当前位置:文档之家› 勾股定理典型练习题45873

勾股定理典型练习题45873

勾股定理典型练习题45873
勾股定理典型练习题45873

《勾股定理》典型例题分析

一、知识要点:

1、勾股定理

勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。

2、勾股定理的逆定理

如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理.

该定理在应用时,同学们要注意处理好如下几个要点:

①已知的条件:某三角形的三条边的长度.

②满足的条件:最大边的平方=最小边的平方+中间边的平方.

③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.

④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数

满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有:

(3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 )

4、最短距离问题:主要

5、运用的依据是两点之间线段最短。

二、考点剖析

考点一:利用勾股定理求面积

1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.

2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.

3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是()

A. S1- S2= S3

B. S1+ S2= S3

C. S2+S3< S1

D. S2- S3=S1

4、四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

5、(难)在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是、

=_____________。

考点二:在直角三角形中,已知两边求第三边

1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为.2.已知直角三角形的两边长为3、2,则另一条边长的平方是

3、已知直角三角形两直角边长分别为5和12,求斜边上的高.

4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的()A. 2倍B. 4倍C. 6倍D. 8倍

5、在Rt△ABC中,∠C=90°

①若a=5,b=12,则c=___________;

②若a=15,c=25,则b=___________;

③若c=61,b=60,则a=__________;

④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。

n2-,2n(n>1),那么它的斜边长是()

6、如果直角三角形的两直角边长分别为1

n2+

A、2n

B、n+1

C、n2-1

D、1

7、在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )

A.222a b c +=

B. 222a c b +=

C. 222c b a +=

D.以上都有可能 8、已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242c m

B 、36 2c m

C 、482c m

D 、602c m

9、已知x 、y 为正数,且│x 2

-4│+(y 2

-3)2

=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )

A 、5

B 、25

C 、7

D 、15

10、已知在△ABC 中,AB=13cm ,AC=15cm ,高AD=12cm ,求△ABC 的周长。 (提示:两种情况)

考点三:应用勾股定理在等腰三角形中求底边上的高

例、如图1所示,等腰中,,是底边上的高,若,求 ①AD 的长;②ΔABC 的面积.

考点四:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题 1、下列各组数据中的三个数,可作为三边长构成直角三角形的是( )

A. 4,5,6

B. 2,3,4

C. 11,12,13

D. 8,15,17 2、若线段a ,b ,c 组成直角三角形,则它们的比为( )

A 、2∶3∶4

B 、3∶4∶6

C 、5∶12∶13

D 、4∶6∶7 3、下面的三角形中:

①△ABC 中,∠C=∠A -∠B ;

②△ABC 中,∠A :∠B :∠C=1:2:3;

③△ABC 中,a :b :c=3:4:5; ④△ABC 中,三边长分别为8,15,17. 其中是直角三角形的个数有( ).

A .1个

B .2个

C .3个

D .4个

4、若三角形的三边之比为

2,则这个三角形一定是( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.不等边三角形

5、已知a ,b ,c 为△ABC 三边,且满足(a 2

-b 2

)(a 2

+b 2

-c 2

)=0,则它的形状为( )

A.直角三角形

B.等腰三角形

C.等腰直角三角形

D.等腰三角形或直角三角形

6、将直角三角形的三条边长同时扩一倍数, 得到的三角形是( )

A . 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形

7、若△ABC 的三边长a,b,c 满足222a b c 20012a 16b 20c +++=++,试判断△ABC 的形状。

8、△ABC 的两边分别为5,12,另一边为奇数,且a+b+c 是3的倍数,则c 应为 ,此三角形为 。 例3:求

(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大角是度。

(2)已知三角形三边的比为1

2,则其最小角为。

考点五:应用勾股定理解决楼梯上铺地毯问题

某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为.

考点六、利用列方程求线段的长(方程思想)

1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?

2、一架长2.5m的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m(如图),如果梯子的顶端沿墙下滑0.4m,那么梯子底端将向左滑动米

3、如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 1米,(填“大于”,“等于”,或“小于”)

4、在一棵树10 m高的B处,有两只猴子,一只爬下树走到离树20m处的池塘A处;?另外一只爬到树顶D处后直接跃到A外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?

5、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .

6、如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.

xzx

7、如图18-15所示,某人到一个荒岛上去探宝,在A 处登陆后,往东走8km ,又往北走2km ,遇到障碍后又往西走3km ,再折向北方走到5km 处往东一拐,仅1km ?

