当前位置:文档之家› 复变函数第四章学习指导

复变函数第四章学习指导

复变函数第四章学习指导
复变函数第四章学习指导

复变函数第四章学习指导

一、 知识结构

??????

???

??

????

????

?

??????

?????????

??????????

?????

??

??

收敛

复数项级数绝对收敛一般的级数概念内闭一致收敛复变函数项级数一致收敛级数的性质收敛圆一般概念收敛半径的求法

幂级数和函数

泰勒定理零点定义及充分必要条件

零点的孤立性解析函数的性质零点的性质

解析函数的唯一性

二、 学习要求

⒈了解复级数的基本概念;

⒉理解解析函数的幂级数表示; ⒊理解收敛圆及收敛半径的概念;

⒋熟练掌握收敛圆及收敛半径的求法;

⒌了解解析函数的零点并掌握其判别方法; ⒍熟练掌握将函数在一点展成幂级数的方法;

⒎了解解析函数的唯一性定理,掌握其证明方法。

三、 内容提要

幂级数

定义 称形如

+++++=∑∞

=n

n n n

n

z c z c z c c z

c

22100

(4.3)

+-++-+-+=-∑∞

=n

n n n n

z z c z z c z z c c z z c

)()()()(02020100

0 (4.3)

的级数为幂级数,其中 ,,,,,,2100n c c c c z 均为复常数。 收敛圆 收敛半径

对于级数(4.3),总存在圆周R z c R =:,使得级数(4.3)在R c 的内部绝对收敛,在R

c

的外部发散.我们称圆R z R N <:),0(为级数(4.3)的收敛圆,称R 为级数(4.3)的收敛半径。

求收敛半径的方法与数学分析中的方法一样。 定理4.12 对于级数(4.3),若极限

n

n n c c 1lim

+∞

存在(有限或无限),则极限

n

n n c ∞

→lim

存在,并且有

n

n n n

n n c c c 1lim

lim

+∞

→∞

→=

= R

1=

其中的R 为级数(4.3)的收敛半径.当0= 时,规定+∞=R ,当+∞= 时,规定0=R 。 解析函数的幂级数表示

定理4.13 设G 为区域,点G a ∈,圆R a z K <-:含于G ,若函数)(z f 在G 内解析,则在K 内有

∑∞

=-=0

)()(n n

n

a z c

z f (4.5)

其中

,2,1,0,!

)

0()

(==n n f

c n n (4.7)

且上述展式是唯一的。 解析函数的零点

定义4.7 设函数)(z f 在点a 解析,若0)(=a f ,则称点a 为)(z f 的零点,若)(z f 的零点a 满足

0)()()()

1(==='=-a f

a f a f m ,但0)()

(≠a f

m

则称点a 为函数)(z f 的m 级(阶)零点。 计算)(z f 的零点的级别的方法

定理4.17 点a 是不恒为零的解析函数)(z f 的m 级零点的充分必要条件是

)()

()(z a z z f m

??-=

其中,)(z ?在点a 解析,且0)(≠a ?。

解析函数的唯一性 定理4.20 若

⑴函数)(1z f 与)(2z f 在区域G 内解析。

⑵E 为G 内一无穷点集,且E 在G 内至少有一个聚点a 。 ⑶)()(21z f z f =在E 上成立,则)()(21z f z f =在G 内成立。

解析函数的唯一性定理可以用来在复平面证明我们过去熟知的一些等式。

四、 典型例题

例1 试将2

)(+=

z z z f 在点1=z 展成泰勒级数。

解 因为2-=z 是)(z f 的唯一有限奇点,所以,)(z f 可在3)2(11=--<-z 内展成泰勒级数,有

3

1112

+-+-=

+z z z z

3

)1(13

)1(1+-+

+--=

z z z

)

3

11(31)

3

11(31-+

+-+

-=z z z ∑

=+∞

=++--+

--=

01

1

1

3

)

1()1(3

)

1()1(n n n

n n n n n

z z

31,3

)1()

1(23

111

1

<---+=

∑∞

=++z z n n n

n

例2 试判断点2-=z 是函数z z z z f 44)(2

3

++=的几级零点。 解 因为

z z z z f 44)(2

3

++=

2

)2(+=z z

所以,若令z z =)(?,则)(z ?在点2-=z 解析,且0)2(≠-?,即)(z ?满足定理5.11的条件,故点2-=z 为函数)(z f 的二级零点。

例3 判断级数 1i

n

n n ∞

=∑

的敛散性。若收敛需进一步指出是否绝对收敛.

