当前位置:文档之家› 形位公差理论和标注实例

形位公差理论和标注实例

形位公差理论和标注实例
形位公差理论和标注实例

形位公差的标注

(1)代号中的指引线箭头与被测要素的连接方法:当被测要素为线或表面时,指引线的箭头应指在该要素的轮廓线或其延长线上,并应明显地与尺寸线错开,见下图a。

当被测要素为轴线或中心平面时,指引线的箭头应与该要素的尺寸线对齐,见右图b;

当被测要素为各要素的公共轴线、公共中心平面时,指引线的箭头可以直接指在轴线或中心线上,见右图c。

(2)对于位置公差还需要用基准符号及连线表明被测要素的基准要素,此时基准符号与

基准要素连接的方法:

当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出线标注,并应明显地与尺寸线错开,见下图a。

当基准要素为轴线或中心平面时,基准符号应与该尺寸线对齐,见上图b。

当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接靠近

公共轴线或中心线标注,见上图c。

(3)当基准符号不便直接与框格相连时,则采用基准代号(点击此处查看画法)标注,其标注方法与采用基准符号时基本相同,只是此时公差框格应为三格或多格,以填写基准代号的字母,见下图。

(4)当位置公差的两要素,被测要素和基准要素允许互换时,即为任选基准时,就不再画基准符号,两边都用箭头表示,见下图。

(5)当同一个被测要素有多项形位公差要求,其标注方法又是一致时,可以将这些框格画在一起,共用一根指引线箭头,见下图。

(6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。

(7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见图a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全长(或整个要素)内的公差值,其标注方法见下图b。

Example:

形位公差间的关系及取代应用

国家标准GB1182~1184《形状和位置公差》包括形状公差——直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度;定向位置公差——平行度、垂直度、倾斜度;定位位置公差——同轴度、对称度、位置度;跳动——径向、斜向、端面圆跳动,径向、端面全跳动。这些项目中有些虽然概念不同,但却有密切联系,有些项目比较相似或受其他项目控制,有些是单项公差,有些属于综合公差,在一定的条件下可以互相取代应用。但对这一问题往往未能注意,有时设计人员绘制了零件的几何形状、尺寸,但对于形位公差的标注却比较草率从事,常常出现标注不当或重复标注的现象。有时由于技术人员对它的理解不同,造成应用上的混乱,给零件的制造和检测带来困难,因此,有必要深刻了解形状和位置公差之间的关系,熟练掌握它们的各种取代用法,这样,在标注零件的

形位公差时,在满足要求的情况下做到最简洁、最明确、最实用,加工最经济,检测最方便。

一、形状公差

1. 圆柱度、直线度、圆度 圆柱度是限制实际圆柱面对理想圆柱面变动量的一项指标。它的公差带是以公差值t 为半径差的两个同轴圆柱面之间的区域。它控制了圆柱体横剖面和轴剖面内的各项形状公差,诸如圆度、轴线直线度,素线直线度等。使用时,一般标注了圆柱度就没有必要再标注圆度,直线度。如果一定要单独标注圆度、直线度,则其公差值必须小于圆柱度公差值(见图1),以表示设计上对径向或轴向形状公差提出进一步要求。

通常,圆柱度误差用圆度仪或配备计算机的三坐标测量装置检测,如果没有这些装置,最好不要使用圆柱度,此时可分别用圆度和圆柱面素线的平行度来代替使用(见图2)。

用圆度和平行度来代替圆柱度时,应根据圆柱体的长径比确定圆度公差值与平行度公差值。

o 当圆柱体长度大于其直径时,素线平行度公差值必须相应大于其

圆度公差值

(见图3a)。

o 当圆柱体长度等于其直径时,素线平行度公差值与其圆度公差值

也应相等(见图3b)。

o 当圆柱体长度小于其直径时,素线平行度公差值必须相应小于其

圆度公差值(见图3c)。

图1 圆柱度与圆度或直线度同时标注

图2 圆度与平行度组合

代替圆柱度

2. 圆度、线轮廓度 圆度是限制实际圆对

理想圆变动量的一项指标,其公差带是以

公差值t 为半径差的

两同心圆之间的区域。

线轮廓度是限制实际曲线对理想曲线变动量的一项指标,其公差带是包络一系列直径为公差t 的圆的两包络线之间的区域,诸圆圆心应位于理想轮廓线上。从线轮廓度公差带(见图4b)可见,线轮廓度不仅要求它的轮廓形状正确,还有一定的尺寸要求,即它的理想形状与尺寸有关,类似于尺寸偏差。而圆度则不然,它只限制两同心圆的半径之差,至于两同心圆的直径大小没有要求,两同心圆的位置不确定。所以,标注了线轮廓度可以得到类似于采用包容原则的效果(如图4c 实际曲线必须位于直径为79.9mm 与80.1mm 的两个同心圆之间)。图4a 与图4c 标注的效果实际是一样的。

a)L >D b)L =D c)L <D 图3 按圆柱体长径比确定圆度公差与平行度公差

众所周知,包容原则应用于

单一要素时能综合控制圆柱孔或轴的纵、横截面的各种

形状误差,其中包括圆度误

差。所以标注了线轮廓度就

可以完全控制圆度误差,而

不必标注圆度,即线轮廓度

可以取代圆度使用。

一般对于圆曲线使用圆度比

较直观、明确,尤其是在实际生产中测量圆度广泛采用

两点、三点法极为方便。而

线轮廓度则专用于非圆曲

线。 二、位置公差与形状公差

零件被测要素的实际位置、

方向总是和它的实际形状紧

密联系在一起的。所以关联要素的理想边界控制了要素

的实际位置和方向,也必然

控制了该要素的形状误差。为了操作方便起见,不论用

综合量规检验还是用指示式 图

4 线轮廓度与包容原则

图5 形状公差与位置公差同时标注 图6 同轴度综合控制平行度

图7 位置度综合控制垂直度与直线度

图8 位置度综合控制同轴度

图9 位置度综合控制对称度

量仪测量,一般都直接在被测量要素的轮廓表面进行。所以位置误差是

实际位置和实际形状所产生的综合效果,即测得的位置误差中包含了形

状误差。所以通常同一要素给出的形状公差值应小于位置公差值(见图

5)。

三、定向位置公差与定位位置公差

定向公差与定位公差的关系如同位置公差与形状公差关系一样,通常定

位公差可以控制定向要求,因为被测实际要素在定位公差带内不仅其位

置公差变化(平移)受到控制,同时方向变化(角位移)亦受到控制。

1.同轴度、平行度

如图6中两孔轴线同轴度公差完全可以控制两轴线的平行度要求,因其

控制了被测轴线对基准的平移、倾斜或弯曲,所以不必再标注两孔轴线

平行度。

2.位置度与垂直度

位置度是一项综合公差。如图7所示,两孔轴线的直线度及两孔轴线对

基准面的垂直度可由位置度综合控制,没有必要再重复标注。

3.定位公差(位置度、同轴度、对称度)