就找到了宝藏,问:登

第6题图

陆点(A 处)到宝藏埋藏点(B 处)的直线距离是多少?

考点七:折叠问题(较难的一类)

1、如图,有一直角三角形纸片,两直角边AC=6,BC=8,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CE 等于( ) A.

425 B. 322 C. 4

7 D. 35

2、如图所示,已知△ABC 中,∠C=90°,AB 的垂直平分线交BC ?于M ,交AB 于N ,若AC=4,MB=2MC ,求AB 的长.

图18-15

3、折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知AB=8CM,BC=10CM ,求CF 和EC 。

4、如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积

5、如图,矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝,将其折叠,使点D 与点B 重合,那么折叠后DE 的长是多少?

6、如图,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE 与AD 交于点F 。

B C

E

F

D

(1)试说明:AF=FC;(2)如果AB=3,BC=4,求AF的长

7、如图2所示,将长方形ABCD沿直线AE折叠,顶点D正好落在BC边上F点处,已知CE=3cm,AB=8cm,则图中阴影部分面积为_______.

8、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置

上,已知AB=?3,BC=7,重合部分△EBD的面积为________.

9、(难)如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。如果M为CD边的中点,求证:DE:DM:EM=3:4:5。

10、如图2-5,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使C点与A点重合,?则折叠后痕迹EF的长为()

A.3.74 B.3.75 C.3.76 D.3.77

2-5

11、(稍难)如图1-3-11,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板 PHF 的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:

①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时 AP 的长;若不能,请说明理由.

②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH 始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP 的长;若不能,请你说明理由.

(提示:根据勾股定理,列出一元二次方程,超初二围)

12、(难)如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。

(提示:连接AD,证△AED≌△CFD, 可得AE=CF=5,AF=BE=12,即可求)

13、(好)如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP

=160m。假设拖拉机行驶时,周围100m以会受到噪音的影响,那么拖拉机在公路MN上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为

18km/h,那么学校受影响的时间为多少秒?

考点八:应用勾股定理解决勾股树问题

1、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中

最大的正方形的边长为5,则正方形A,B,C,D的面积的和为

2、(好,稍难)已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依

此类推,第n个等腰直角三角形的斜边长是

n.

考点九、图形问题

1、如图1,求该四边形的面积

2、已知,在△ABC中,∠A = 45°,AC = 2,AB = 3+1,则边BC的长为.

3、(好,稍难)某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为 1.6m,问这辆卡车能否通过公司的大门?并说明你的理由

.

4、将一根长24㎝的筷子置于地面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值围。

5、如图,铁路上A、B两点相距25km,C、D为两村庄,DA?垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E 站的距离相等,则E站建在距A站多少千米处?

考点十:其他图形与直角三角形

如图是一块地,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积。

考点十一:与展开图有关的计算

1、如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.

2、如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行 cm

B

3、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种

架设方案,如图实线部分.请

你帮助计算一下,哪种架设方

案最省电线.

23 +1

3 3 2

考点十二、航海问题

1、一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从

A港向西北方向航行,经过1.5小时后,它们相距________海里.

2、(不难,考一元二次方程,超初二围)如图,某货船以24海里/时的速度将一批重要物资从A处运往正向的M处,在点A处测得某岛C在北偏东60°的方向上。该货船航行30分钟到达B处,此时又测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域有暗礁,若继续向正向航行,该货船有无暗礁危险?试说明理由。

3、如图,某沿海开放城市A接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度向D移动,已知城市A到BC的距离AD=100km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时撤离才可脱离危险?

考点十三、网格问题

1、如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()

A.0 B.1 C.2 D.3

2、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是()

A.直角三角形

B.锐角三角形

C.钝角三角形

D.以上答案都不对

3、如图,小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )

A. 25 B. 12.5 C. 9 D. 8.5

A B

C

(图1)(图2)(图3)

4、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:

①使三角形的三边长分别为3

②使三角形为钝角三角形且面积为4(在图乙中画一个即可).

