当前位置:文档之家› 三羧酸循环&糖酵解

三羧酸循环&糖酵解

三羧酸循环&糖酵解
三羧酸循环&糖酵解

三羧酸循环

由乙酰CoA和草酰乙酸缩合成有三个羧基的柠檬酸, 柠檬酸经一系列反应, 一再氧化脱羧, 经α酮戊二酸、琥珀酸, 再降解成草酰乙酸。而参与这一循环的丙酮酸的三个碳原子, 每循环一次, 仅用去一分子乙酰基中的二碳单位, 最后生成两分子的C O2 , 并释放出大量的能量。

柠檬酸循环(Citric acid cycle):也称为三羧酸循环(TriCarboxylic Acid cyc le,TCA),Krebs循环。是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸。

一、三羧酸循环的过程

乙酰CoA进入由一连串反应构成的循环体系,被氧化生成H2O和CO2。由于这个循环反应开始于乙酰CoA与草酰乙酸(oxaloacetic acid)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citrate cycle)。在三羧酸循环中,柠檬酸合成酶催化的反应是关键步骤,草酰乙酸的供应有利于循环顺利进行。其详细过程如下:

(1)乙酰-CoA进入三羧酸循环

乙酰CoA具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先柠檬酸合酶的组氨酸残基作为碱基与乙酰CoA作用,使乙酰CoA的甲基上失去一个h+,生成的碳阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合成酶(citrate synthase)催化,是很强的放能反应。

由草酰乙酸和乙酰CoA合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个变构酶,ATP是柠檬酸合成酶的变构抑制剂,此外,α-酮戊二酸(α-ketoglutar ate)、NADH能变构抑制其活性,长链脂酰CoA也可抑制它的活性,AMP可对抗AT P的抑制而起激活作用。

(2)异柠檬酸形成

柠檬酸的叔醇基不易氧化,转变成异柠檬酸(isocitrate)而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。

(3)第一次氧化脱羧

在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalo succinic acid)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α-ketogl utarate)、NADH和co2,此反应为β-氧化脱羧,此酶需要Mg2+作为激活剂。

此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。

(4)第二次氧化脱羧

在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰CoA(succincyl CoA)、NADH·H+和CO2,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α 氧化脱羧,氧化产生的能量中一部分储存于琥珀酰CoA的高能硫酯键中。

α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸脱羧酶、硫辛酸琥珀酰基转移酶、二氢硫辛酸脱氢酶)和五个辅酶(tpp、硫辛酸、hscoa、NAD+、FAD)组成。

此反应也是不可逆的。α-酮戊二酸脱氢酶复合体受ATP、GTP、NADH和琥珀酰CoA抑制,但其不受磷酸化/去磷酸化的调控。

(5)底物磷酸化生成ATP

在琥珀酸硫激酶(succinate thiokinase)的作用下,琥珀酰CoA的硫酯键水解,释放的自由能用于合成GTP(三磷酸鸟苷guanosine triphosphate),在细菌和高等生物可直接生成ATP,在哺乳动物中,先生成GTP,再生成ATP,此时,琥珀酰CoA 生成琥珀酸和辅酶A。

(6)琥珀酸脱氢

琥珀酸脱氢酶(succinate dehydrogenase)催化琥珀酸氧化成为延胡索酸(fumar ate)。该酶结合在线粒体内膜上,而其他三羧酸循环的酶则都是存在线粒体基质中的,这酶含有铁硫中心和共价结合的FAD,来自琥珀酸的电子通过FAD和铁硫中心,然后进入电子传递链到O2,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的竞争性抑制物,所以可以阻断三羧酸循环。

(7)延胡索酸的水化

延胡索酸酶仅对延胡索酸的反式(反丁烯二酸) 双键起作用,而对顺丁烯二酸(马来酸)则无催化作用,因而是高度立体特异性的。

(8)生成苹果酸(malate)

(9)草酰乙酸再生

在苹果酸脱氢酶(malic dehydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),NAD+是脱氢酶的辅酶,接受氢成为NADH·H+(图4-5)。

三羰酸循环总结:

乙酰CoA+3NAD++FAD+GDP+Pi—→2CO2+3NADH+FADH2+GTP+2H+ +Co

A-SH

①CO2的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β 氧化脱羧,辅酶是NAD+,它们先使底物脱氢生成草酰琥珀酸,然后在Mn2+或Mg2+的协同下,脱去羧基,生成α-酮戊二酸。

α-酮戊二酸脱氢酶系所催化的α 氧化脱羧反应和前述丙酮酸脱氢酶系所催经的反应基本相同。

应当指出,通过脱羧作用生成CO2,是机体内产生CO2的普遍规律,由此可见,机体CO2的生成与体外燃烧生成CO2的过程截然不同。

②三羧酸循环的四次脱氢,其中三对氢原子以NAD+为受氢体,一对以FAD为受氢体,分别还原生成NADH+H+和FADH2。它们又经线粒体内递氢体系传递,最终与氧结合生成水,在此过程中释放出来的能量使adp和pi结合生成ATP,凡NAD H+H+参与的递氢体系,每2H氧化成一分子H2O,每分子NADH最终产生2.5分子ATP,而FADH2参与的递氢体系则生成1.5分子ATP,再加上三羧酸循环中有一次

底物磷酸化产生一分子ATP,那么,一分子柠檬酸参与三羧酸循环,直至循环终末共生成10分子ATP。

③乙酰CoA中乙酰基的碳原子,乙酰CoA进入循环,与四碳受体分子草酰乙酸缩合,生成六碳的柠檬酸,在三羧酸循环中有二次脱羧生成2分子CO2,与进入循环的二碳乙酰基的碳原子数相等,但是,以CO2方式失去的碳并非来自乙酰基的两个碳原子,而是来自草酰乙酸。

④三羧酸循环的中间产物,从理论上讲,可以循环不消耗,但是由于循环中的某些组成成分还可参与合成其他物质,而其他物质也可不断通过多种途径而生成中间产物,所以说三羧酸循环组成成分处于不断更新之中。

例如草酰乙酸——→天门冬氨酸

α-酮戊二酸——→谷氨酸

草酰乙酸——→丙酮酸——→丙氨酸

其中丙酮酸羧化酶催化的生成草酰乙酸的反应最为重要。

因为草酰乙酸的含量多少,直接影响循环的速度,因此不断补充草酰乙酸是使三羧酸循环得以顺利进行的关键。

三羧酸循环中生成的苹果酸和草酰乙酸也可以脱羧生成丙酮酸,再参与合成许多其他物质或进一步氧化。

三羧酸循环的化学历程:

(1)柠檬酸生成阶段乙酰CoA不能直接被氧化分解,必须改变其分子结构才有可能。乙酰CoA和草酰乙酸在柠檬酸合成酶催化下,弄成柠檬酰CoA,加水生成柠檬酸并放出CoA-SH。

(2)氧化脱羧阶段这个阶段包括4个反应,即异柠檬酸的形成、愤柠檬酸的氧化脱羧、α-酮戊二酸氧化和琥珀酸生成,此阶段释放CO2并合成ATP。

(3)草酰乙酸的再生阶段通过上述两个阶段的反应,乙酰CoA的两个碳以C O2形式释放了,四碳的草酰乙酸转变成四碳琥珀酸。保证后续的乙酰CoA级继续被氧化脱羧,琥珀酸经过延胡索酸和苹果酸生成,最后生成草酰乙酸。

(二)三羧酸循环的生理意义

1.三羧酸循环是机体获取能量的主要方式。1个分子葡萄糖经无氧酵解仅净生成2个分子ATP,而有氧氧化可净生成32个ATP,其中三羧酸循环生成20个ATP,在一般生理条件下,许多组织细胞皆从糖的有氧氧化获得能量。糖的有氧氧化不但释能效率高,而且逐步释能,并逐步储存于ATP分子中,因此能的利用率也很高。

