需要考虑降低应用电 路中的电压应力,或者换成能承受更大应力的电阻。 ●如果测试发现保护层附近电极硫元素含量高且电极沿保护层边缘发生断裂情况,可确认 是应用中硫化物污染导致银电极被硫化生成AgS而断开需确认应用环境是否硫含量比较高。如果有必要,更换为抗硫化电阻。

电解电容与陶瓷电容两种电容的不同作用

电解电容与陶瓷电容:两种电容的不同作用 电解电容与陶瓷电容一般用在IC的电源与地之间,起滤波作用,陶瓷电容单独使用去耦作用,它的使用一般在IC中会有说明,其电解值的大小与IC所需电流大小有关,陶瓷取0.01uf。 电解电容 陶瓷电容 ? 如果我要用别的电容替代某个电容的时候,是必须容量和耐压值都要满足吗有的时候,发现很难两全其美。这时候能不能舍弃其中之一呢

滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢是因为器件对电流的需求随着驱动的需求快。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 电解电容的作用和使用注意事项 一、电解电容在电路中的作用 1,滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容.由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为0.001--0.lpF的电容,以滤除高频及脉冲干扰. 2,耦合作用:在低频信号的传递与放大过程中,为防止前后两级电路的静态工作点相互影响,常采用电容藕合.为了防止信号中韵低频分量损失过大,一般总采用容量较大的电解电容。 二、电解电容的判断方法

电容失效模式及失效机理

电容器失效模式和失效机理 电容器的常见失效模式有:击穿、开路、电参数变化(包括电容量超差、损耗角正切值增大、绝缘性能下降或漏电流上下班升等)、漏液、引线腐蚀或断裂、绝缘子破裂或表面飞弧等.引起电容器失效的原因是多种多样的.各类电容器的材料、结构、制造工艺、性能和使用环境各不相同,失效机理也各不一样. 各种常见失效模式的主要产生机理归纳如下. 1、常见的七种失效模式 (1) 引起电容器击穿的主要失效机理 ①电介质材料有疵点或缺陷,或含有导电杂质或导电粒子; ②电介质的电老化与热老化; ③电介质内部的电化学反应; ④银离子迁移; ⑤电介质在电容器制造过程中受到机械损伤; ⑥电介质分子结构改变; ⑦在高湿度或低气压环境中极间飞弧; ⑧在机械应力作用下电介质瞬时短路. (2) 引起电容器开路的主要失效机理 ①引线部位发生“自愈“,使电极与引出线绝缘; ②引出线与电极接触表面氧化,造成低电平开路; ③引出线与电极接触不良; ④电解电容器阳极引出箔腐蚀断裂; ⑤液体工作台电解质干涸或冻结; ⑥机械应力作用下电介质瞬时开路. (3) 引起电容器电参数恶化的主要失效机理 ①受潮或表面污染; ②银离子迁移; ③自愈效应; ④电介质电老化与热老化; ⑤工作电解液挥发和变稠; ⑥电极腐蚀; ⑦湿式电解电容器中电介质腐蚀; ⑧杂质与有害离子的作用; ⑨引出线和电极的接触电阻增大. (4) 引起电容器漏液的主要原因 ①电场作用下浸渍料分解放气使壳内气压一升; ②电容器金属外壳与密封盖焊接不佳; ③绝缘了与外壳或引线焊接不佳; ④半密封电容器机械密封不良; ⑤半密封电容器引线表面不够光洁; ⑥工作电解液腐蚀焊点. (5) 引起电容器引线腐蚀或断裂的主要原因 ①高温度环境中电场作用下产生电化学腐蚀; ②电解液沿引线渗漏,使引线遭受化学腐蚀;