解 根据复级数的收敛性可以等效为实部、虚部的收敛性.故考察实、虚部得到

1

1

1

1

i

(1)(1)

i 221n n n n n n n

n

n -∞

===--=

+-∑

交错级数

1

(1)2n

n n

=-∑

的通项绝对值单调趋于零,根据高等数学中实级数的莱布尼兹判别

法知该级数收敛;同理交错级数1

1(1)

21n n n -∞

=--∑

也收敛. 根据级数收敛的充要条件知原级数收敛.

但是 1

1

i

1

|

|n n n n

n ∞

===

∑∑

为调和级数是发散的,故原级数是条件收敛级数,而不是绝对收

敛级数.

例4 级数

1n

n C

∞=∑收敛,而级数

1

||

n

n C

=∑发散,证明幂级数0

n

n

n C

z

=∑的收敛半径为1.

证明 级数1

n

n C

=∑收敛相当于幂级数0

n

n

n C

z

=∑在1z =处收敛.于是由阿贝尔(Abel)定理,

对于满足范围||1z <,幂级数0

n

n

n C z

=∑必绝对收敛. 从而该幂级数的收敛半径不小于1,即

为1R ≥.但若1R >时,幂级数0

n

n n C z

=∑

在收敛圆周||z R <内绝对收敛,特别地在1z R

=<处也绝对收敛,即1

||

n

n C

=∑收敛,这显然与己知条件矛盾.故幂级数

n

n

n C

z

=∑的收敛半径只

能是1R =.

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

第二章 解析函数 1. 复变函数: ()w f z = w =f (z )又常写成w =u (x ,y )+iv (x ,y ),从而对复变函数f (z )的讨论可相应地 转化为对两个实函数u (x ,y )和v (x ,y )的讨论. 2.复变函数的极限与连续: 定义2.2 设函数w =f (z )定义在z 0的去心邻域0<|z -z 0|,都存在一正数(0)r δδ<≤,使得当0<|z -z 0|<δ时,有 ()f z A ε<-, 则称函数f (z )当0z z →时的极限存在,常数A 为其极限值.记作 0lim ()z z f z A →= 或 0()()f z A z z →→. 定理2.1 设f (z )=u (x ,y )+iv (x ,y ),z 0=x 0+iy 0,A =a +ib ,则 000(,)(,)lim ()lim (,),z z x y x y f z A u x y a →→=? = (2.1) 00(,)(,)lim (,).x y x y v x y b →= (2.2) 定义 2.3 若0 0lim ()()z z f z f z →=,则我们就说函数 f (z ) 在点 z 0 处连续. 如果函数f (z )在区域D 内每一点都连续,那么称函数f (z )在区域D 内连续. 定理2.5 设函数000()(,)(,),f z u x y iv x y z x iy =+=+,则f (z )在点z 0连续的充分必要条件是u (x ,y )、v (x ,y ) 均在点(x 0,y 0)连续. 3.复变函数的导数 定义2.4 (导数的定义)设函数w =f (z )定义在z 平面上区域D 内,点z 0、z 0+Δz D ∈, 00Δ(Δ)()w f z z f z ∈=+-,若极限 00Δ0Δ0(Δ)()Δlim lim ΔΔz z f z z f z w z z →→+- 存在,则称函数f (z ) 在 z 0可导,这个极限值称为f (z )在z 0的导数,记作 00000Δ0(Δ)()d () d lim ().d d Δz z z z z f z z f z f z w f z z z z ==→+-='== (2.3) 由于复变函数导数的定义在形式上和一元实函数的导数定义一致,并且复变函数中的极限运