2.三羧酸循环是糖,脂肪和蛋白质三种主要有机物在体内彻底氧化的共同代谢途径,三羧酸循环的起始物乙酰CoA,不但是糖氧化分解产物,它也可来自脂肪的甘油、脂肪酸和来自蛋白质的某些氨基酸代谢,因此三羧酸循环实际上是三种主要有机物在体内氧化供能的共同通路,估计人体内2/3的有机物是通过三羧酸循环而被分解的。

3.三羧酸循环是体内三种主要有机物互变的联结机构,因糖和甘油在体内代谢可生成α-酮戊二酸及草酰乙酸等三羧酸循环的中间产物,这些中间产物可以转变成为某些氨基酸;而有些氨基酸又可通过不同途径变成α-酮戊二酸和草酰乙酸,再经糖异生

的途径生成糖或转变成甘油,因此三羧酸循环不仅是三种主要的有机物分解代谢的最终共同途径,而且也是它们互变的联络机构。

(三)三羧酸循环的调节

如上所述糖有氧氧化分为两个阶段,第一阶段糖酵解途径的调节在糖酵解部分已探讨过,下面主要讨论第二阶段丙酸酸氧化脱羧生成乙酰CoA并进入三羧酸循环的一系列反应的调节。丙酮酸脱氢酶复合体、柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶复合体是这一过程的限速酶。

丙酮酸脱氢酶复合体受别构调控也受化学修饰调控,该酶复合体受它的催化产物ATP、乙酰CoA和NADH有力的抑制,这种别构抑制可被长链脂肪酸所增强,当进入三羧酸循环的乙酰CoA减少,而AMP、CoA和NAD+堆积,酶复合体就被别构激活,除上述别位调节,在脊椎动物还有第二层次的调节,即酶蛋白的化学修饰,PDH 含有两个亚基,其中一个亚基上特定的一个丝氨酸残基经磷酸化后,酶活性就受抑制,脱磷酸化活性就恢复,磷酸化-脱磷酸化作用是由特异的磷酸激酶和磷酸蛋白磷酸酶分别催化的,它们实际上也是丙酮酸酶复合体的组成,即前已述及的调节蛋白,激酶受ATP别构激活,当ATP高时,PDH就磷酸化而被激活,当ATP浓度下降,激酶活性也降低,而磷酸酶除去PDH上磷酸,PDH又被激活了。

对三羧酸循环中柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶的调节,主要通过产物的反馈抑制来实现的,而三羧酸循环是机体产能的主要方式。因此ATP/ADP与NADH/NAD+两者的比值是其主要调节物。ATP/ADP比值升高,抑制柠檬酸合成酶和异柠檬酶脱氢酶活性,反之ATP/ADP比值下降可激活上述两个酶。NADH/NAD+比值升高抑制柠檬酸合成酶和α-酮戊二酸脱氢酶活性,除上述ATP/ADP与NADH/NAD+之外其它一些代谢产物对酶的活性也有影响,如柠檬酸抑制柠檬酸合成酶活性,而琥珀酰-CoA抑制α-酮戊二酸脱氢酶活性。总之,组织中代谢产物决定循环反应的速度,以便调节机体ATP和NADH浓度,保证机体能量供给。

糖酵解

糖酵解是指细胞在细胞质中分解葡萄糖生成丙酮酸的过程,此过程中伴有少量ATP 的生成。这一过程是在细胞质中进行,不需要氧气,每一反应步骤基本都由特异的酶催化。在缺氧条件下丙酮酸被还原为乳酸,有氧条件下丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O。糖酵解总共包括10个连续步骤,均由对应的酶催化。

总反应为:葡萄糖+2ATP+2ADP+2Pi+2NAD+ ——>2丙酮酸+4ATP+2NADH+2 H++2H2O

(1)葡萄糖磷酸化

葡萄糖氧化是放能反应,但葡萄糖是较稳定的化合物,要使之放能就必须给与活化能来推动此反应,即必须先使葡萄糖从稳定状态变为活跃状态,活化一个葡萄糖需

要消耗1个ATP,一个ATP放出一个高能磷酸键,大约放出30.5kj自由能,大部分变为热量而散失,小部分使磷酸与葡萄糖结合生成葡萄糖-6-磷酸。催化酶为己糖激酶。

(2)葡萄糖-6-磷酸重排生成果糖-6-磷酸。催化酶为葡萄糖磷酸异构酶。

(3)生成果糖-1、6-二磷酸。催化酶为6-磷酸果糖激酶-1。

1个葡萄糖分子消耗了2个ATP分子而活化,经酶的催化生成果糖-1,6-二磷酸分子。

(4)果糖-1、6-二磷酸断裂成3-磷酸甘油醛(glyceraldehyde 3-phosphate)和磷酸二羟丙酮,催化酶为醛缩酶。

(5)磷酸二羟丙酮很快转变为3-磷酸甘油醛。催化酶为丙糖磷酸异构酶。

以上为第一阶段,1个6C的葡萄糖转化为2个3C化合物PGAL,消耗2个AT P用于葡萄糖的活化,如果以葡萄糖-1-磷酸形式进入糖酵解,仅消耗一个ATP。这一阶段没有发生氧化还原反应。

(6)3-磷酸甘油醛氧化生成1、3-二磷酸甘油酸(1,3-diphosphoglycerate),释放出两个电子和一个H+, 传递给电子受体NAD+,生成NADH+ H+,并且将能量转移到高能磷酸键中。催化酶为3-磷酸甘油脱氢酶。

(7)不稳定的1、3-二磷酸甘油酸失去高能磷酸键,生成3-磷酸甘油酸(3-phos phoglycerate),能量转移到ATP中,一个1、3-二磷酸甘油酸生成一个ATP。催化酶为磷酸甘油酸激酶。此步骤中发生第一次底物水平磷酸化

(8)3-磷酸甘油酸重排生成2-磷酸甘油酸(2-phosphoglycerate)。催化酶为磷酸甘油酸变位酶。

(9)2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸PEP(phospho-enol-pyruvate)。催化酶为烯醇化酶。

(10)PEP将磷酸基团转移给ADP生成ATP,同时形成丙酮酸。催化酶为丙酮酸激酶。此步骤中发生第二次底物水平磷酸化。

以上为糖酵解第二个阶段。一分子的PGAL(phosphoglyceraldehyde)在酶的作用下生成一分子的丙酮酸。在此过程中,发生一次氧化反应生成一个分子的NADH,发生两次底物水平的磷酸化,生成2分子的ATP。这样,一个葡萄糖分子在糖酵解的第二阶段共生成4个ATP和2个NADH+H+,产物为2个丙酮酸。在糖酵解的第一阶段,一个葡萄糖分子活化中要消耗2个ATP,因此在糖酵解过程中一个葡萄糖生成2分子的丙酮酸的同时,净得2分子ATP,2分子NADH,和2分子水。