所有定位公差的项目可由位置度来取代标注(见图8、图9)。

图8及图9中的a)与b)具有同样的控制效果,公差带形状及检测方法

相同。

由此完全可以用位置度取代同轴度和对称度。由于在生产中对上述情况

标注同轴度和对称度比标注位置度更直观明确,所以图样上标注同轴度

和对称度更恰当,而位置度通常用于限制点、线的位置误差。

四、各种跳动

1.径向圆跳动与径向全跳动

2.端面圆跳动与端面全跳动

端面圆跳动的公差带是在与基准轴线同轴的任一直径位置的测量圆柱

面上沿母线方向宽度为t的圆柱面区域(见图11a)。

端面全跳动的公差带是垂直于基准轴线,距离为公差值t的两平行平面

之间的区域(见图11b)。

显然端面圆跳动仅仅是端面全跳动的一部分,两者作用效果是不同的。

应该根据功能要求来确定是标注端面全跳动还是端面圆跳动。通常,只

有当端面的平面度足够小时,才能用端面圆跳动代替端面全跳动。例如,

对于安装轴承的轴肩,因其径向尺寸(d

1-d

2

)较小,可以用控制端面圆

跳动误差来达到控制端面全跳动的目的(见图12)。

3.径向圆跳动与斜向圆跳动

对于圆锥表面和对称回转轴线的成形表面一般应标注斜向圆跳动。只有当锥面锥角较小时(如α≤10°)才可标注径向圆跳动代替斜向圆跳动,以便于检测。如图13所示,设径向圆跳动误差为H,斜向圆跳动误差为h,则:h=Hcosα。

径向圆跳动的公差带是垂直于基准轴线的任意的测量平面内半径差为公差值t ,且圆心在基准轴线上的两个同心圆之间的区域(见图10a),其公差带限制在两坐标(平面坐标)范围内。

径向全跳动的公差带是半径为公差值t ,且与基准轴线同轴的两圆柱面之间的区域(见图10b),其公差带限制

在三坐标(空间坐标)范围内。

由于径向全跳动测量比较复杂,所以经

常用测量径向圆跳动来限制径向全跳

动。

必须指出,在用测量径向圆跳动代替径向全跳动时,应保证被测量圆柱面

上的母线对基准轴线的平行度,

或者是

被测量圆柱面的轴向尺寸较小,并借助

于工艺方法可以保证母线对基准轴线

平行度误差不大时,方可应用。为确保

产品质量,应使径向圆跳动误差值与母

线对基准轴线的平行度误差之和小于

或等于所要求的径向全跳动公差值。 五、跳动公差与其他形位公差 1. 径向圆跳动、圆度、同轴度

2. 端面圆跳动、端面全跳动、端面垂直度、平面度

a. 端面圆跳动和端面垂直度

端面垂直度限制整个端面对基准轴线的垂直情况。公差带是垂直于基准轴线两平行平面之间的区域,它不仅限制了整个被测端面对基准轴线的

图10 径向圆跳动与径向全跳动 图11 端面圆跳动与端面全跳动

图12 用端面圆跳动控制端面全跳动

图13 斜向圆跳动

垂直度误差,也限制了整个被测端面的平面度误差。而端面圆跳动仅仅限制被测圆周上各点的位置误差和在该圆周上沿轴向的形状误差,而不控制整个端面的平面度误差和垂直度误差。

当被测端面对基准轴线存在端面圆跳动误差时,则被测端面必然存在垂直度误差,反之,当端面存在垂直度误差时,端面圆跳动误差却可能为零(见图15),此时存在端面平面度误差。

所以,标注端面垂直度公差可以控制端面圆跳动和端面平面度误差。

在设计时,对一般起固定联接作用的端面,应优先采用端面圆跳动公差,因为这样检测方便,例如,安装滚动轴承的轴肩,齿轮坯端面等。当对加工定位作用比较重要的端面,应采用垂直度公差,以便同时控制平面度误差。如车床花盘端面、立车工作台面等。

b.端面全跳动和端面垂直度

端面全跳动和端面垂直度公差对被测要素的控制是完全相同的,两者可以相互取代,也可以采用相同检测方法。

在生产中,端面全跳动用于工件能够(方便地)围绕基准中心线回转的工件,如一般的轴类零件。而箱体类零件的端面与孔中心线通常标注垂直度公差。

3.径向全跳动、圆柱度、同轴度

a.径向全跳动公差是一项综合

控制指标

对单一要素的径向全跳动就是圆柱

度。但对关联要素的径向全跳动则

可以同时控制圆柱度误差和同轴度图18 平行度、圆度、同轴度综合

代替关联要素全跳动

误差。所以不能简单地把径向全跳动与圆柱度等同起来。有圆柱度误差必导致有径向全跳动误差,同样有同轴度误差也必导致有径向全跳动误差(见图16)。

b.取代用法

i.对单一要素和圆柱表面的全跳动误差的检测,如受到零件结

构或检测设备的限制,可用素线的平行度和圆度代替(如

图17a与17b的标注等价)。

ii.对关联要素的全跳动可用素线的平行度,圆度以及同轴度多项分别代替控制(如图18a与18b的标注等价)。

iii.当径向全跳动无法检测时,如果圆柱度检测手段比较成熟或具备先进测量仪器时,关联要素径向全跳动还可以用圆柱

度与同轴度代替。

径向圆跳动是一项综合性公差,它不仅控制了同轴度误差,同时也包含了圆度误差。

当被测圆柱面的轴线与基准线同轴时,由于被测要素存在圆度误差,因此会出现径向圆跳动误差;当被测要素为理想圆,但存在同轴度误差时,也会出现径向圆跳动误差。由此可见,只要存在同轴度或圆度误差,则必然存在径向圆跳动误差,反之则不一定。