勾股定理中考试题汇编(含答案)

勾股定理中考试题汇编(2013) 1、(2013?资阳)如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是 2、(2013?苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,),点C 的坐标为(,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为( ) . 3、(2013?鄂州)如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 4、(2013?绥化)已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论: ①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2 ), 1题 2题 3题 4题 6题 6、(2013安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只 鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( ) A .8米 B .10米 C .12米 D .14米 7、(2013年佛山市)如图,若∠A =60°,AC =20m ,则BC 大约是(结果精确到0.1m)( ) A .34.64m B .34.6m C .28.3m D .17.3m 8、(2013台湾、14)如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE=10, AE=16,则BE 的长度为何?( ) A .10 B .11 C .12 D .13 A C B 第7题图

勾股定理练习题及答案

一、 选择题 1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是 ( ) A 、2abc 2 D 、2ab ≤c 2 2、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、15 3、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个 4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、2 5、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定 6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或360 7、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、 4.5 8、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2㎝ B 、3㎝ C 、4㎝ D 、5㎝ 9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________。 10.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。 二.解答题 1.如图,某沿海开放城市A 接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度向D 移动,已知城市A 到BC 的距离AD=100km ,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险? A B D C 第7题图 A C D B E 第8题图 A B C D 第1题图 A D B C B ′ A ′ C ′ D ′ 第9题图

勾股定理全章知识点总结大全、例题精讲中考题目

勾股定理全章知识点总结大全 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b=,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 6:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即 222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 c b a H G F E D C B A a b c c b a E D C B A b a c b a c c a b c a b

中考数学勾股定理知识点-+典型题及解析

中考数学勾股定理知识点-+典型题及解析 一、选择题 1.图中不能证明勾股定理的是( ) A . B . C . D . 2.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( ) A .121 B .110 C .100 D .90 3.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )

A .2 B .2 C .3 D .4 4.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( ) A .2n ﹣2 B .2n ﹣1 C .2n D .2n+1 5.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( ) A .0个 B .1个 C .2个 D .3个 6.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2 a b +值为( ) A .25 B .9 C .13 D .169 7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=?正方形ADOF 的边长是2,4BD =,则CF 的长为( ) A .6 B .2 C .8 D .10 8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )

勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容: 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠=?, 则 ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 4.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若 ,时,以a ,b ,c 为三边的三角形是钝角三角形;若 ,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理知识点总结及练习

第 课时 第十八章 勾股定理 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2 +b 2 =c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=?,则 2 2 c a b = +,22 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,22 14()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为2 2 1422 S ab c ab c =? +=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2 S a b a b = +?+梯形,2 112S 22 2 ADE ABE S S ab c ??=+=? + 梯形,化简得证 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2 2 21,22,221n n n n n ++++(n 为正整数)2 2 2 2 ,2,m n mn m n -+(,m n >m ,n 为正整数) 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 c b a H G F E D C B A a b c c b a E D C B A c b a H G F E D C B A b a c b a c c a b c a b

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

勾股定理中考难题有答案详细讲解

勾股定理中考难题 A . 48 B . 60 C . 76 D . 80 2、如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,),点C 的坐 A . B . C . D . 2 3、如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( ) A . 6 B . 8 C . 10 D . 12 4、已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论: ①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2), A . 1 B . 2 C . 3 D . 4 1题 2题 3题 4题 6题 A . 5 B . C . D . 5或 6、如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的 树梢飞到另一颗树的树梢,问小鸟至少飞行( ) A .8米 B .10米 C .12米 D .14米 7、如图,若∠A =60°,AC =20m ,则BC 大约是(结果精确到0.1m)( ) A .34.64m B .34.6m C .28.3m D .17.3m 8、如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE=10,AE=16,则BE 的长度为何?( ) A .10 B .11 C .12 D .13 9、如图,圆柱形容器中,高为1.2m ,底面周长为1m ,在容器壁. 离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,离容器上沿0.3m 与蚊子相对.. 的点A 处,则壁虎捕捉蚊子的最短距离为 m (容器厚度忽略不计). 10、(2013?滨州)在△ABC 中,∠C=90°,AB=7,BC=5,则边AC 的长为 . A C B 第7题图

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

初二上勾股定理(经典题型)

初二上勾股定理(经典 题型) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

- 2 - 第十九章 几何证明 ——勾股定理及两点之间的距离公式 【知识回顾】 1、勾股定理:对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+(直角三角形两直角边的平方和等于斜边的平方。) 3、勾股定理的逆定理:如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。 4、常见的勾股数:(3n,4n,5n ),(5n,12n,13n),(8n,15n,17n),(7n,24n,25n),(9n,40n,41n)….. 5、勾股定理的证明图 6、两点之间的距离公式:2 122 12)()(y y x x AB -+-= 【例题讲解】 例题1、细心观察下图,认真分析各式,然后解答问题 (1)请用含n (n 是整数数)的等式表示上述变化规律;