糖酵解的关键酶:有3个,即己糖激酶、6-磷酸果糖激酶-1和丙酮酸激酶,它们催化的反应基本上都是不可逆的。

重要性:6-磷酸果糖激酶-1>丙酮酸激酶>己糖激酶

三羧酸循环过程

三羧酸循环过程 乙酰-CoA进入由一连串反应构成的循环体系,被氧化生成H?O和CO?。由于这个循环反应开始于乙酰CoA与草酰乙酸(oxaloaceticacid)缩合生成的含有三 个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citratecycle)。在三羧酸循环中,柠檬酸合成酶催化的反应是关键步骤,草酰乙酸的供应有利于循环顺利进行。其详细过程如下:1、乙酰-CoA进入三羧酸循环乙酰CoA具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先柠檬酸合酶的组氨酸残基作为碱基与乙酰-CoA作用,使乙酰-CoA的甲基上失去一个h+,生成的碳阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰-CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合成酶(citratesynthase)催化,是很强的放能反应。由草酰乙酸和乙酰-CoA 合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个变构酶,ATP是柠檬酸合成酶的变构抑制剂,此外,α-酮戊二酸、NADH能变构抑制其活性,长链脂酰-CoA也可抑制它的活性,AMP可对抗ATP的抑制而起激活作用。2、异柠檬酸形成柠檬酸的叔醇基不易氧化,转变成异柠檬酸而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一 可逆反应。3、第一次氧化脱羧在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalosuccinicacid)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α-ketoglutarate)、NADH和CO2,此反应为β-氧化脱羧,此酶需要镁离子作为激活剂。此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。4、第二次氧化脱羧在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰-CoA、NADH·H+和CO?,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α?氧化脱羧,氧化产生的能量中一部分储存于琥珀酰coa的高能硫酯键中。α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸脱羧酶、硫辛酸琥珀酰基转移酶、二氢硫辛酸脱氢酶)和五个辅酶(tpp、硫辛酸、hscoa、NAD+、FAD)组成。此反应也是不可逆的。α-酮戊二酸脱氢酶复合体受ATP、GTP、NADH和琥珀酰-CoA抑制,但其不受磷酸化/去磷酸化的调控。5、底物磷酸化生成ATP 在琥珀酸硫激酶(succinatethiokinase)的作用下,琥珀酰-CoA的硫酯键水解,释放的自由能用于合成gtp,在细菌 和高等生物可直接生成ATP,在哺乳动物中,先生成GTP,再生成ATP,此时,琥珀酰-CoA生成琥珀酸和辅酶A。6、琥珀酸脱氢琥珀酸脱氢酶(succinatedehydrogenase)催化琥珀酸氧化成为延胡索酸。该酶结合在线粒体内膜上,而其他三羧酸循环的酶则都是存在线粒体基质中的,这酶含有铁硫中心和共价结合的fad,来自琥珀酸的电子通过fad和铁硫中心,然后进入电子传递链到O?,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的竞争性抑制物,所以可以阻断三羧酸循环。7、延胡索酸的水化延胡索酸酶仅对延胡索

生物化学原理- 糖酵解

第十五章糖酵解 本章主线: 糖酵解 丙酮酸代谢命运 (乙醇发酵乳酸发酵) 糖酵解调控 巴斯德效应 3种单糖代谢 (果糖、半乳糖、甘露糖) 一、糖酵解 糖酵解概述: ●位置:细胞质 ●生物种类:动物、植物以及微生物共有 ●作用:葡萄糖分解产生能量 ●总反应:葡萄糖+2ADP+2 NAD++2Pi →2 丙酮酸+2ATP+2NADH+2H++2H2O 具体过程: 第一阶段(投入A TP阶段): 1分子葡萄糖转换为2分子甘油醛-3-磷酸;投入2分子ATP。 ○1 反应式:葡萄糖+ ATP→葡萄糖-6-磷酸+ADP 酶:己糖激酶(需Mg2+参与) 是否可逆:否 说明: ●保糖机制——磷酸化的葡萄糖被限制在细胞内,磷酸化的糖带有负电荷的磷酰基,可防 止糖分子再次通过质膜。(应用:解释输液时不直接输葡萄糖-6-磷酸的原因) ●己糖激酶以六碳糖为底物,专一性不强。 ●同功酶——葡萄糖激酶,是诱导酶。葡萄糖浓度高时才起作用。 ○2 反应式:葡萄糖-6-磷酸→果糖-6-磷酸 酶:葡萄糖-6-磷酸异构酶 是否可逆:是 说明:

●是一个醛糖-酮糖转换的同分异构化反应(开链?异构?环化) ●葡萄糖-6-磷酸异构酶表现出绝对的立体专一性 ●产物为α-D-呋喃果糖-6-磷酸 ○3 反应式:果糖-6-磷酸+ATP→果糖-1,6-二磷酸+ADP 酶:磷酸果糖激酶-I 是否可逆:否 说明: ●磷酸果糖激酶-I的底物是β-D-果糖-6-磷酸与其α异头物在水溶液中处于非酶催化的快 速平衡中。 ●是大多数细胞糖酵解中的主要调节步骤。 ○4 反应式:果糖-1,6-二磷酸→磷酸二羟丙酮+甘油醛-3-磷酸 酶:醛缩酶 是否可逆:是 说明: ●平衡有利于逆反应方向,但在生理条件下,甘油醛-3-磷酸不断地转化成丙酮酸,大大 地降低了甘油醛-3-磷酸的浓度,从而驱动反应向裂解方向进行。 ●注意断键位置:C3-C4 ○5 反应式:磷酸二羟丙酮→甘油醛-3-磷酸 酶:丙糖磷酸异构酶 是否可逆:是 说明: ●葡萄糖分子中的C-4和C-3 →甘油醛-3-磷酸的C-1; 葡萄糖分子中的C-5和C-2 →甘油醛-3-磷酸的C-2; 葡萄糖分子中的C-6和C-1 →甘油醛-3-磷酸的C-3。 ●缺少丙糖磷酸异构酶,将只有一半丙糖磷酸酵解,磷酸二羟丙酮堆积。 第二阶段(产出A TP阶段):此阶段各物质的量均加倍 2分子甘油醛-3-磷酸转换为2分子丙酮酸;产出4分子ATP ○6 反应式:甘油醛-3-磷酸+NAD++Pi→1,3-二磷酸甘油酸+NADH+H+ 酶:甘油醛-3-磷酸脱氢酶 是否可逆:是 说明: ●酵解中唯一一步氧化反应。是一步吸能反应,与第7步反应耦联有利于反应进行。 ●NAD+是甘油醛-3-磷酸脱氢酶的辅酶 ●1,3-二磷酸甘油酸中形成一个高能酸酐键。 ●无机砷酸(AsO43-)可取代无机磷酸作为甘油酸- 3-磷酸脱氢酶的底物,生成一个不稳

糖酵解特点

四、糖代谢概况 有氧 无氧 H 2O 及CO 2 乳酸 乳酸、氨基酸、甘油 糖原 核糖 + NADPH+H+ 磷酸戊糖途径 淀粉 消化与吸收 无氧分解(糖酵解) 糖酵解(glycolysis)是指葡萄糖在无氧条件下 分解生成乳酸并释放出能量的过程。 糖酵解的全部反应过程在胞液(cytoplasm)中进行,代谢的终产物为乳酸(lactate),一分子葡萄糖经无氧酵解可净生成两分子ATP 。 无氧酵解的反应过程可分为活化、裂解、放能 和还原四个阶段。

酸的生醇发酵及葡萄糖的无氧分解 葡萄糖EMP + NAD CH2OH CH3 乙醇 NADH+H+ NAD+ CO2 乳酸 COOH CH(O H) C H3 CHO CH3 COOH C==O CH3 丙酮酸 1.活化(a c t i v a t i o n)-己糖磷酸酯的生成 活化阶段是指葡萄糖经磷酸化和异构反应生成1,6-二磷酸果糖(FDP)的反应过程。该过程共由三步化学反应组成。 (一)糖酵解途径 葡萄糖磷酸化 磷酸葡萄糖(G-6-P) G-6-P异构为(F-6-P) F-6-P再磷酸化为( F-1,6-BP )......(1)......(2) (3)

ADP ATP ADP * (2 无氧酵解的活化阶段 第一阶段总结: 消耗ATP 不生成ATP 从葡萄糖开始→ 2分子ATP 从糖原开始→ 1分子ATP

.裂解(lysis)——磷酸丙糖的生 一分子F-1,6-BP 裂解为两分子可以互变的磷酸丙糖 (triose phosphate),包括两步反应: F-1,6-BP 裂解为3-磷酸甘油醛和磷酸二羟丙酮 磷酸二羟丙酮异构为3-磷酸甘油醛 (5) (4) 第二阶段总结: 1、一分子六碳糖分解为2分子能够互变的磷酸丙糖。 2、既不消耗ATP ,也不生成ATP 。 3.放能(r e l e a s i n g e n e r g y )——丙酮酸的生成 3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等 反应生成丙酮酸,包括六步反应。 3- 磷酸甘油醛脱氢并磷酸化生成1,3- 二磷酸甘油酸 1,3-,将其交给ADP 生成ATP 3-磷酸甘油酸异构为2-磷酸甘油酸 (6) ......(7) (8)