由于径向圆跳动误差检测较方便,因此,在生产中常常以径向圆跳动代替同轴度公差。对同一被测要素,标注了径向圆跳动后就不必再标注同轴度或圆度(见图14),否则,同轴度公差值必须小于跳动公差值。

图14 圆跳动综合控制同轴度

图15 端面垂直度与端面圆跳动

图16 径向全跳动与圆柱度、同轴度

图17 平行度、圆度综合代替单一要素全跳动

在形位公差中,根据测量时零件围绕基准线等的不同,跳动可以分为圆跳动和全跳动。

圆跳动

圆跳动:是指被测实际表面绕基准轴线作无轴向移动的回转时,在指定方向上指示器测得的最大读数差。

圆跳动分径向,端面和斜向三种.跳动的名称是和测量相联系的.测量时零件绕基准轴线回转.测量用指示表的测头接触被测要素.回转时指示表指针的跳动量就是圆跳动的数值.指示表测头指在圆柱面上为径向圆跳动,指在端面为端面圆跳动,垂直指向圆锥素线上为斜向圆跳动。

全跳动

全跳动:是指被测实际表面绕基准轴线无轴向移动的回转,同时指示器作平行或垂直于基准轴线的移动,在整个过程中指示器测得的最大读数差。

全跳动公差是关联实际被测要素对其理想要素的允许变动量.当理想要素是以基准轴线为轴线的圆柱面时,称为径向全跳动;当理想要素是与基准轴线垂直的平面时,称为端面(轴向)全跳动.

圆跳动公差

圆跳动公差是指被测要素在某个测量截面内相对于基准轴线的变动量。圆跳动分为径向圆跳动、端面圆跳动和斜向圆跳动。

(1)径向圆跳动

公差带定义:公差带是在垂直于基准轴线的任一测量平面内,半径为公差值t,且圆心在基准轴线上的两个同心圆之间的区域。

fd圆柱面绕基准轴线作无轴向移动回转时,在任一测量平面内的径向跳动量均不得大于公差值0.05mm。

(2)端面圆跳动

公差带定义:公差带是在与基准轴线同轴的任一半径位置的测量圆柱面上沿母线方向距离为公差值t的两圆之间的区域。当被测件绕基准轴线无轴向移动旋转一周时,在被测面上任一测量直径处的轴向跳动量均不得大于公差值0.05mm。

(3)斜向圆跳动

公差带定义:公差带是在与基准轴线同轴,且母线垂直于被测表面的任一测量圆锥面上,沿母线方向距离为公差值t的两圆之间的区域,除特殊规定外,其测量方向是被测面的法线方向。

全跳动公差

全跳动公差是关联实际被测要素对理想回转面的允许变动量。当理想回转面是以基准要素为轴线的圆柱面时,称为径向全跳动;与当理想回转面是与基准轴线垂直的平面时,称为轴向(端面)全跳动。

(1)径向全跳动:

被测要素绕公共基准线A-B作若干次旋转,并在测量仪器与工件同时作轴向的相对移动时,被测要素上各点间的示值差均不得大于0.1mm,测量仪器或工件必须沿着基准轴线方向并相对于公共基准线A-B移动。(2)端面全跳动

被测要素围绕基准轴线D作若干次旋转,并在测量仪器与工件之间作径向相对移动时,被测要素上各点间的示值差均不得大于0.1mm。测量仪器或者工件必须围着轮廓具有理想正确形状的线和相对于基准轴线D的正确方向移动。

各种跳动的区别

1.径向圆跳动与径向全跳动

径向圆跳动的公差带是垂直于基准轴线的任意的测量平面内半径差为公差值t,且圆心在基准轴线上的两个同心圆之间的区域(见图),其公差带限制在两坐标(平面坐标)范围内。

径向全跳动的公差带是半径为公差值t,且与基准轴线同轴的两圆柱面之间的区域(见图),其公差带限制在三坐标(空间坐标)范围内。

由于径向全跳动测量比较复杂,所以经常用测量径向圆跳动来限制径向全跳动。必须指出,在用测量径向圆跳动代替径向全跳动时,应保证被测量圆柱面上的母线对基准轴线的平行度,或者是被测量圆柱面的轴向尺寸较小,并借助于工艺方法可以保证母线对基准轴线平行度误差不大时,方可应用。为确保产品质量,应使径向圆跳动误差值与母线对基准轴线的平行度误差之和小于或等于所要求的径向全跳动公差值。

2.端面圆跳动与端面全跳动

端面圆跳动的公差带是在与基准轴线同轴的任一直径位置的测量圆柱面上沿母线方向宽度为t的圆柱面区域(见图)。

端面全跳动的公差带是垂直于基准轴线,距离为公差值t的两平行平面之间的区域(见图)。

显然端面圆跳动仅仅是端面全跳动的一部分,两者作用效果是不同的。应该根据功能要求来确定是标注端面全跳动还是端面圆跳动。通常,只有当端面的平面度足够小时,才能用端面圆跳动代替端面全跳动。例如,对于安装轴承的轴肩,因其径向尺寸(d1-d2)较小,可以用控制端面圆跳动误差来达到控制端面全跳动的目的(见图)。

3.径向圆跳动与斜向圆跳动

对于圆锥表面和对称回转轴线的成形表面一般应标注斜向圆跳动。只有当锥面锥角较小时(如α≤10°)才可标注

径向圆跳动代替斜向圆跳动,以便于检测。如图所示,设径向圆跳动误差为H,斜向圆跳动误差为h,则:h=Hcosα。

最新形位公差标注示例

形位公差标注示例

8.6.3 形位公差标注示例 形位公差的标注示例如图8.6.2-1、图8.6.2-2所示。 图8.6.2-1 图8.6.2-2 图中各符号的含义为: 框 中的○是圆度的符号,表示在垂直于轴线的任一正截面上,Ф100圆必须位于半径差为格 公差值0.004的两同心圆之间。 框 中的∥是平行度的符号,表示零件右端面必须位于距离为公差值0.01,且平行基准格 平面A的两平行平面之间。 框 中的⊥是垂直度的符号,表示零件上两孔轴线与基准平面B的垂直度误差,必须格 位于直径为公差值0.03的圆柱面范围内。 框 中的◎是同轴度的符号,表示零件上两孔轴线的同轴度误差,Ф30H7的轴线必须格 位于直径为公差值0.02,且与Ф20H7基准孔轴线A同轴的圆柱面范围内。 符号是基准代号,它由基准符号(粗短线)、圆圈、连线和字母组成。圆圈的直径与框格的高度相同。字母的高度与图样中尺寸数字高度相同。 形状和位置公差的通则、定义、符号和图样表示法等,详见国家标准GB/T1182-1996、GB/T1183- 1996、 GB/T1184-1996和GB/T16671-1996。