(2)求出的值。 例题3、已知等腰三角形的周长是16cm,底边上的高是4cm,根据这些条件是否能求出这个等腰三角形的腰长和腰上高的长?若能,请把它们求出来,若不能,要说明理由。 例题2、如图所示,已知△ABC的三边 15= = =AC BC AB求△ABC , 20 25 , , 最长边上的高? 例题4、已知如图△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且 ∠EAF=45°,求证:EF2=BE2+FC2. - 3 -

- 4 - 例题5、如图,已知0090,60=∠=∠=∠D B A ,AB=2,CD=1,求BC 、AD 的长。 例题6、一只2.5m 长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯脚移动的距离是多少?

中考真题勾股定理

中考数学试题分类解析汇编 勾股定理 一.选择题(共10小题) 1.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH 的长为() A.B.2C.D.10﹣5 2.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB 长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是() A.B.C.D. 3.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有() A.1 B.2 C.3 D.4 4.下列长度的三条线段能组成钝角三角形的是() A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7 5.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()

A.B.C.D. 6.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为() A.60海里B.45海里C.20海里D.30海里 7.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为() A.﹣1 B.+1 C.﹣1 D.+1 8.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是 BC的垂直平分线,点E是垂足.已知DC=8,AD=4,则图中长为4的线段有() A.4条B.3条C.2条D.1条 9.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是() A.4.8 B.4.8或3.8 C.3.8 D.5 10.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是() A.,,B.1,,C.6,7,8 D.2,3,4

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

勾股定理典型题型

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少 米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,. 已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到 D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如 图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾 股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=AD 2 设水深AC= x 米,那么AD=AB=AC+CB=x +0.5 x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

完整版勾股定理中的经典中考题

1?如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器 内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A处,则蚂蚁吃到饭粒需爬行的最短路径是 A. 13cm B . 2,61cm D . 2,34 cm 2. 如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3 个面爬到点B,如果它 运动的路径是最短的,则AC的长为_____________ 3. 我国古代有这 样一道数学问题:“枯木一根直立地上’高二丈 周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?, 题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆 柱的高为20尺,底面周长为3尺,有葛藤自点 A 处缠绕而上,绕五 周后其末端恰好到达点B处.则问题中葛藤5YNMH% 4. 如图,在等腰Rt A 0AA1中,/ OAA1=90 ° OA=1,以0A1为直角边作等腰Rt A OA1A2, 以0A2为直角边作等腰

5. 如图,修公路遇到一座山,于是要修一条隧道?为了加快施工进度,想在小山的另 一侧同时施工?为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB 的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量/ ABD=135 ° BD=800米,求直线L 上距离D点多远的C处开挖?(血勺.414,精确到1米) 6. 勾股定理神秘而美妙, 它的证法多样,其巧妙各有不同,其中的面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用面积法

1所示摆放,其中 / DAB=90 °求证: 2 2 2 a +b =c 证明:连结 DB ,过点D 作BC 边上的高 DF ,贝U DF=EC=b - a . 1, 2 12 1 S 四边形 ADCB =S A ACD +S A ABC =7;b +^ab . 又T S 四边形 JL2 1 』2 1 / 、 ??僧 F ab 詞 c p a (b - a ) 2 ??? a 2+b 2=c 2 请参照上述证法,利用图 2完成下面的证明. 将两个全等的直角三角形按图 2所示摆放,其中/ DAB=90 求证:a 2+b 2=c 2 来证明,下面是小聪利用图 1证明勾股定理的过程: 将两个全等的直角三角形按图

勾股定理典型题总结(较难)

勾股定理 一.勾股定理证明与拓展 模型一 . 图中三个正方形面积关系 思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系? 例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 . 变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.