糖酵解 三羧酸循环最全总结

在高等植物中存在着多条呼吸代谢的生化途径,这是植物在长期进化过程中,对多变环境条件适应的体现。在缺氧条件下进行酒精发酵和乳酸发酵,在有氧条件下进行三羧酸循环和戊糖磷酸途径,还有脂肪酸氧化分解的乙醛酸循环以及乙醇酸氧化途径等(图5-2)。 图5-2 植物体内主要呼吸代谢途径相互关系示意图 一、糖酵解 己糖在细胞质中分解成丙酮酸的过程,称为糖酵解(glycolysis)。整个糖酵解化学过程于1940年得到阐明。为纪念在研究这一途径中有突出贡献的三位生物化学家:G.Embden,O.Meyerhof和J.K.Parnas,又把糖酵解途径称为EmbdenMeyerhofParnas途径,简称EMP途径(EMP pathway)。糖酵解普遍存在于动物、植物、微生物的细胞中。 (一)糖酵解的化学历程 糖酵解途径(图5-3)可分为下列几个阶段:

图5-3糖酵解途径 1.己糖的活化(1~9)是糖酵解的起始阶段。己糖在己糖激酶作用下,消耗两个ATP逐步转化成果糖-1,6二磷酸(F-1,6-BP)。 如以淀粉作为底物,首先淀粉被降解为葡萄糖。淀粉降解涉及到多种酶的催化作用,其中,除淀粉磷酸化酶(starch phosphorylase)是一种葡萄糖基转移酶外,其余都是水解酶类,如α-淀粉酶(α-amylase)、β-淀粉酶(β-amylase)、脱支酶(debranching enzyme)、麦芽糖酶(maltase)等。 2.己糖裂解(10~11)即F-1,6-BP在醛缩酶作用下形成甘油醛-3-磷酸和二羟丙酮磷酸,后者在异构酶(isomerase)作用下可变为甘油醛-3-磷酸。 3.丙糖氧化(12~16)甘油醛-3-磷酸氧化脱氢形成磷酸甘油酸,产生1个ATP和1个NADH,同时释放能量。然后,磷酸甘油酸经脱水、脱磷酸形成丙酮酸,并产生1个ATP,这一过程分步完成,有烯醇化酶和丙酮酸激酶参与反应。

糖酵解三羧酸循环总结

精心整理 在高等植物中存在着多条呼吸代谢的生化途径,这是植物在长期进化过程中,对多 变环境条件适应的体现。在缺氧条件下进行酒精发酵和乳酸发酵,在有氧条件下进行三 羧酸循环和戊糖磷酸途径,还有脂肪酸氧化分解的乙醛酸循环以及乙醇酸氧化途径等 (图5-2)。 图5-2植物体内主要呼吸代谢途径相互关系示意图 (二)糖酵解的生理意义 1.糖酵解普遍存在于生物体中,是有氧呼吸和无氧呼吸途径的共同部分。 2.糖酵解的产物丙酮酸的化学性质十分活跃,可以通过各种代谢途径,生成不同的 物质(图5-4)。 图5-4丙酮酸在呼吸和物质转化中的作用 3.通过糖酵解,生物体可获得生命活动所需的部分能量。对于厌氧生物来说,糖酵 解是糖分解和获取能量的主要方式。 4.糖酵解途径中,除了由己糖激酶、磷酸果糖激酶、丙酮酸激酶等所催化的反应以 外,多数反应均可逆转,这就为糖异生作用提供了基本途径。 二、发酵作用

生物体中重要的发酵作用有酒精发酵和乳酸发酵。在酒精发酵(alcoholfermentation)过程中,糖类经过糖酵解生成丙酮酸。然后,丙酮酸先在丙酮酸脱羧酶(pyruvicaciddecarboxylase)作用下脱羧生成乙醛。 CH3COCOOH→CO2+CH3CHO(5-5) 乙醛再在乙醇脱氢酶(alcoholdehydrogenase)的作用下,被还原为乙醇。 CH3CHO+NADH+H+→CH3CH2OH+NAD+(5-6) 在缺少丙酮酸脱羧酶而含有乳酸脱氢酶(lacticaciddehydrogenase)的组织里,丙酮酸便被NADH还原为乳酸,即乳酸发酵(lactatefermentation)。 CH3COCOOH+NADH+H+→CH3CHOHCOOH+NAD+(5-7) 在无氧条件下,通过酒精发酵或乳酸发酵,实现了NAD+的再生,这就使糖酵解得以继续进行。 乙酰基转移酶(dihydrolipoyltransacetylase)、二氢硫辛酸脱氢酶(dihydrolipoicaciddehydrogenase)。6种辅助因子。6种辅助因子分别是硫胺素焦磷酸(thiaminepyrophosphate,TPP)、辅酶A(coenzymeA)、硫辛酸(lipoicacid)、FAD(flavinadeninedinucleotide)、NAD+(nicotinamideadeninedinucleotide)和Mg2+。 图5-6三羧酸循环的反应过程 上述反应中从底物上脱下的氢是经FAD→FADH2传到NAD+再生成NADH+H+。 2.反应(2)乙酰CoA在柠檬酸合成酶催化下与草酰乙酸缩合为柠檬酸,并释放CoASH,此反应为放能反应(△G°,=-32.22kJ·mol-1)。 3.反应(3)由顺乌头酸酶催化柠檬酸脱水生成顺乌头酸,然后加水生成异柠檬酸。

三羧酸循环

第23章三羧酸循环(生物化学下册p92) 3学时 学习重点: ◆熟悉柠檬酸循环途径中的各步酶促反应,以及各步反应酶的作用特点。 ◆会分析和计算酵解和柠檬酸循环中产生的能量,以及底物分子中标记碳的去向。 葡萄糖的有氧氧化包括四个阶段。 ①糖酵解产生丙酮酸(2丙酮酸、2ATP、2NADH) ②丙酮酸氧化脱羧生成乙酰CoA ③三羧酸循环(CO2、H2O、A TP、NADH) ④呼吸链氧化磷酸化(NADH-----ATP) 三羧酸循环:乙酰CoA经一系列的氧化、脱羧,最终生成CO2、H2O、并释放能量的过程,又称柠檬酸循环、Krebs循环。 原核生物:①~④阶段在胞质中 真核生物:①在胞质中,②~④在线粒体中 一、丙酮酸脱羧生成乙酰CoA 1、反应式: 2、丙酮酸脱氢酶系 丙酮酸脱氢酶系是一个十分庞大的多酶体系,位于线粒体膜上,电镜下可见。 E.coli丙酮酸脱氢酶复合体: 分子量:4.5×106,直径45nm,比核糖体稍大。 酶辅酶每个复合物亚基数 丙酮酸脱羧酶(E1)TPP 24 二氢硫辛酸转乙酰酶(E2)硫辛酸24 二氢硫辛酸脱氢酶(E3)FAD、NAD+12 此外,还需要CoA、Mg2+作为辅因子 这些肽链以非共价键结合在一起,在碱性条件下,复合体可以解离成相应的亚单位,在中性时又可以重组为复合体。所有丙酮酸氧化脱羧的中间物均紧密结合在复合体上,活性中间物可以从一个酶活性位置转到另一个酶活性位置,因此,多酶复合体有利于高效催化反应及调节酶在反应中的活性。 3、反应步骤 反应过程 (1)丙酮酸脱羧形成羟乙基-TPP