第四章形状和位置精度设计与检测 要求一般理解与掌握的内容有: 形位公差的基本概念、分类,公差原则中的最小实体要求与可逆要求,形位误差及其检测; 要求深刻理解与熟练掌握的重点内容有: 1、形位公差特征项目的名称和符号; 2、形位公差在图样上的表示方法; 3、形位公差带; 4、公差原则; 难点:公差原则,形位公差的选择。 实验六:学生根据自己的兴趣选择一种零件的形状或位置公差的检测。 学时:8学时=6学时+习题课2学时 零件在加工过程中,由于工件、刀具、夹具及工艺操作等因素的影响,会使被加工零件的各几何要素产生一定的形状误差和位置误差,而几何要素的形位误差会直接影响机械产品的工作精度、运动平稳性、密封性、耐磨性、使用寿命和可装配性等。因此,为了满足零件的使用要求,保证零件的互换性和制造经济性,在设计时应对零件的形位误差给以必要而合理的限制,即应对零件规定形状和位置公差。 为了保证互换性,我国已经把形位公差标准化,颁布了下列国标: GB/T1182-1996《形状和位置公差通则定义符号和图样表示法》 GB/T1184-1996《形状和位置公差未注公差值》 GB/T4249-1996《公差原则》 GB/T16671-1996《形状和位置公差最大实体要求、最小实体要求和可逆要求》 形位误差的产生及其影响: 图样上给出的零件都是没有误差理想几何体,但是,由于加工中机床、夹具、刀具、和工件所组成的工艺系统本身存在各种误差,以及加工过程中存在受力变形、振动、磨损等各种干扰,致使加工后的零件的实际形状和相互位置,与理想几何体的规定形状和线、面相互位置存在差异,这种形状上的差异就是形状误差,而相互位置的差异就是位置误差,统称为形位误差。例如书中图4.1(a),形位误差对零件使用性能的影响如下: 1)影响零件的功能要求

形位公差理论和标注实例

形位公差的标注 (1)代号中的指引线箭头与被测要素的连接方法:当被测要素为线或表面时,指引线的箭头应指在该要素的轮廓线或其延长线上,并应明显地与尺寸线错开,见下图a。 当被测要素为轴线或中心平面时,指引线的箭头应与该要素的尺寸线对齐,见右图b; 当被测要素为各要素的公共轴线、公共中心平面时,指引线的箭头可以直接指在轴线或中心线上,见右图c。 (2)对于位置公差还需要用基准符号及连线表明被测要素的基准要素,此时基准符号与 基准要素连接的方法: 当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出线标注,并应明显地与尺寸线错开,见下图a。 当基准要素为轴线或中心平面时,基准符号应与该尺寸线对齐,见上图b。

当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接靠近公共轴线或中心线标注,见上图c。 (3)当基准符号不便直接与框格相连时,则采用基准代号(点击此处查看画法)标注,其标注方法与采用基准符号时基本相同,只是此时公差框格应为三格或多格,以填写基准代号的字母,见下图。 (4)当位置公差的两要素,被测要素和基准要素允许互换时,即为任选基准时,就不再画基准符号,两边都用箭头表示,见下图。 (5)当同一个被测要素有多项形位公差要求,其标注方法又是一致时,可以将这些框格画在一起,共用一根指引线箭头,见下图。

(6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。 (7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见图a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全长(或整个要素)内的公差值,其标注方法见下图b。

形位公差符号及标注含义

形位公差符号及标注含义 一、形位公差 零件加工时,不仅会产生尺寸误差,还会产生形状和位置误差。零件表面的实际形状对其理想形状所允许的变动量,称为形状误差。零件表面的实际位置对其理想位置所允许的变动量,称为位置误差。形状和位置公差简称形位公差。 二、形位公差符号 三形状公差 3.1 直线度(-)——直线度公差是实际直线对理想直线的允许变动量,限制了加工面或线在某个方向上的偏差,如果直线度超差有可能导致该工件安装时无法准确装入工艺文件规定的位置。

●标注含义:被测表面投影后为一接近直线的“波浪线”(如下图),该“波 浪线”的变化围应该在距离为公差值t(t=0.1)的两平行直线之间。 3.2 平面度——平面度表示面的平整程度,指测量平面具有的宏观凹凸高度相对理想平面的偏差,一般来讲,有平面度要求的就不必有直线度要求了,因为平面度包括了面上各个方向的直线度。 ●标注含义:被测加工表面必须位于距离为公差值t(t=0.01)的两平行平 面,如下图区域。

3.3 圆度(○)——是指工件横截面接近理论圆的程度,工件加工后的投影圆应在圆度要求的公差围之。 标注含义:被测圆柱面的任意截面的圆周必须位于半径差为公差值t (t=0.025)的两同心圆之,如右图区域。

3.4圆柱度()——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 标注含义:被测圆柱面必须位于半径差为公差值t(t=0.1)的两同轴圆柱面之间,如图。 圆柱度和圆度的区别:圆柱度是相对于整个圆柱面而言的,圆度是相对于圆柱面截面的单个圆而言的,圆柱度包括圆度,控制好了圆柱度也就能保证圆度,但反过来不行。

形位公差理论和标注实例

形位公差的标注 当被测要素为线或表面时,指引线的箭:(1)代号中的指引线箭头与被测要素的连接方法 。头应指在该要素的轮廓线或其延长线上,并应明显地与尺寸线错开,见下图a指引线的箭头应与该要素的尺寸线对当被测要素为轴线或中心平面时, 齐,见右图b;指引线的箭头可以当被测要素为各要素的公共轴线、公共中心平面时, c。直接指在轴线或中心线上,见右图对于位置公差还需要用基准符号及连线表明被测要素的基准要素,)(2 此时基准符号与基准要素连接的方法:当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出 a线标注,并应明显地与尺寸线错开,见下图。当基准要素为轴线或中心平面