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

复变函数复习题(2012-4-10) 第一章自测题 (一)填空题(每题3分,共15分) 1.复数10 3 (cos5sin 5)(cos3sin 3)i z i θθθθ+=-的复指数表示式为__________________; 2.设11i z i += -,则1005025____________________;z z z ++= 3.设35,arg(),4 z z i π =-=则______________;z = 4.不等式225z z -++<所表示的区域是_____________________; 5.方程232z i +-=所代表的曲线是__________________________. (二)选择题(每题3分,共15分) 1.设34,z i =-+则幅角的主值arg ( )z 4 4 .arctan .arctan 33 4 4 .arctan .arctan 3 3 A B C D π π π +-+- 2.41( )-= 22222 2 2 2 .cos sin .cos sin 4 4 4 4 33222222 2 2 .cos sin .cos sin 44 4 4 k k k k A i B i k k k k C i D i π π π π πππππππ π ππ ππ++- +- +++++-+- ++- (0,1,2,3)k = 3.设(i z t t t =+为参数),则其表示( )图形。 .A 直线; .B 双曲线; .C 圆; . D 抛物线。 4.一个向量顺时针旋转 ,3 π 向右平移3个单位,再向下平移1个单位后对应的复数为13i -,

第二章习题详解 1. 利用导数定义推出: 1) () 1 -=n n nz z ' (n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-?? ??? ?++-+ += -+= --→→ 2 2 1 12 1lim lim ' ()() 1 1 2 1 12 1----→=?? ? ?? ?++-+ = n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: () ()2 11 111 1z z z z z z z z z z z z z z z z z - =+-= +-= - += ?? ? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??, 0=??y u , 0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2 在直线2 1- =x 上可导,在复平面内处处不解析。 2) ()3 3 32y i x z f += 解:设()iv u z f +=,则3 2x u =,3 3y v = 2 6x x u =??, 0=??y u , 0=??x v , 2 9y y v =??都是连续函数。 只有2 2 96y x =,即032=± y x 时才满足柯西—黎曼方程。 ()3 3 32y i x z f +=∴在直线 032=± y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 2 2 += 解:设()iv u z f +=,则2 xy u =,y x v 2 =

第四章习题详解 1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限: 1) mi ni a n -+= 11; 2) n n i a -?? ? ? ?+=21; 3) ()11++ -=n i a n n ; 4) 2i n n e a π-=; 5) 21i n n e n a π-= 。 2. 证明:??? ????≠==>∞<=∞→1111110a a a a a a n n ,,,,lim 不存在, 3. 判别下列级数的绝对收敛性与收敛性: 1) ∑∞ =1n n n i ; 2) ∑∞ =2n n n i ln ; 3) ()∑∞=+0856n n n i ; 4) ∑∞=0 2n n in cos 。 4. 下列说法是否正确?为什么? 1) 每一个幂级数在它的收敛圆周上处处收敛;

2) 每一个幂级数的和函数在收敛圆内可能有奇点; 3) 每一个在0z 连续的函数一定可以在0z 的邻域内展开成泰勒级数。 5. 幂级数()∑∞ =-02n n n z c 能否在0=z 收敛而在3=z 发散? 6. 求下列幂级数的收敛半径: 1) ∑∞ =1n p n n z (p 为正整数); 2) ()∑∞=12n n n z n n !; 3) ()∑∞=+01n n n z i ; 4) ∑∞=1n n n i z e π; 5) ()∑∞=-??? ??1 1n n z n i ch ; 6) ∑∞=??? ? ?1n n in z ln 。 7. 如果 ∑∞=0n n n z c 的收敛半径为R ,证明()∑∞=0n n n z c Re 的收敛半径R ≥。[提示:()n n n n z c z c