(2)二氢硫辛酸乙酰转移酶(E2)使羟乙基氧化成乙酰基 (3)E2将乙酰基转给CoA,生成乙酰-CoA (4)E3氧化E2上的还原型二氢硫辛酸 (5)E3还原NAD+生成NADH 4、丙酮酸脱氢酶系的活性调节 从丙酮酸到乙酰CoA是代谢途径的分支点,此反应体系受到严密的调节控制,此酶系受两种机制调节。 (1)可逆磷酸化的共价调节 丙酮酸脱氢酶激酶(E A)(可被ATP激活) 丙酮酸脱氢酶磷酸酶(E B) 磷酸化的丙酮酸脱氢酶(无活性) 去磷酸化的丙酮酸脱氢酶(有活性) (2)别构调节 ATP、CoA、NADH是别构抑制剂 ATP抑制E1 CoA抑制E2 NADH抑制E3 5、能量 1分子丙酮酸生成1分子乙酰CoA,产生1分子NADH(2.5A TP)。 二、三羧酸循环(TCA)的过程 TCA循环:每轮循环有2个C原子以乙酰CoA形式进入,有2个C原子完全氧化成CO2放出,分别发生4次氧化脱氢,共释放10A TP。 1、反应步骤 概述三羧酸循环(图,见书) (1)、乙酰CoA+草酰乙酸→柠檬酸 柠檬酸合酶,TCA中第一个调节酶:受ATP、NADH、琥珀酰CoA、和长链脂肪酰CoA 的抑制;受乙酰CoA、草酸乙酸激活。 柠檬酸合酶上的两个His残基起重要作用: 一个与草酰乙酸羰基氧原子作用,使其易受攻击;另一个促进乙酰CoA的甲基碳上的质子离开,形成烯醇离子,就可与草酰乙酸缩合成C-C键,生成柠檬酰CoA,后者使酶构象变化,使活性中心增加一个Asp残基,捕获水分子,以水解硫酯键,然后CoA和柠檬酸相继离开酶。 氟乙酰CoA可与草酰乙酸生成氟柠檬酸,抑制下一步反应的酶,据此,可以合成杀虫剂、灭鼠药。 氟乙酸本身无毒,氟柠檬酸是乌头酸酶专一的抑制剂,氟柠檬酸结合到乌头酸酶的活性部位上,并封闭之,使需氧能量代谢受毒害。它存在于某些有毒植物叶子中,是已知最能致死的简单分子之一。LD50为0.2mg/Kg体重,它比强烈的神经毒物二异丙基氟磷酸的LD50

三羧酸循环过程

三羧酸循环 糖酵解的最终产物丙酮酸,在有氧条件下进入线粒体,通过一个包括三羧酸和二羧酸的循环逐步脱羧脱氢,彻底 氧化分解,这一过程称为三羧酸循环(tricarboxylic acid cycle,TCAC)。这个循环是英国生物化学家克雷布斯(H.Krebs)首先发现的,所以又名Krebs 循环(Krebs cycle)。1937年他提出了一个环式反应来解释鸽子胸肌内的丙酮酸是如何分解的,并 把这一途径称为柠檬酸循环(citric acid cycle),因为柠檬酸是其中的一个重要中间产物。TCA循环普遍存在于动物、植物、微生物细胞中,是在线粒体基质中进行的。TCA循环的起始底物乙酰CoA不仅是糖代谢的中间产物,也是脂肪酸和某 些氨基酸的代谢产物。因此,TCA循环是糖、脂肪、蛋白质三大类物质的共同氧化途径。 (一)三羧酸循环的化学历程 TCA循环共有9步反应(图5-6)。 1.反应(1)丙酮酸在丙酮酸脱氢酶复合体催化下氧化脱羧生成乙酰CoA,这是连结EMP与TCAC的纽带。 丙酮酸脱氢酶复合体(pyruvic acid dehydrogenase complex)是由3种酶组成的复合体,含有6种辅助因子。这3种酶是:丙酮酸脱羧酶(pyruvic acid decarboxylase)、二氢硫辛酸乙酰基转移酶(dihydrolipoyl transacetylase)、二氢硫辛酸脱氢酶(dihydrolipoic acid dehydrogenase)。6种辅助因子。6种辅助因子分别是硫胺素焦磷酸(thiamine pyrophosphate,TPP)、辅酶 A (coenzyme A)、硫辛酸(lipoic acid)、FAD(flavin adenine dinucleotide)、NAD+(nicotinamide adenine dinucleotide)和Mg2+。

糖酵解、TCA途径

糖酵解途径(EMP途径) 定义:葡萄糖经过一系列步骤降解成丙酮酸并生成ATP过程,被认为是微生物最古老原始的获能方式。指在O2不足情况下,葡萄糖或糖原分解为丙酮酸或乳酸,并伴随少量ATP生成。在细胞质中进行。 两个阶段: 一:活化阶段 a:葡萄糖磷酸化:活化葡萄糖,消耗1ATP,使葡萄糖和磷酸结合成葡萄糖-6-磷酸(己糖激酶) b:葡萄糖-6-磷酸重排成果糖-6-磷酸(葡萄糖磷酸异构酶) c:生成果糖-1、6-二磷酸(6-磷酸果糖激酶-1),消耗1ATP d:果糖-1、6-二磷酸断裂为3-磷酸甘油醛和磷酸二羟丙酮(醛缩酶)e:磷酸二羟丙酮很快转变为3-磷酸甘油醛。(丙糖磷酸异构酶)二:放能阶段 a:3-磷酸甘油醛氧化生成1、3-二磷酸甘油酸,释出2电子和1H+,生成NADH+ H+,且将能量转移至高能磷酸键中。 b:不稳定的1、3-二磷酸甘油酸失去高能磷酸键,生成3-磷酸甘油酸,能量转移至ATP中,生成1ATP(发生第一次底物水平磷酸化)c:3-磷酸甘油酸重排生成2-磷酸甘油酸 d:2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸 e:磷酸烯醇式丙酮酸将磷酸基团转移给ADP生成ATP,同时形成丙酮酸(发生第一次底物水平磷酸化)

附图:

总反应式: 一.糖无氧氧化反应(分为糖酵解途径和乳酸生成两个阶段)(一)糖酵解的反应过程(不是限速酶的反应均是可逆的) 1.葡萄糖磷酸化为6-磷酸葡萄糖 [1] 己糖激酶(hexokinase)催化,I-IV型,肝细胞中为IV型,又称葡萄糖激酶 区别:前者Km值小、特异性差。 意义:浓度较低时,肝细胞不能利用Glc。 [2]需要Mg++参与,消耗1分子ATP [3] 关键酶(限速酶):己糖激酶。 [4]反应不可逆,受激素调控。 [5]磷酸化后的葡萄糖不能透过细胞膜而逸出细胞。

三羧酸循环

三羧酸循环编辑词条 B 添加义项 ? 三羧酸循环(tricarboxylic acid cycle)是需氧生物体内普遍存在的代谢途径,因为在这个循环中几个主要的中间代谢物是含有三个羧基的柠檬酸,所以叫做三羧酸循环,又称为柠檬酸循环;或者以发现者Hans Adolf Krebs([英]1953年获得诺贝尔生理学或医学奖)命名为Krebs循环。三羧酸循环是三大营养素(糖类、脂类、氨基酸)的最终代谢通路,又是糖类、脂类、氨基酸代谢联系的枢纽。 10 本词条正文缺少必要目录和内容, 欢迎各位编辑词条,额外获取10个积分。 基本信息 中文名称 三羧酸循环 外文名称 tricarboxylicacidcycle acid cycle 别称 TCA cycle 目录1基本简介 2主要特点3发现过程 4化学反应5生理意义 6其他资料 1 基本简介 2 主要特点 3 发现过程 4 化学反应 5 生理意义 6 其他资料 6.1 循环过程 6.2 循环总结 6.3 生理意义 6.4 调节功能 回到顶部意见反馈 基本简介折叠编辑本段 三羧酸循环(tricarboxylicacidcycle acid cycle ,TAC cycle,TAC循环)是一个由一系列酶促反应构成的循环反应系统,在该反应过程中,首先由乙酰辅酶A与草酰乙酸缩合生成含有3个羧基的柠檬酸,经过4次脱氢,2次脱羧,生成四分子还原当量(NADH+H+和FADH2)和2分子CO2,重新生成草酰乙酸的这一循环反应过程成为三羧酸循环。 主要特点折叠编辑本段 柠檬酸循环(tricarboxylicacidcycle):也称为三羧酸循环(tricarboxylicacidcycle,TCA),Krebs循环。是用于将乙酰—CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第