时,基准符号应与该尺寸线对齐,见上图 。b 当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接 。靠近公共轴线或中心线标注,见上图c (3)当基准符号不便直接与框格相连时,则采用基准代号(点击此处查看标注,其标注方法与采用基准符号时基本相同,只是此时公差框格应为三格)画法或多格,以填写基准代号的字母,见下图。 (4)当位置公差的两要素,被测要素和基准要素允许互换时,即为任选基准时,就不再画基准符号,两边都用箭头表示,见下图。 (5)当同一个被测要素有多项形位公差要求,其标注方法又是一致时,可以将这些框格画在一起,共用一根指引线箭头,见下 图。. (6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。

(7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见图a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全。b长(或整个要素)内的公差值,其标注方法见下图

形位公差换算

附录从(圆柱)位置度公差到坐标/从坐标到(圆柱)位置度公差的换算方法 总公差带X .70711 = 总坐标公差带 0.005 总坐标公差或0.0025双向 公差 示例: .007TOL X .70711 = .00495 TO ± 基本原则: 用总公差带乘以0.7(或70%)便转换为非关键性应用,例如,0.7 X .007 = .0049 或0.005 (±.0025) 0.007 总位置度公差带直径 总坐标或双向公差带 总坐标公差带X 1.4142 = 总公差带 示例: 0.005 总坐标公差或0.0025双向公差X 2X 1.4142 = .007 总公差± TO 基本原则:用总公差带乘以1.4就迅速地转换为非关键性应用,例如 USE 1.4 TIMES TOTAL COORD TOL ZONE TO CONVERT QUICKLY IN NON-CRITICAL APPLICATIONS, e.g. 1.4 X .005 = .007TOL

附录 换算表 从 位置度公差到坐标公差 从坐标公差到 位置度公差到 X 坐标 UJ H < Z Q CE o o o > 示例: ?.010直径 位置度公差 = ±.0035坐标公差 坐标总公差带 位置度公差带 位置度公差 Y 坐标

从坐标测量到 位置度定位的换算 实际定位 差值 方程 理想位置 实际定位 直径等量- 基准面 可以用计算器或电脑完成 坐标测量值与位置定位间的换算器 程序: 基准面

附录 示例 换算 产生的孔0.250 (MMC) (公差 带= 010) 实际孔中心 产生的孔255 (MIN MC) (公差带 = 015 (.010 +.005) 实际孔中心 实际测量值实际测量值 (水平方向) 实际 值-基本值=X 0.754-0.750 =0.004 (水平方向) 实际 值-基本值=X 0.756-0.750 =0.006 (垂直方向) 基本 值-实际值=Y 0.600-0.598 =0.002 (垂直方向) 基本 值-实际值=Y 0.600-0.596 =0.004 从上表中可以看出,在横坐标0.004 (X)和纵坐标0.002 (Y) 上产生一个直 径为0.0089的孔,即直径孔的位置在 规定的0.010直径范围内。所以,该孔 的定位是合格的。 从上表中可以看出,横坐标0.006 (X)和纵坐标 0.004 (Y) 产生一个直径为0.0144的孔,即直径 孔的位置在规定的0.015直径范围内。所以,该孔 的定位是合格的。

机械制图形位公差的标注常识

形位公差的标注 (1)代号中的指引线前头与被测要素的连接方法当被测要素为线或表面时,指引线的箭头应指在该要素的轮廓线或其延长线上,并应明显地与尺寸线错开,见下图a。 当被测要素为轴线或中心平面时,指引线的箭头应与该要素的尺寸线对齐,见右图b; 当被测要素为各要素的公共轴线、公共中心平面时,指引线的前头可以直接指在轴线或中心线上,见右图c。 (2)对于位置公差还需要用基准符号及连线表明被测要素的基准要素,此时基准符号与 基准要素连接的方法: 当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出线标注,并应明显地与尺寸线错开,见下图a。 当基准要素为轴线或中心平面时,基准符号应与该尺寸线对齐,见上图b。 当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接靠近公共轴线或中心线标注,见上图c。 (3)当基准符号不便直接与框格相连时,则采用基准代号(点击此处查看画法)标注,其标注方法与采用基准符号时基本相同,只是此时公差框格应为三格或多格,以填写基准代号的字母,见下图。

(4)当位置公差的两要素,被测要素和基准要素允许互换时,即为任选基准时,就不再画基准符号,两边都用箭头表示,见下图。 (5)当同一个被测要素有多项形位公差要求,其标注方法又是一致时,可以将这些框格画在一起,共用一根指引线箭头,见下图。 (6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。

(7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见图a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全长(或整个要素)内的公差值,其标注方法见下图b。 形状和位置公差 形状和位置公差的基本概念 零件经加工后,不仅会存在尺寸的误差,而且会产生几何形状及相互位置的误差。如下图所示的圆柱体,即使在尺寸合格时,也有可能出现一端大、另一端小或中间细两端粗等情况,其截面也有可能不圆,这属于形状方面的误差; 再如下图所示的阶梯轴、加工后可能出现各轴段不同轴线的情况,这属于位置方面的误差。

形位公差实例详解

形位公差的标注
(1)代号中的指引线箭头与被测要素的连接方法:当被测要素为线或表面时,指引线的箭 头应指在该要素的轮廓线或其延长线上,并应明显地与尺寸线错开,见下图 a。
当被测要素为轴线或中心平面时, 指引线的箭头应与该要素的尺寸线对 齐,见右图 b; 当被测要素为各要素的公共轴线、公共中心平面时,指引线的箭头可以 直接指在轴线或中心线上,见右图 c。 (2)对于位置公差还需要用基准符号及连线表明被测要素的基准要素, 此时基准符号与 基准要素连接的方法: 当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出 线标注,并应明显地与尺寸线错开,见下图 a。 当基准要素为轴线或中心平面时,基准符号应与该尺寸线对齐,见上图 b。