习题四 1. 复级数1 n n a ∞=∑与1 n n b ∞=∑都发散,则级数1 ()n n n a b ∞ =±∑和 1 n n n a b ∞ =∑发散.这个命题是否成立?为什 么? 答.不一定.反例: 2211111111 i ,i n n n n n n a b n n n n ∞∞∞∞ =====+=-+∑∑∑∑发散 但2 1 1 2()i n n n n a b n ∞ ∞ ==+=? ∑∑收敛 112()n n n n a b n ∞ ∞ ==-=∑∑发散 2411 11 [()]n n n n a b n n ∞∞ ===-+∑∑收敛. 2.下列复数项级数是否收敛,是绝对收敛还是条件收敛? (1)2111i n n n +∞ =+∑ (2)115i ( )2n n ∞=+∑ (3) π 1 e i n n n ∞=∑ (4) 1i ln n n n ∞ =∑ (5) 0 cosi 2n n n ∞=∑ 解 (1) 21111 1i 1(1)i 1(1)i n n n n n n n n n n +∞ ∞∞===++-?-==+?∑∑∑ 因为11n n ∞ =∑发散,所以21 1 1i n n n +∞ =+∑发散 (2)11 15i (22n n n n ∞ ∞ ==+=∑∑发散 又因为15i 15lim()lim(i)0222 n n n n →∞ →∞+=+≠ 所以1 15i ()2n n ∞ =+∑发散 (3) πi 1 1e 1 n n n n n ∞ ∞===∑ ∑发散,又因为π11 1 ππcos isin e 1ππ(cos isin )i n n n n n n n n n n n ∞ ∞ ∞ ===+==+∑∑∑收敛,所以不绝对收敛.

第一章 复数与复变函数 一、选择题: 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π= -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 32 1+ - (D )i 2 12 3+ - 3.复数z -3(cos -isin )5 5 π π =的三角表示式为( ) A .44-3(cos isin )5 5 ππ+ B . 443(cos isin )55ππ- C . 443(cos isin )5 5 ππ+ D .44-3(cos isin )5 5 ππ- 4.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续 二、填空题 1.设) 2)(3()3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π=-=i z z ,则=z 4.方程i z i z +-=-+221所表示的曲线是连续点 和 的线段的垂直平分线. 5.=+++→)21(lim 4 2 1z z i z 三.求方程z 3+8=0的所有复根. 第二章 解析函数 一、选择题:

第一章 复数与复变函数 一、 选择题 1.当i i z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π =+z arc ,6 5)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2( tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]2 3sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3 π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )

(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )22 1=+-z z (B )433=--+z z (C ))1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

第四章级数 复级数也是研究解析函数的一种重要的工具,实际上,解析函数的许多重要性质,还需要借助适当的级数才能得到比较好的解决。例如,解析函数零点的孤立性、解析函数的惟一性、解析函数在其孤立奇点去心邻域内的取值特点等等。 根据所研究的解析函数所涉及的问题的需要,在本章中,我们重点介绍两类特殊的复函数项级数,一类是幂级数,通常考虑函数在其解析的区域内的整体性质或函数在其解析点邻域内的性质时,用这类级数;另一类是洛朗级数,通常考虑函数在其孤立奇点附近的有关性质时,用这类级数. 本章,我们主要介绍以下内容: 首先,平行介绍复数项级数和复函数项级数一般理论. 其次,作为函数项级数的特例,我们平行介绍形式简单且在实际中的应用广泛的幂级数,并建立如何将圆形区域内解析的函数表示成幂级数的方法,以及如何利用这种方法来研究解析函数的有关良好的性质(比如:解析函数零点的孤立性、解析函数的惟一性以及作为解析函数基本理论之一的最大模原理等).第三,进一步介绍由正、负整数次幂项构成的形式幂级数(也称为洛朗级数或双 <-<(0r≤,边幂级数)的概念及其性质,并建立(挖去奇点a的)圆环形区域r z a R R≤+∞)内解析函数的级数表示(即解析函数在圆环形区域内的洛朗展式),然后再用洛朗展式作为工具研究解析函数在其孤立奇点附近的性质.作为解析函数孤立奇点性质的应用,再简要介绍复变函数的进一步研究中经常涉及到的两类重要的函数,即整函数与亚纯函数及其简单分类. 一、学习的基本要求