三羧酸循环

关于柠檬酸(三羧酸)循环 1.简介 机体的生存需要能量,机体内主要提供能量的物质是ATP。ATP的形成主要通过两条途径,一条是由葡萄糖彻底氧化为CO2和水,从中释放大量的自由能形成大量的ATP,另一条是在没有氧分子的参加的条件下,即无氧条件下,由葡萄糖降解为丙酮酸,并在此过程中产生2分子ATP。而主要的产能途径还是有氧分解,在有氧的条件下,葡萄糖经糖酵解生成丙酮酸之后会继续分解形成CO2和水,这一过程分为两个阶段,分别是柠檬酸循环和氧化磷酸化。柠檬酸循环是在细胞的线粒体中进行的,之所以成为柠檬酸循环是因为在循环的一系列反应中,关键的化合物是柠檬酸,又因为它有三个羧基,所以又称为三羧酸循环(tricarboxylic acid cycle),简称TCA循环。 柠檬酸循环途径的发现是生物化学领域的一项重大成就,1953年该项成就获得了诺贝尔奖,这项成就是生物化学宝库的一项经典。 柠檬酸循环不只是丙酮酸氧化所经历的途径,也是脂肪酸、氨基酸等各种燃料分子氧化分解所经历的共同途径。 2.过程 柠檬酸循环的化学方程式表示如下: 乙酰-CoA + 3NAD+ + FAD + ADP + Pi —→ 2CO2+ 3NADH + FADH2+ ATP + 2H++ CoASH (1)乙酰-CoA进入三羧酸循环 葡萄糖在无氧条件下转变为丙酮酸后,在进入柠檬酸循环之前,先进行氧化脱羧转变为乙酰-CoA。反应式如下: 丙酮酸辅酶A 乙酰辅酶A 该反应不可逆,由丙酮酸脱氢酶复合体催化。 乙酰-CoA是柠檬酸循环氧化二碳片段的碳源。乙酰-CoA与草酰乙酸反应生成6碳三羧酸—柠檬酸,由此开始柠檬酸循环。 (2)异柠檬酸形成 柠檬酸的叔醇基不易氧化,转变成异柠檬酸而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。 (3)第一次氧化脱羧 在异柠檬酸脱氢酶作用下,快速脱羧生成α-酮戊二酸、NADH和CO2,此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。 (4)第二次氧化脱羧 在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰-CoA、NADH·H+和CO?,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,氧化产生的能量中一部分储存于琥珀酰-CoA的高能硫酯键中。 (5)底物磷酸化生成ATP 在琥珀酸硫激酶(succinatethiokinase)的作用下,琥珀酰-CoA的硫酯键水解,释放的自由能用于合成GTP,在细菌和高等生物可直接生成ATP,在哺乳动物中,先生成GTP,再生成ATP,此时,琥珀酰-CoA生成琥珀酸和辅酶A。 (6)琥珀酸脱氢

三羧酸循环&糖酵解

三羧酸循环 由乙酰CoA和草酰乙酸缩合成有三个羧基的柠檬酸, 柠檬酸经一系列反应, 一再氧化脱羧, 经α酮戊二酸、琥珀酸, 再降解成草酰乙酸。而参与这一循环的丙酮酸的三个碳原子, 每循环一次, 仅用去一分子乙酰基中的二碳单位, 最后生成两分子的C O2 , 并释放出大量的能量。 柠檬酸循环(Citric acid cycle):也称为三羧酸循环(TriCarboxylic Acid cyc le,TCA),Krebs循环。是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸。 一、三羧酸循环的过程 乙酰CoA进入由一连串反应构成的循环体系,被氧化生成H2O和CO2。由于这个循环反应开始于乙酰CoA与草酰乙酸(oxaloacetic acid)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citrate cycle)。在三羧酸循环中,柠檬酸合成酶催化的反应是关键步骤,草酰乙酸的供应有利于循环顺利进行。其详细过程如下: (1)乙酰-CoA进入三羧酸循环 乙酰CoA具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先柠檬酸合酶的组氨酸残基作为碱基与乙酰CoA作用,使乙酰CoA的甲基上失去一个h+,生成的碳阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合成酶(citrate synthase)催化,是很强的放能反应。 由草酰乙酸和乙酰CoA合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个变构酶,ATP是柠檬酸合成酶的变构抑制剂,此外,α-酮戊二酸(α-ketoglutar ate)、NADH能变构抑制其活性,长链脂酰CoA也可抑制它的活性,AMP可对抗AT P的抑制而起激活作用。 (2)异柠檬酸形成 柠檬酸的叔醇基不易氧化,转变成异柠檬酸(isocitrate)而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。 (3)第一次氧化脱羧 在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalo succinic acid)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α-ketogl utarate)、NADH和co2,此反应为β-氧化脱羧,此酶需要Mg2+作为激活剂。 此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。 (4)第二次氧化脱羧 在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰CoA(succincyl CoA)、NADH·H+和CO2,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α 氧化脱羧,氧化产生的能量中一部分储存于琥珀酰CoA的高能硫酯键中。

三羧酸循环

三羧酸循环 三羧酸循环(tricarboxylic acid cycle)是需氧生物体内普遍存在的代谢途径,分布在线粒体。因为在这个循环中几个主要的中间代谢物是含有三个羧基的柠檬酸,所以叫做三羧酸循环,又称为柠檬酸循环或者是TCA循环或TAC;或者以发现者Hans Adolf Krebs(英1953年获得诺贝尔生理学或医学奖)的姓名命名为Krebs循环。三羧酸循环是三大营养素(糖类、脂类、氨基酸)的最终代谢通路,又是糖类、脂类、氨基酸代谢联系的枢纽。 生物意义 1.三大营养素的最终代谢通路 糖、脂肪和蛋白质在分解代谢过程都先生成乙酰辅酶A,乙酰辅酶A与草酰乙酸结合进入三羧酸循环而彻底氧化。所以三羧酸循环是糖、脂肪和蛋白质分解的共同通路。 2.糖、脂肪和氨基酸代谢的联系通路 三羧酸循环另一重要功能是为其他合成代谢提供小分子前体。α-酮戊二酸和草酰乙酸分别是合成谷氨酸和天冬氨酸的前体;草酰乙酸先转变成丙酮酸再合成丙氨酸;许多氨基酸通过草酰乙酸可异生成糖。所以三羧酸循环是糖、脂肪酸(不能异生成糖)和某些氨基酸相互转变的代谢枢纽。 3、三羧酸循环是生物机体获取能量的主要方式。1个分子葡萄糖经无氧酵解净生成2个分子ATP,而有氧氧化可净生成38个ATP(不同生物化学书籍上数字不同,大多数倾向于32个ATP,其中三羧酸循环生成24个ATP,在一般生理条件下,许多组织细胞皆从糖的有氧氧化获得能量。糖的有氧氧化不但释能效率高,而且逐步释能,并逐步储存于ATP 分子中,因此能的利用率也很高。 4、三羧酸循环是糖,脂肪和蛋白质三种主要有机物在体内彻底氧化的共同代谢途径,三羧酸循环的起始物乙酰-CoA,不但是糖氧化分解产物,它也可来自脂肪的甘油、脂肪酸和来自蛋白质的某些氨基酸代谢,因此三羧酸循环实际上是三种主要有机物在体内氧化供能的共同通路,估计人体内2/3的有机物是通过三羧酸循环而被分解的。 5、三羧酸循环是体内三种主要有机物互变的联络机构,因糖和甘油在体内代谢可生成α-酮戊二酸及草酰乙酸等三羧酸循环的中间产物,这些中间产物可以转变成为某些氨基酸;而有些氨基酸又可通过不同途径变成α-酮戊二酸和草酰乙酸,再经糖异生的途径生成糖或转变成甘油,因此三羧酸循环不仅是三种主要的有机物分解代谢的最终共同途径,而且也是它们互变的联络机构。 6、三羧酸循环是机体将糖或其他物质氧化而获得能量的最有效方式。在糖代谢中,糖经此途径氧化产生的能量最多。毎分子葡萄糖经有氧氧化生成H2O和CO2时,可净产生32分子ATP(原核好气性生物)或30分子ATP(真核生物)。