当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接 靠近公共轴线或中心线标注,见上图 c。 (3)当基准符号不便直接与框格相连时,则采用基准代号 (点击此处查看 画法)标注, 其标注方法与采用基准符号时基本相同, 只是此时公差框格应为三格 或多格,以填写基准代号的字母,见下图。
(4)当位置公差的两要素,被测要素和基准要素允许互换时,即为任选基 准时,就不再画基准符号,两边都用箭头表示,见下图。
(5)当同一个被测要素有多项形位公差要求,其标注方法又是一致时,可 以将这些框格画在一起,共用一根指引线箭头,见下图。

(6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从 框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。
(7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见 图 a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全 长(或整个要素)内的公差值,其标注方法见下图 b。

机械制图常用形位公差符 表示方法

机械制图常用形位公差符号表示方法

一、形位公差 零件加工时,不仅会产生尺寸误差,还会产生形状和位置误差。零件表面的实际形状对其理想形状所允许的变动量,称为形状误差。零件表面的实际位置对其理想位置所允许的变动量,称为位置误差。形状和位置公差简称形位公差。 二、形位公差符号 标注符号 直线度(-)——是限制实际直线对理想直线直与不直的一项指标。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。

定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。 定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。对称度——符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 位置度——符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。 跳动公差——关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量。 跳动公差包括圆跳动和全跳动。 圆跳动——符号为一带箭头的斜线,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置固定的指示器在给定方向上测得的最大与最小读数之差。 全跳动——符号为两带箭头的斜线,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差

常用公差标注及形位公差讲解

1.幾何特性名詞與符號 (a) 幾何特性符號 符 號 名 詞 類 別 形體區分 直度,真直度(Straightness) 平面度,真平度(Flatness) 真圓度(Roundness) 圓柱度(Cylindrically) 曲線輪廓度(Profile of a line) 曲線輪廓度(Profile of a surface) 平行度(Parallelism) 垂直度(Perpendicularity) 傾斜度(Angularity) 正位度,位置度(Position) 同心度(Concentricity) 對稱度(Symmetry ) (1982年起由 取代) 圓周偏轉度,圓形偏轉度 (Circular runout) 總偏轉度,全面偏轉度

(b) 其他符號 符 號 名 詞 直徑符號(Diameter symbol) 不考慮形體呎寸加添條件,和特性的尺寸無關 (Regardless of feature size modifier) 最多留料情況之加添條件,最大材料條件 (Maximum material condition modifier) 最小留情況加添條件,最小材料條件 (Least material condition modifier) 基本尺寸,精密尺寸(Basic dimension) 基準形體符號,基準識別符號(Datum feature symbol) 最多留料情況(MMC),Maximum- Material Condition 最多留料情況是指一個形體包容最大的材料量,即零件重量最重的時候。例如最小孔的尺寸或最大軸的尺寸。如下面圖示,直徑為0.490~0.510的銷子,當直徑 為0.510時的重量比直徑為0.490時重。一個零件包含一個直徑為0.490~0.510的孔,則零件當直徑 為0.490時比0.510時,包含更多中更重. .100 -A- A1

形位公差--标注案例

8.6.3 形位公差标注示例
形位公差的标注示例如图 8.6.2-1、图 8.6.2-2 所示。
图 8.6.2-1 图中各符号的含义为: 框 格
图 8.6.2-2
中的○是圆度的符号,表示在垂直于轴线的任一正截面上,Ф100 圆必须位于半径差为
公差值 0.004 的两同心圆之间。 框 格 中的∥是平行度的符号,表示零件右端面必须位于距离为公差值 0.01,且平行基准
平面 A 的两平行平面之间。 框 格 中的⊥是垂直度的符号,表示零件上两孔轴线与基准平面 B 的垂直度误差,必须
位于直径为公差值 0.03 的圆柱面范围内。 框 格 中的◎是同轴度的符号,表示零件上两孔轴线的同轴度误差,Ф30H7 的轴线必须
位于直径为公差值 0.02,且与 Ф20H7 基准孔轴线 A 同轴的圆柱面范围内。
符号
是基准代号,它由基准符号(粗短线)、圆圈、连线和字母组成。圆圈的直径与框格的高
度相同。字母的高度与图样中尺寸数字高度相同。
形状和位置公差的通则、 定义、 符号和图样表示法等, 详见国家标准 GB/T1182-1996、 GB/T1183-1996、 GB/T1184-1996 和 GB/T16671-1996。

第四章 形状和位置精度设计与检测 要求一般理解与掌握的内容有: 形位公差的基本概念、分类,公差原则中的最小实体要求与可逆要求,形位误差及其检测; 要求深刻理解与熟练掌握的重点内容有: 1、形位公差特征项目的名称和符号; 2、形位公差在图样上的表示方法; 3、形位公差带; 4、公差原则; 难点:公差原则,形位公差的选择。 实验六:学生根据自己的兴趣选择一种零件的形状或位置公差的检测。 学时:8 学时=6 学时+习题课 2 学时 零件在加工过程中,由于工件、刀具、夹具及工艺操作等因素的影响,会使被加工零件的各几何要素 产生一定的形状误差和位置误差,而几何要素的形位误差会直接影响机械产品的工作精度、运动平稳性、 密封性、耐磨性、使用寿命和可装配性等。因此,为了满足零件的使用要求,保证零件的互换性和制造经 济性,在设计时应对零件的形位误差给以必要而合理的限制,即应对零件规定形状和位置公差。 为了保证互换性,我国已经把形位公差标准化,颁布了下列国标: GB/T1182-1996《形状和位置公差 通则 定义 符号和图样表示法》 GB/T1184-1996《形状和位置公差 未注公差值》 GB/T4249-1996《公差原则》 GB/T16671-1996《形状和位置公差 最大实体要求、最小实体要求和可逆要求》 形位误差的产生及其影响: 图样上给出的零件都是没有误差理想几何体,但是,由于加工中机床、夹具、刀具、和工件所组成的 工艺系统本身存在各种误差,以及加工过程中存在受力变形、振动、磨损等各种干扰,致使加工后的零件 的实际形状和相互位置,与理想几何体的规定形状和线、面相互位置存在差异,这种形状上的差异就是形 状误差,而相互位置的差异就是位置误差,统称为形位误差。例如书中图 4.1(a),形位误差对零件使用 性能的影响如下: 1)影响零件的功能要求 例如:机床导轨表面的直线度、平面度不好,将影响机床刀架的运动精度。齿轮箱上个轴承孔的位置 误差,将影响齿轮传动的齿面接触精度和尺侧间隙。 2)影响零件的配合性质 例如:圆柱结合间隙配合,圆柱表面的形状误差会使间隙大小分布不均, 当配合件有相对转动时,磨 损加快,降低零件的使用寿命和运动精度。 3)影响零件的自由装配 例如:轴承盖上各螺钉孔的位置不正确,在用螺栓往基座上紧固时,就有可能影响其自由装配。 一、形位误差的研究对象-----几何要素 几何要素:任何零件都是由点、线、面组合而构成的,这些构成零件几何特征的点、线、面称为几何要素。 要素的分类: 1)按存在的状态分 (1)理想要素 理想要素是指具有几何意义的要素,即不存在形位和其它误差的要素。 (2)实际要素 零件上存在的要素,在测量时由测得的要素代替实际要素。