贴片电容失效分析

由于贴片电容的材质是高密度、硬质、易碎和研磨的MLCC,所以在使用过程中,需要十分谨慎。经有关工程师分析,以下几种情况容易造成贴片电容的断裂及失效: 1、贴片电容在贴装过程中,若贴片机吸嘴头压力过大发生弯曲,容易产生变形导致裂纹产生; 2、如该颗料的位置在边缘部份或靠近边源部份,在分板时会受到分板的牵引力而导致电容产生裂纹最终而失效.建议在设计时尽可能将贴片电容与分割线平行排放.当我们处理线路板时,建议采用简单的分割器械处理,如我们在生产过程中,因生产条件的限制或习惯用手工分板时,建议其分割槽的深度控制在线路板本身厚度的1/3~1/2之间,当超过1/2时,强烈建议采用分割器械处理,否则,手工分板将会大大增加线路板的挠曲,从而会对相关器件产生较大的应力,损害其可靠性. 3、焊盘布局上与金属框架焊接端部焊接过量的焊锡在焊接时受到热膨胀作用力,使其产生推力将电容举起,容易产生裂纹. 4、在焊接过程中的热冲击以及焊接完后的基板变形容易导致裂纹产生:电容在进行波峰焊过程中,预热温度,时间不足或者焊接温度过高容易导致裂纹产生, 5、在手工补焊过程中.烙铁头直接与电容器陶瓷体直接接触,容量导致裂纹产生。焊接完成后的基板变型(如分板,安装等)也容易导致裂纹产生。 多层陶瓷电容(MLCC)应用注意事项 一、储存 为了保持MLCC的性能,防止对MLCC的不良影响储存时注意以下事项: 1.室内温度5~40℃,温度20%~70%RH; 2.无损害气体:含硫酸、氨、氢硫化合物或氢氯化合物的气体; 3.如果MLCC不使用,请不要拆开包装。如果包装已经打开,请尽可能地重新封上。缩带装产品请避 免太阳光直射,因为太阳光直射会使MLCC老化并造成其性能的下降。 请尽量在6个月内使用,使用之前请注意检查其可焊性。 二、物工操作 MLCC是高密度、硬质、易碎和研磨的材质,使用过程中,它易被机械损伤,比如开裂和碎裂(内部开裂需要超声设备检测)。MLCC在手持过程中,请注意避免污染和损伤。手工操作时,建议使用真空挑拣或使用塑料镊子挑拣。 三、预热 焊接过程中,为了减小对器件的热冲击,精确控制的预热是很有必要的,温度的上升率请不要超过4℃/秒,设预热好的温度与焊接最高温度的温度差为△T,则对于0603、0805、1206等尺寸的MLCC,最好△T≤100℃,对于1210、1808、1812、2220、2225等大尺寸的MLCC,最好△T≤50℃。 四、焊接 手焊时,请使用功率不超过30W且温度可调控的烙铁,烙铁头尖的直径不要超过1.2毫米。焊接过程中,请不要用烙铁头直接接触陶瓷体,烙铁的温度不要超过260℃。 对于大尺寸的MLCC,比如1210、1808、1812、2220、2225等,不推荐使用波峰焊和手焊。 五、冷却 焊接后,慢慢冷却MLCC和基板至室温,推荐使用空气自然冷却,以减小焊接处的应力。当进行强制冷却时,温度下降率请不要超过4℃/秒。

陶瓷可调电容的优缺点

陶瓷可调电容,陶瓷可调电容的优缺点 陶瓷可调电容的含义 可调电容由一组定片和一组动片组成,其容量随动片的转动而连续改变. 可变电容的原理非常简单,就是改变电容两个极板的接触面积从而改变其容值。 可调电容一般有陶瓷介质和薄膜介质,陶瓷介质的高频特性好,可以工作在几百MHz甚至以上,而薄膜的高频特性要差一些,但一两MHz还是可以用的。陶瓷可调电容就是介质材料为陶瓷的其容值随动片的转动而连续改变的电容器。 陶瓷可调电容的优缺点 陶瓷可调电容的高频特性好,可以工作在几百MHz甚至以上,但是陶瓷的生产加工要困难一些,所以价格高,薄膜的价格要低一些。 陶瓷可调电容一般调整到合适的容值后,就不需要经常去调节了,这时它起到的作用和普通电容器是一样的,如果调试用力不当,或调节次数过于频繁,都可能会损坏电容器。 陶瓷可调电容的容值 精密龙JML06可调电容,容值与颜色对比(黑色3PF,蓝色5PF,蓝色7PF,白色10PF,红色20PF,绿色 30PF,黄色40PF)。可调电容的电容量都标有最大电容量和最小电容量,一般有2/7P、3/10P、5/15P等规格,变化范围为3倍多一点。 下面是百斯特的一款陶瓷可调电容的具体参数: 可调电容精密龙JML05-1,容量范围:3~120P 容量范围:3~120P

额定电压 100V 最大电压:200V 绝缘电阻:10000MΩ 旋转力矩:10~ 30mN.m 大气压强:66~106KPa 可调电容在实际应用中具有和固定电容相同的作用,但是它的灵活性在于可以调整容量大小,通过改变这一数据,来实现和电感等元件实现电路的共振。通常体现可调电容的一个重要指标就是共振频率的高低,共振频率越高,其精密度就越好。