三羧酸循环

三羧酸循环 三羧酸循环是由四碳原子的草酰乙酸与二碳原子的乙酰辅酶A(丙酮酸氧化脱羧的产物)缩合生成具有三个羧基的柠檬酸开始,经过一系列脱氢和脱羧反应后又以草酰乙酸的再生成结束,在循环过程中,乙酰CoA被氧化成H2O 和CO2,并释放出大量能量。 由于循环中首先生成含有三个羧基的柠檬酸,并且循环中有三个三元羧酸(柠檬酸、异柠檬酸和草酰琥珀酸),故被称为三羧酸循环或柠檬酸循环,简称TCA循环。 1.乙酰CoA 与草酰乙酸缩合形成柠檬酸 柠檬酸合成酶Citrate synthase ●ATP、NADH、琥珀酰-CoA等抑制酶活性; ●草酰乙酸和乙酰-CoA激活酶活性 2.柠檬酸异构化生成异柠檬酸

3.异柠檬酸氧化脱羧生成 —酮戊二酸 ●三羧酸循环中第一次氧化脱羧作用 ●异柠檬酸脱氢酶是三羧酸循环的限速酶 a)异柠檬酸脱氢酶被Ca2+活化,它是一个别构酶. b)正调控物是ADP,ADP可增加酶和底物的亲和力。NAD+、Ca2+和ADP有协同作用。 c)NADH和ATP可以抑制酶活性。 d)总之,细胞在具有高能状态时酶活性被抑制; 在低能状态时酶活性被激活. 4. —酮戊二酸氧化脱羧成为琥珀酰辅酶A 三羧酸循环中第二个氧化脱羧反应,释放大量能量,产生NADH和CO2. 此酶也是一个调节酶,受其产物NADH、琥珀酰CoA和Ca2+抑制,细胞高能荷时,ATP也可反馈抑制酶的活性。 5.琥珀酰CoA转化成琥珀酸,并产生GTP 这是三羧酸循环中唯一的底物水平磷酸化直接产生高能磷酸键的步骤。 6.琥珀酸脱氢生成延胡索酸

●三羧酸循环中第三步氧化还原反应 ●琥珀酸脱氢酶是三羧酸循环中唯一掺入线粒体内膜的酶,直接与呼吸链联系。 ●延胡索酸是反丁烯二酸,而不是顺丁烯二酸(马来酸),后者不能参加代谢,对有机体有毒性。 7.延胡索酸被水化生成L-苹果酸 8.L-苹果酸脱氢生成草酰乙酸 a、总反应式: ●总反应式: CH3COSCoA+3NAD++FAD+GDP+Pi+2H2O ==2CO2+CoASH+3NADH+3H+ +FADH2+GTP 1GTP = 1 ATP; 1NADH = 3ATP; 1FADH2= 2ATP 葡萄糖在分解代谢过程中产生的能量有两种形式:直接产生ATP;生成高能分子NADH或FADH2,后者在线粒体呼吸链氧化并产生ATP。 糖酵解:1分子葡萄糖→2分子丙酮酸,净生成了2个ATP,同时产生2个NADH。 丙酮酸氧化脱羧:丙酮酸→乙酰CoA,生成1个NADH。 三羧酸循环:乙酰CoA →CO2和H2O,产生一个GTP(即ATP)、3个NADH和1个FADH2。 葡萄糖分解代谢总反应式 C6H6O6 + 6 H2O + 10 NAD+ + 2 FAD + 4 ADP + 4Pi ?→ 6 CO2 + 10 NADH + 10 H+ + 2 FADH2 + 4 ATP 按照一个NADH能够产生3个ATP,1个FADH2能够产生2个ATP计算,1分子葡萄糖在分解代谢过程中共产生38个ATP: 4 ATP +(10 ? 3)ATP + (2 ? 2)ATP = 38 ATP 尽管分子氧不直接参与到TCA循环,但TCA循环却严格需要氧,是糖的有氧氧化途径。若在无氧条件,NADH 和FADH2 不能进入氧化呼吸链再生,从而使TCA循环无法进行。

三羧酸循环及其生理意义

1. TCA循环示意图

三羧酸循环(TAC):也称为柠檬酸循环(CAC),是丙酮酸有氧氧化过程的一系列步骤的总称。三羧酸循环在线粒体基质中进行,因为在这个循环中几个主要的中间代谢物是含有三个羧基的有机酸,所以叫做三羧酸循环。由丙酮酸开始,先经氧化脱酸作用,并乙酰化形成乙酰辅酶A和1mol的(NADH+H+)。乙酰辅酶A 进入三碳酸循环然后被彻底氧化为CO2和H2O。乙酰CoA中的乙酰基氧化成的酶促反应的循环系统,该循环的第一步是由乙酰CoA经草酰乙酸缩合形成柠檬酸。反应过程的酶,除了琥珀酸脱氢酶是定位于线粒体内膜外,其余均位于线粒体基质中。 2.三羧酸循环的生理意义 1、三羧酸循环是机体获取能量的主要方式,同时它也为体内某些物质的合成提供了原料。如为血红素提供琥珀酰CaA。1个分子葡萄糖经无氧酵解仅净生成2个分子ATP,而有氧氧化可净生成38个ATP(不同生物化学书籍上数字不同,近年来大多数倾向于32个ATP),其中三羧酸循环生成24个ATP,在一般生理条件下,许多组织细胞皆从糖的有氧氧化获得能量。糖的有氧氧化不但释能效率高,而且逐步释能,并逐步储存于ATP分子中,因此能的利用率也很高。 2、三羧酸循环是糖、脂肪和蛋白质这三种物质在体内被彻底氧化的共同代谢途径。三羧酸循环的起始物乙酰-CoA,不但是糖氧化分解产物,它也可来自脂肪的甘油、脂肪酸和来自蛋白质的某些氨基酸代谢,因此三羧酸循环实际上是三种主要有机物在体内氧化供能的共同通路,估计人体内2/3的有机物是通过三羧酸循环而被分解的。 3、三羧酸循环糖、脂质、蛋白质以及其它某些氨基酸代谢联系和互变的枢纽,是体内三种主要有机物互变的联络机构。因糖和甘油在体内代谢可生成α-酮戊二酸及草酰乙酸等三羧酸循环的中间产物,这些中间产物可以转变成为某些氨基酸;而有些氨基酸又可通过不同途径变成α-酮戊二酸和草酰乙酸,再经糖异生的途径生成糖或转变成甘油,因此三羧酸循环不仅是三种主要的有机物分解代谢的最终共同途径,而且也是它们互变的联络机构。

糖酵解与有氧氧化的区别

糖酵解与有氧氧化的区别 很少有人知道糖酵解和有氧氧化的区别,可能我们在初中时期已经学过了有氧氧化的知识,却很少有人知道糖酵解。其实,糖酵解就是类似于将糖转化为乙醇的过程,而在这个过程中没有消耗氧气。通俗点来讲,就是糖酵解是有氧氧化的第一个阶段。下面具体介绍一下。 糖异生。 由简单的非糖前体(乳酸、甘油、生糖氨基酸等)转变为糖(葡萄糖或糖原)的过程.糖异生不是糖酵解的简单逆转.虽然由丙酮酸开始的糖异生利用了糖酵解中的七步进似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应.糖异生保证了机体的血糖水平处于正常水平.糖异生的主要器官是肝. 糖酵解是指在氧气不足条件下。 葡萄糖或糖原分解为乳酸的过程,此过程中伴有少量ATp的生成.这一过程是在细胞质中进行,不需要氧气,每一反应步骤基本都由特异的酶催化.在缺氧条件下丙酮酸则可在乳酸脱氢酶的催化下。 接受磷酸丙糖脱下的氢,被还原为乳酸.。 而有氧条件下的糖的氧化分解,称为糖的有氧氧化,丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O.糖的有氧氧化和糖酵解在开始阶段的许多步骤是完全一样的,只