形位公差符号及标注含义

形位公差符号及标注含义 一、 形位公差 零件加工时,不仅会产生尺寸误差,还会产生形状和位置误差。零件表面的实际形状对其理想形状所允许的变动量,称为形状误差。零件表面的实际位置对其理想位置所允许的变动量,称为位置误差。形状和位置公差简称形位公差。 二、 形位公差符号 三 形状公差 3.1 直线度(-)——直线度公差是实际直线对理想直线的允许变动量,限制了加工面或线在某个方向上的偏差,如果直线度超差有可能导致该工件安装时无法准确装入工艺文件规定的位置。 标注含义:被测表面投影后为一接近直线的“波浪线”(如下图),该“波浪线”的变化范围应该在距离为公差值t(t=0.1)的两平行直线之间。

3.2 平面度——平面度表示面的平整程度,指测量平面具有的宏观凹凸高度相对理想平面的偏差,一般来讲,有平面度要求的就不必有直线度要求了,因为平面度包括了面上各个方向的直线度。 标注含义:被测加工表面必须位于距离为公差值t(t=0.01)的两平行平面内,如下图区域。

3.3 圆度(○)——是指工件横截面接近理论圆的程度,工件加工后的投影圆应在圆度要求的公差范围之内。 标注含义:被测圆柱面的任意截面的圆周必须位于半径差为公差值t (t=0.025)的两同心圆之内,如右图区域。 3.4圆柱度()——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 标注含义:被测圆柱面必须位于半径差为公差值t(t=0.1)的两同轴圆柱面之间,如图。

●圆柱度和圆度的区别:圆柱度是相对于整个圆柱面而言的,圆度是相对于 圆柱面截面的单个圆而言的,圆柱度包括圆度,控制好了圆柱度也就能保证圆度,但反过来不行。 ●圆柱度和圆度的作用:柴油机的结构中有多处规定了圆柱度和圆度,如发 动机的活塞环,控制好活塞环的圆度可保证其密封性,而活塞的圆柱度则对于其在缸套中上下运动的顺畅性至关重要。 四 位置公差 4.1 平行度()——,指两平面或者两直线平行的程度,即其中一平面(边)相对于另一平面(边)平行的误差最大允许值。 ●标注释义:被测轴线必须位于距离为公差值t(t=0.1),且在给定方向上 平行于基准轴线的两平行平面之间。

机械制图形位公差的标注常识

形位公差的标注 (1)代号中的指引 线前头与被测要素的连 接方法当被测要 素为线或表面时, 指引线的箭头应 指在该要素的轮 廓线或其延长线 上,并应明显地与 尺寸线错开,见下 图a。 当被测要素 为轴线或中心平面时,指引线的箭头应与该要素的尺寸线对齐,见右图b; 当被测要素为各要素的公共轴线、公共中心平面时,指引线的前头可以直接指在轴线或中心线上,见右图c。 (2)对于位置公差还需要用基准符号及连线表明被测要素的基准要素,此时基准符号与 基准要素连接的方法: 当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出线标注,并应明显地与尺寸线错开,见下图a。 当基准要素为轴线或中心平面时,基准符号应与该尺寸线对齐,见上图b。 当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接靠近公共轴线或中心线标注,见上图c。 (3)当基准符号不便直接与框格相连时,则采用基准代号(点击此处查看画法)标注,其标注方法与采用基准符号时基本相同,只是此时公差框格应为三格或多格,以填写基准代号的字母,见下图。

(4)当位置公差的两要素,被测要素和基准要素允许互换时,即为任选基准时,就不再画基准符号,两边都用箭头表示,见下图。 (5)当同一个被测要素有多项形位公差要求,其标注方法又是一致时,可以将这些框格画在一起,共用一根指引线箭头,见下图。 (6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。

(7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见图a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全长(或整个要素)内的公差值,其标注方法见下图b。

形位公差的符号和图示大全

形位公差的符号和图示大全 形位公差 加工后的零件不仅有尺寸公差,构成零件几何特征的点、线、面的实际形状或相互位置与理想几何体规定的形状和相互位置还不可避免地存在差异,这种形状上的差异就是形状公差,而相互位置的差异就是位置公差,统称为形位公差(tolerance of form and position)。 形位公差术语根据GB/T1182-2008 已改为新术语几何公差。 包括形状公差和位置公差。任何零件都是由点、线、面构成的,这些点、线、面称为要素。 后零件的实际要素相对于理想要素总有误差,包括形状误差和位置误差。这类误差影响机械产品的功能,设计时应规定相应的公差并按规定的标准符号标注在图样上。20世纪50年代前后,工业化国家就有形位公差标准。国际标准化组织(ISO)于1969年公布形位公差标准,1978年推荐了形位公差检测原理和方法。中国于1980年颁布形状和位置公差标准,其中包括检测规定。形状公差和位置公差简称为形位公差。 下列图表有利于金粉更直观的了解其概念。