陶瓷电容MLCC漏电失效分析修订稿

陶瓷电容M L C C漏电 失效分析 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

MLCC漏电失效分析 1. 案例背景 客户端在老化实验测试阶段发现MLCC出现漏电失效,其不良比率不详,该MLCC焊接工艺为回流焊接工艺。 2. 分析方法简述 通过外观检查OK样品与NG样品表面未见明显异常。 通过X射线透视检查,OK样品和NG样品内部均未发现裂纹孔洞等异常。 将OK样品和NG样品分别切片,然后在金相显微镜下放大拍照观察MLCC内部结构,NG 样品电容内部存在镍瘤及热应力裂纹,而OK样品未见异常。 通过对样品剖面SEM/EDS分析, NG样品电容内部电极层不连续,存在明显镍瘤;其镍瘤周围多条向外延伸裂纹并在裂缝通道内发现明显碳化痕迹(EDS结果中C含量高达50%),此应为热应力裂纹,裂纹的存在直接导致电容性能异常;而OK样品电容内部电极层连续,陶瓷介质层致密未发现孔洞及镍瘤,电容性能良好。 3. 分析与讨论 失效模式分析: 多层陶瓷电容器(MLCC)本身的内在可靠性十分优良,可长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对可靠性产生严重的影响。陶瓷多层电容器(MLCC)失效的原因一般分为外部因素和内在因素。内在因素包括: 陶瓷介质内空洞、介质层分层;外部因素包括:热应力裂纹及机械应力裂纹。 1)陶瓷介质内的孔洞

所谓的陶瓷介质内的孔洞是指在相邻电极间的介质层中存在较大的孔洞,这些孔洞由于内部可能含有水汽或离子,在端电极间施加电压时,降低此处的耐压强度,导致此处发生过电击穿现象。 2)介质层分层 多层陶瓷电容的烧结为多层材料堆叠共烧,烧结温度在1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。值得一提的是,某些分层还可能导致陶瓷介质内部产生裂纹,或在介质层内出现断续的电极颗粒等,这些都与电容器的生产工艺有关。分层的直接影响是绝缘电阻降低,电容量减小。 3)热应力裂纹 实际使用中各种温度冲击往往容易产生热应力,热应力产生的裂纹主要分布区域为陶瓷靠近端电极的两侧,常见的表现形式为贯穿瓷体的裂纹,有的裂纹与内电极呈现90°。需要强调的是,这些裂纹产生后,不一定在现场就表现出实效,大多数是在使用一段时间后,水汽或离子进入裂纹内部,致使电容的绝缘电阻降低而导致电容失效。 4)机械应力裂纹 多层陶瓷电容器(MLCC)的特点是能够承受较大的压应力,但抵抗弯曲能力比较差。器件组装过程中任何可能产生弯曲变形的操作都可能导致器件开裂。常见的应力源有:工艺过程电路板流转操作;流转过程中的人、设备、重力等因素;元件接插操作;电路测试;单板分割;电路板安装;电路板定位铆接;螺丝安装等。该裂纹一般源于器件上下金属化端子,沿45°向器件内部扩展,详见图23。 案例失效分析与讨论 通过外观检查OK样品与NG样品表面均完好,未见裂纹、破损等异常。 通过X-ray透视检查,OK样品和NG样品内部均未发现裂纹孔洞等异常。

MLCC的质量控制与失效分析

MLCC的质量控制与失效分析 无源元件(passive component) 在电子产品中占有十分重要的地位。虽然很多无源元件在整个电子产品中所占的物料价值并不高,但任何一个微不足道的元器件的失效都可能导致整个系统的失效。一般电子产品中有源元器件(IC)和无源元件的比例约为1:10-20。从该数据可以看出无源元件质量控制的重要性。 无源元件的类型很多,多层陶瓷电容器(MLCC)是其中最重要,也是用量最大的产品之一。MLCC的典型结构中导体一般为Ag或AgPd,陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。器件端头镀层一般为烧结Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn发生反应),再在Ni层上制备Sn或SnPb层用以焊接。近年来,也出现了端头使用Cu的MLCC产品。 根据MLCC的电容数值及稳定性,MLCC划分出NP1、COG、X7R、Z5U等。根据MLCC的尺寸大小,可以分为1206,0805,0603,0402,0201等。 MLCC 的常见失效模式 多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。 陶瓷多层电容器失效的原因分为外部因素和内在因素 内在因素主要有以下几种 1.陶瓷介质内空洞(Voids) 导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。 2.烧结裂纹(firing crack) 烧结裂纹常起源于一端电极,沿垂直方向扩展。主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。 3.分层(delamination) 多层陶瓷电容器的烧结为多层材料堆叠共烧。烧结温度可以高达1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷 外部因素主要为: 1.温度冲击裂纹(thermal crack) 主要由于器件在焊接特别是波峰焊时承受温度冲击所致,不当返修也是导致温度冲击裂纹的重要原因. 2.机械应力裂纹(flex crack) 多层陶瓷电容器的特点是能够承受较大的压应力,但抵抗弯曲能力比较差。器件组装过程中任何可能产生弯曲变形的操作都可能导致器件开裂。常见应力源有:贴片对中,工艺过程中电路板操作;流转过程中的人、设备、重力等因素;通孔元器件插入;电路测试、单板分割;电路板安装;电路板定位铆接;螺丝安装等。该类裂纹一般起源于器件上下金属化端,沿45℃角向器件内部扩展。该类缺陷也是实际发生最多的一种类型缺陷。