是分解为丙酮酸以后,由于供氧条件不同才有所分歧.糖酵解总共包括10个连续步骤,均由对应的酶催化.总反应为:葡萄糖+2ATp+2ADp+2pi+2NAD+——>2丙酮酸+4ATp+2NADH+2H++2H2O 丙酮酸(CH3COCOOH)+2NADH—可逆—>乳酸(CH3CHOHCOOH)+2NAD+糖酵解可分为二个阶段,活化阶段和放能阶段 糖的无氧氧化生成乳酸。 不消耗氧,这个过程和酵母使糖转变成乙醇的发酵过程很相似所以称糖酵解。现在把葡萄糖或糖原在胞浆内生成丙酮酸或乳酸的过程都称糖酵解。而有氧氧化在第一个阶段胞浆内的反应的最终产物是丙酮酸,第二阶段由转运蛋白进入线粒体,进行TCA 循环彻底氧化生成二氧化碳和水。所以有氧氧化的第一阶段可以叫做糖酵解。

三羧酸循环的生理意义

三羧酸循环的生理意义 三大营养素彻底氧化的最终代谢通路;是三大营养素代谢联系的枢纽;为其他合成代谢提供小分子前体;为氧化磷酸化提供还原当量。 1.三羧酸循环是三大营养素(糖类、脂类、氨基酸)的最终代谢通路,又是糖类、脂类、氨基酸代谢联系的枢纽。 2.糖、脂肪和氨基酸代谢的联系通路,三羧酸循环另一重要功能是为其他合成代谢提供小分子前体。α-酮戊二酸和草酰乙酸分别是合成谷氨酸和天冬氨酸的前体;草酰乙酸先转变成丙酮酸再合成丙氨酸;许多氨基酸通过草酰乙酸可异生成糖。所以三羧酸循环是糖、脂肪酸(不能异生成糖)和某些氨基酸相互转变的代谢枢纽。 三羧酸循环(英语:Tricarboxylic acid cycle;TCA cycle),或柠檬酸循环(Citric acid cycle)或克雷伯氏循环(Krebs Cycle),是需氧生物体内普遍存在的代谢途径,因为在这个循环中几个主要的中间代谢物是含有三个羧基的柠檬酸,因此得名;或者以发现者汉斯·阿道夫·克雷伯命名为克雷伯氏循环,简称克氏循环(Krebs cycle)。三羧酸循环是三大营养素(糖类、脂类、氨基酸)的最终代谢通路,又是糖类、脂类、氨基酸代谢联系的枢纽。在三羧酸循环中,反应物葡萄糖或者脂肪酸会变成乙酰辅酶A。这种“活化醋酸”(一分子辅酶和一个乙酰基相连),会在循环中分解生成最终产物二氧化碳并脱氢,质子将传递给辅酶烟酰胺腺嘌呤二核苷酸(NAD+)和黄素腺嘌呤(FAD),使之成为NADH + H+和FADH2。NADH + H+和FADH2会继续在呼吸链中被氧化成NAD+和FAD,并生成水。这种受调节的“燃烧”会生成ATP,提供能量。真核生物的线粒体和原核生物的细胞质是三羧酸循环的场所。它是呼吸作用过程中的一步,但在需氧型生物中,它先于呼吸链发生。厌氧型生物则首先遵循同样的途径分解高能有机化合物,例如糖酵解,但之后并不进行三羧酸循环,而是进行不需要氧气参与的发酵过程。 三羧酸循环中的限速酶是什么?【在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalosuccinicacid)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α-ketoglutarate)、NADH和CO2,此反应为β-氧化脱羧,此酶需要镁离子作为激活剂。此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。】那一步反应是底物水平磷酸化,催化的酶是什么?【琥珀酰辅酶A变为琥珀酸,催化酶为琥珀酰辅酶A合成酶。】 1、三羧酸循环是了机体获取能量的主要方式。1个分子葡萄糖经无氧酵解仅净生成2个分子ATP,而有氧氧化可净生成38个ATP(不同生物化学书籍上数字不同,近年来大多数倾向于32个ATP),其中三羧酸循环生成24个A TP,在一般生理条件下,许多组织细胞皆从糖的有氧氧化获得能量。糖的有氧氧化不但释能效率高,而且逐步释能,并逐步储存于ATP分子中,因此能的利用率也很高。 2、三羧酸循环是糖,脂肪和蛋白质三种主要有机物在体内彻底氧化的共同代谢途径,三羧酸循环的起始物乙酰-CoA,不但是糖氧化分解产物,它也可来自脂肪的甘油、脂肪酸和来自蛋白质的某些氨基酸代谢,因此三羧酸循环实际上是三种主要有机物在体内氧化供能的共同通路,估计人体内2/3的有机物是通过三羧酸循环而被分解的。 3、三羧酸循环是体内三种主要有机物互变的联络机构,因糖和甘油在体内代谢可生成α-酮戊二酸及草酰乙酸等三羧酸循环的中间产物,这些中间产物可以转变成为某些氨基酸;而有些氨基酸又可通过不同途径变成α-酮戊二酸和草酰乙酸,再经糖异生的途径生成糖或转变成甘油,因此三羧酸循环不仅是三种主要的有机物分解代谢的最终共同途径,而且也是它们互变的联络机构。

糖酵解与三羧酸循环的介绍(总结自百度贴吧)

首先,所有的糖类都要水解成单糖才可以继续反应的。 以葡萄糖为例,它本身是比较稳定的化学物质,不易于被氧化。生物体内,它首先跟一个磷酸分子反应,被磷酸化得到G6P(葡萄糖-6-磷酸),这是一个使葡萄糖激活的反应,得到的G6P就是“活化葡萄糖”,活化的能量和物质(磷酸)都来自ATP; 在酶的催化下,G6P进行分子重排,得到F6P(果糖-6-磷酸); 重排后的F6P得到了一个活性羟基,在另一种酶的催化下,这个活性羟基再接一个磷酸得到F1,6BP (果糖-1,6-双磷酸),这个反应又需要ATP的供能和供磷酸; 又是一种酶的催化,F1,6BP从中间断裂,分解为两个小分子:GADP(3-磷酸甘油醛)和DHAP(磷酸二羟丙酮); DHAP和GADP是同分异构体,DHAP(磷酸二羟丙酮)很容易被转变成GADP(3-磷酸甘油醛),这是一个可逆反应,由于GADP会参与后续反应,所以这个可逆反应会向生成GADP的方向进行着。

到目前为止,看似已经经过了很复杂的反应历程,可是它们还只被称为葡萄糖酵解的“准备阶段”,这个阶段主要是ATP供能,让葡萄糖活化,这些活化反应都不是氧化还原反应。重要的还在下一阶段,真正的让葡萄糖的能量释放出来。 在光合作用的反应历程中,我们曾数次被氧化型辅酶(NADP+)和还原性辅酶(NADPH)所困扰。这次它们的弟弟们又要出现了,它们比NADP+和NADPH少了一个磷酸,因此叫做NAD+和NADH。在酶的指挥调度下,GADP(3-磷酸甘油醛)再得到一个磷酸,被氧化成1,3PG(1,3-二磷酸甘油酸),这是一个氧化还原反应,GADP 失去两个电子,NAD+得到两个电子,跟一个氢离子结合成NADH。 1,3PG中有两个高能磷酸键,因此是一种不稳定的物质。它会自我降解,得到3PG(3-磷酸甘油酸),高能磷酸键的能量被ADP吸收,和降解出来的磷酸结合成ATP。 又是在酶的指挥下,3PG分子重排,生成2PG(2-磷酸甘油酸)。

相关主题
文本预览
相关文档 最新文档