测量方法 形状误差 指零件上的点、线、面等几何要素在加工时可能产生的几何形状上的误差。 如:加工一根圆柱时,轴的各断面直径可能大小不同、或轴的断面可能不圆、或轴线可能不直、或平面可能翘曲不平等。 位置误差 指零件上的结构要素在加工时可能产生的相对位置上的误差。 如:阶梯轴的各回转轴线可能有偏移等。 目前有一种高效测量各种形位误差的测量方法,就是可以直接利用数据采集仪连接各种指示,如百分表等,数据采集仪会自动读取测量数据并进行数据分析,无需人工测量跟数据分析,可以大大提高机械测量效率。 测量仪器:偏摆仪、百分表(或其他指示表)、数据采集仪 测量原理:数据采集仪可从百分表中实时读取数据,并进行形位误差的计算与分析,各种形位误差计算公式嵌入数据采集仪软件中,不需要人工计算,提高测量的准确率。

形位公差理论和标注实例

形位公差的标注 (1)代 号中的 指引线 箭头与 被测要 素的连 接方法: 当被测 要素为 线或表面时,指引线的箭头应指在该要素的轮廓线或其延长线上,并应明显地与尺寸线错开,见下图a。 当被测要素为轴线或中心平面时,指引线的箭头应与该要素的尺寸线对齐,见右图b; 当被测要素为各要素的公共轴线、公共中心平面时,指引线的箭头可以直接指在轴线或中心线上,见右图c。 (2)对于位置公差还需要用基准符号及连线表明被测要素的基准要素,此时基准符号与 基准要素连接的方法: 当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出线标注,并应明显地与尺寸线错开,见下图a。 当基准要素为轴线或中心平面时,基准符号应与该尺寸线对齐,见上图b。 当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接靠近公共轴线或中心线标注,见上图c。

(3)当基准符号不便直接与框格相连时,则采用基准代号(点击此处查瞧画法)标注,其标注方法与采用基准符号时基本相同,只就是此时公差框格应为三格或多格,以填写基准代号的字母,见下图。 (4)当位置公差的两要素,被测要素与基准要素允许互换时,即为任选基准时,就不再画基准符号,两边都用箭头表示,见下图。 (5)当同一个被测要素有多项形位公差要求,其标注方法又就是一致时,可以将这些框格画在一起,共用一根指引线箭头,见下图。

(6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。 (7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见图a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全长(或整个要素)内的公差值,其标注方法见下图b。

公差标注及形位公差

1.幾何特性名詞與符號 (a)幾何特性符號 符號名詞類別形體區分直度,真直度(Straightness) 平面度,真平度(Flatness) 真圓度(Roundness) 圓柱度(Cylindrically) 曲線輪廓度(Profile of a line) 曲線輪廓度 平行度(Parallelism) 垂直度(Perpendicularity) 傾斜度(Angularity) 正位度,位置度(Position) 同心度(Concentricity) 對稱度(Symmetry) (1982年起由 取代) 圓周偏轉度,圓形偏轉度 (Circular runout) 總偏轉度,全面偏轉度

(b) 其他符號 符 號 名 詞 直徑符號(Diameter symbol) 不考慮形體呎寸加添條件,和特性的尺寸無關 (Regardless of feature size modifier) 最多留料情況之加添條件,最大材料條件 (Maximum material condition modifier) 最小留情況加添條件,最小材料條件 (Least material condition modifier) 基本尺寸,精密尺寸(Basic dimension) 基準形體符號,基準識別符號(Datum feature symbol) 最多留料情況(MMC),Maximum- Material Condition 最多留料情況是指一個形體包容最大的材料量,即零件重量最重的時候。例如最小孔的尺寸或最大軸的尺寸。如下面圖示,直徑為0.490~0.510的銷子,當直徑 為0.510時的重量比直徑為0.490時重。一個零件包含一個直徑為0.490~0.510的孔,則零件當直徑 為0.490時比0.510時,包含更多中更重. A1 .100 -A-

形位公差标注

任务一 本任务主要完成轴套类零件的视图选择,尺寸合理标注及技术要求的正确标注,使其具备看画轴套类零件图的能力。 一、轴套零件的结构特点 轴套类零件结构形状比较简单,一般由大小不同的同轴回转体组成,具有轴向尺寸大于径向尺寸的特点。轴上直径不等所形成的台阶称为轴肩,可供安装在轴上的零件轴向定位用。轴类零件上常有倒角、倒圆、退刀槽、砂轮越程槽、挡圈槽、键槽、花键、螺纹、销孔、中心孔等结构。 二、轴套类零件表达方法选择 1、视图选择的一般原则 (1) 主视图的选择 ①表达形状特征原则主视图应能充分反映零件的结构形状 ②符合加工或工作位置原则在决定零件摆放位置时,应尽量令其符合零件的加工位置和(或)工作位置。

(2) 其他视图的选择 一个零件,主视图中没有表达清楚的部分,必须选择其他视图,包括视图、剖视图、断面图、局部放大图和简化画法等。 在保证充分表达零件结构形状的前提下,尽可能使零件的视图数目为最少。应使每一个视图都有其表达的重点内容,具有独立存在的意义。 其他视图的选择原则: ①所选择的表达方法要恰当,每个视图都有明确的表达目的。 ②所选视图的数量要恰当。在保证完整、清晰地表达零件的内、外结构形状的前提下,尽量减少图形个数,以便于看图和画图。 ③对于表达同一内容的视图,应拟出几种表达方法进行比较,以确定一种较好的表达方案。 2、轴套类零件常用的表达方法 (1) 主视图的选择 一般按加工位置将轴线水平安放来画主视图。通常将轴的大头朝左,小头朝右;轴上键槽、孔可朝前或朝上,表示其形状和位置明显。 形状简单且较长的零件可采用折断画法;实心轴上个别部分的内部结构形状,可用局部剖视兼顾表达;空心套可用剖视图表达;轴端中心孔不作剖视,用规定标准代号表示。 (2) 其他视图的选择 由于轴套类零件的主要结构形状是同轴回转体,在主视图上注出相应的直径符号“Φ”,即可表示清楚形体特征,故一般不必再选其他基本视图(结构复杂的轴例外)。 基本视图尚未表达完整清楚的局部结构形状(如键槽、退刀槽、孔等),可另用断面图、局部视图和局部放大图等补充表达,这样,既清晰又便于标注尺寸。 实例分析: 主视图的选择:轴的基本形体是由直径不同的圆柱体组成。用垂直于轴线的方向作为主视图的投射

相关主题
文本预览
相关文档 最新文档