陶瓷贴片电容失效原因分析

陶瓷电容失效原因分析 多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。 内在因素主要有以下几种: 1.陶瓷介质内空洞(Voids) 导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。 2.烧结裂纹(firing crack) 烧结裂纹常起源于一端电极,沿垂直方向扩展。主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。

3.分层(delamination) 多层陶瓷电容器的烧结为多层材料堆叠共烧。烧结温度可以高达1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。 外部因素主要为: 1.温度冲击裂纹(thermal crack) 主要由于器件在焊接特别是波峰焊时承受温度冲击所致,不当返修也是导致温度冲击裂纹的重要原因。

2.机械应力裂纹(flex crack) 多层陶瓷电容器的特点是能够承受较大的压应力,但抵抗弯曲能力比较差。器件组装过程中任何可能产生弯曲变形的操作都可能导致器件开裂。常见应力源有:贴片对中,工艺过程中电路板操作;流转过程中的人、设备、重力等因素;通孔元器件插入;电路测试、单板分割;电路板安装;电路板定位铆接;螺丝安装等。该类裂纹一般起源于器件上下金属化端,沿45℃角向器件内部扩展。该类缺陷也是实际发生最多的一种类型缺陷。

陶瓷电容和薄膜电容失效分析

电容失效分析 概述 a、某电源在市场因吸收陶瓷电容炸裂烧毁,造成市场批量整改,以及对用到此陶瓷电容其它产品线模块进行长达近一年的风险评估试验。 b、在某充电机模块的生产过程中,老化时薄膜电容器连续失效,导致二极管烧毁。 原因分析 a、陶瓷电容失效分析 陶瓷电容作为PFC二极管的阻容吸收电路和输出整流二极管的RCD吸收电路,经对失效批次电容测试容量和电压满足要求,损耗高于规格书要求。由于该电源是密封使用,环境温度较高,损耗高电容的发热就高,电容温度超过最高使用温度,随着时间的延长,电容自身损耗不断上升,由于自身温升和环境无法达到热平衡,不断恶化,最终导致电容出现热击穿,发生电容炸裂。后查实为供应商擅自换料造成,认为满足电压和容量要求就可以了。 b、薄膜电容失效分析 薄膜电容器用于二极管吸收电路,电容额定压630VDC,电路中正常尖峰小于200V,满足降额要求。失效电容器外观良好,无损坏痕迹。用LCR表测试,失效样品均无容量,引脚间呈开路状态。解开电容器塑料封装,引线以及引线与喷金层焊接良好,喷金层与芯子连接部位有发黑痕迹;展开电容器芯子金属化膜,部分失效电容器金属化膜光亮平整完好,另一部分金属化膜已经发热变形。初步判断为电路dv/dt过大导致电容器失效。测试电路中电压波形,发现dv/dt为3000V/μs,但选用的薄膜电容器dv/dt最大值只有40V/μs。 为验证失效模式,取一批新电容器,初测正常,上机老化后,电容器80-90

%失效,排除厂家来料质量问题,确定该电容器不适合在该电路中使用。 解决方案 a、陶瓷电容选用低损耗同容量同电压物料,应用多年未发现失效。 对于陶瓷电容,因介质不同、相同容量和电压的电容,其损耗差别很大。如选型仅从电压等级和容量上来考虑,会造成误选,因此类失效,生产中不会立即表现,易造成市场上严重损失。 b、所有单板(包括半成品、成品以及发货产品)此位置使用的该电容器全 部更换为同规格dv/dt较大的双面金属化聚丙烯电容器后问题解决。 对于薄膜电容,选取吸收电容的参数除电压和容量外,最主要的指标还有dv/dt和纹波电流(电压)。特别是dv/dt这个参数,即使是容量和电压相同,系列不同、引脚间距不同的电容,其额定值可从几V/us到几KV/us。如果仅从电压和容量指标选择电容,电容工作一段时间后就会容值衰减甚至消失。另外由于功率器件开关频率比较高(可达上百KHz),高频下较小的电压波动就会导致较大的纹波电流(I=WCU),过大的纹波电流将导致电容温升高、参数劣化或烧毁。 选型建议 针对吸收电容的选型是否可靠,除了考虑电压、容量以外,还需关注电容器

相关主题
文本预览
相关文档 最新文档