变式2:如图,四边形ABCD 中,AD ∥BC ,∠ABC +∠DCB =90°,且BC =2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为S 1、S 2、S 3,若S 1=3,S 3=9,求S 2. (变式2) (变式3) 变式3:如图,Rt △ABC 的面积为10cm 2 ,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 . (难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB = 90°,以△ABC 的各边为边作三个正方形,点 G 落在 HI 上,若 AC +BC =6,空白部分面积为 10.5,则阴影部分面积 模型二 外弦图 D C B A 内弦图 G F E H 例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为 13,每个直角三角形两直角边的和是5。求中间小正方形的面积为__________;

勾股定理全章知识点总结大全、例题精讲中考题目

勾股定理全章知识点总结大全 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2= c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主 要应用: (1 )已知直角三角形的两边求第三边(在ABC中, C 90,则c . a2b2, b .c2a2, a .c2b2) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3 )利用勾股定理可以证明线段平方关系的问题 2 :勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2= c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过 “数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1 )首先确定最大边,不妨设最长边长为: c ;

(2)验证c2与a2+b2是否具有相等关系,若c2= a2+b2,则△ ABC是以/C为直角的直角三角形 (若c2>a2+b2,则△ ABC是以/C为钝角的钝角三角形;若c2

勾股定理经典中考题

勾股定理 练习题 温故而知新: 1.勾股定理 直角三角形两条直角边a,b的平方和等于斜边c的平方,即a2+b2=c2. 2.勾股定理的验证 勾股定理的证明方法很多,据说已有400余种,其证明的内涵极其丰富.常用的证法是面积割补法,如图所示. 3.直角三角形的性质 两锐角互余(角的关系)、勾股定理(边的关系),30°角所对的直角边等于斜边的一半(边角关系),这些性质在求线段的长度、证明线段倍分关系、证明线段平方关系等方面有广泛的应用. 例1 如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,小鸟至少飞行() A.8米 B.10米 C.12米 D.14米

例2 如图,将一个有45°角的三角板的直角顶点放在一张宽为3cm的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,则三角板最大边的长为() A.3 cm B.6 cm C.32 cm D.62 cm 例3 如图所示,公园里有一块形如四边形ABCD的草地,测得BC=CD=10米,∠B=∠C=120°,∠A=45°.求出这块草地的面积. 举一反三: 1.一直角三角形的两边长分别为3和4,则第三边的长为() A.5 B.7 C.5 D.5或7. 2.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为() A.3 B.23 C.33 D.43 6.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3. (1)求DE的长; (2)求△ADB的面积.

八年级下册勾股定理典型例题

D 人教版数学第十七章《勾股定理》必刷题 如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米? (2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗? 如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号) 细心观察图形,认真分析各式,然后解答问题. OA 22= 2 1+1=2,1S 1 ; OA 32=12+(2 2=3,2S 2 ; OA 42=12+(2 3=4,3S 3… (1)请用含有n (n 是正整数)的等式表示上述变规律:OA n 2= ;S n = . (2)求出OA 10的长. (35,计算说明他是第几个三角形? (4)求出S 12+S 22+S 32+…+S 102的值.

如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了 1003km到达B点,然 后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离. 如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度. 60° 30° D B A C

小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A 、B 两点,测量数据如图,其中矩形CDEF 表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A 、C 、D 、B 四点在同一直线上)问: (1)楼高多少米? (2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由. 1.73 ≈1.41 ≈2.24) B A C 如图,某城市接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度移动,已知城市A 到BC 的距离AD=100km . (1)台风中心经过多长时间从B 移动到D 点? (2)已知在距台风中心30km 的圆形区域内都会受到不同程度的影响,若在点D 的工作人员早上6: 00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作? B A

2013年全国中考数学试题分类汇编 勾股定理

2013年全国中考数学试题分类汇编勾股定理(2013?湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3. (1)求DE的长; (2)求△ADB的面积. ==10 AB× (2013?株洲)已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F. (1)求证:△AOE≌△COF; (2)若∠EOD=30°,求CE的长.

中, × AD× ,

=×= =2×= = (2013?巴中)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为5. 解:∵, ==5 (2013?达州)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对 角线的所有□ADCE中,DE最小的值是() A.2 B.3 C.4 D.5 答案:B 解析:由勾股定理,得AC=5,因为平行边形的对角线互相平分, 所以,DE一定经过AC中点O,当DE⊥BC时,DE最小,此

时OD=3 2 ,所以最小值DE=3 (2013?达州)如图,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕的两端点分别在AB、BC上(含端点),且AB=6,BC=10。设AE=x,则x的取值范围是. 答案:2≤x≤6 解析:如图,设AG=y,则BG=6-y,在Rt△GAE中, x2+y2=(6-y)2,即x= 8 (0) 3 y ≤≤,当y=0时,x取最大值为6;当y= 8 3 时,x取最小值2,故有2≤x≤6 2013?雅安)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标(0,2),(0,﹣2),(﹣3,0),(3,0). 则

相关主题
文本预览
相关文档 最新文档