1.能正确理解复级数收敛和发散以及绝对收敛等概念.掌握复级数收敛的必要条件和充要条件,特别是复级数收敛与实、虚部级数收敛之间的关系,并能熟练地运用这种关系来讨论复级数的有关问题以及利用复级数来讨论实级数的有关问题(比如:利用复级数的和求实级数的和的问题等). 2.了解复级数绝对收敛与条件收敛,掌握收敛以及绝对收敛级数的若干性质(比如收敛级数的线性性、添项减项性和添加括号性;绝对收敛级数的项的重排性、乘积性等;二次求和的可交换性,即在 ,1 1 ()n m n m A ∞∞ ==∑∑,,1 1 ()n m m n A ∞∞ ==∑∑以及 ,,1 n m n m A ∞ =∑ 都收敛的条件下,有 ,,1 1 1 1 ()()n m n m n m m n A A ∞∞ ∞∞ =====∑∑∑∑ 成立). 3.了解复函数项级数收敛、一致收敛和内闭(紧)一致收敛的含义,掌握一致收敛的柯西准则和魏尔斯特拉斯判别法,并能熟练运用此判别法判断复函数项级数的一致或内闭一致收敛,掌握一致或内闭一致收敛的函数项级数和函数的连续性、逐项积分性以及解析函数项级数和函数的解析性、逐项求任意阶导数性. 4.熟练掌握幂级数收敛半径的两种计算方法: 记00()()n n n f z a z z ∞ ==-∑,l =1z 是()f z 的不解析点中距0z 最近的点,

湖南科技学院二○○ 年 学期期末考试 专业 年级 试题 考试类型:闭卷 试卷类型:D 卷 考试时量: 120 分钟 一(共7分,每小题1分) 1.nLnz Lnz n =(n 为正整数) ( ) 2.),(),()(y x iv y x u z f +=在区域D 内解析,则在区域D 内),(y x u 是),(y x v 的共轭调 函数。 ( ) 3.函数在可去奇点处的留数为0。 ( ) 4.0是2sin )(z z z f = 的一阶极点。 ( ) 5.复数0的辐角主值为0。 ( ) 6.在复变函数中,0cos ,0sin ,1|cos |,1|sin |2 2 ≥≥≤≤z z z z 同样成立。 ( ) 7.解析函数),(),()(y x iv y x u z f +=的实部),(y x u 和虚部),(y x v 都是其解析区域内的调 和函数。 ( ) 二 、填空题(共28分,每小题4分) 1. i i -1=_________. 2.? =-2 |1|2 z z dz = 。 3. dz z c ?=__________。 (其中c 是从1到的直线段) 4.幂级数n n n z n ∑ +∞ =1 的收敛半径R =

5.0为 )1()(2-=z e z z f 的 阶零点。 6.2 ||2(1)(3)z dz z z =--?=____________ 7. )1(Re z z s z +∞== 。 8.1z =+arg z =_______________。 三 、计算题(共39分) 1. 已知),(),()(y x iv y x u z f +=在z 平面上是解析函数,且2 33),(xy x y x u -=,求解)(z f , 使得i f 2)0(=。(12分) 2. 求 ) 1(1 -z z 在10<z 内的展开式。(15分) 3. 利用留数求定积分20 1 .51sin 82 I d π θθ=-? (12分) 四、证明题(共12分) 若函数)(),(z f z f 在区域D 内都解析,证明在D 内)(z f 为常数。

第一章习题详解 1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1) i 231 + 解: ()()()13 2349232323231231i i i i i i -=+-=-+-=+ 实部:13 3 231= ??? ??+i Re 虚部:132231-=?? ? ??+i Im 共轭复数:1323231i i += ?? ? ??+ 模:131 1323231 2 22=+= +i 辐角:πππk arctg k arctg k i i Arg 232213 3132 2231231+? ?? ??-=+-=+??? ??+=??? ??+arg 2) i i i -- 131 解: ()()()2 532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=-- 实部:2 3131=??? ??--i i i Re 虚部:25131-=?? ? ??--i i i Im 共轭复数:253131 i i i i +=?? ? ??-- 模:2 34 4342531312 22= =+= --i i i 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+??? ??-=+???? ? ??-=+??? ??--=??? ??--arg

3) ()()i i i 25243-+ 解: ()()()2 26722672 72625243i i i i i i i --= -+= --= -+ 实部:()()2725243-=?? ? ??-+i i i Re 虚部:()()1322625243-=- =?? ? ??-+i i i Im 共轭复数:()()226725243i i i i +-= ?? ? ??-+ 模: ()() 292522627252432 2 =?? ? ??-+??? ??-=-+i i i 辐角:()()ππk arctg k arctg i i i Arg 272622722625243+??? ??=+????? ? ?--=??? ??-+ 4) i i i +-21 8 4 解:i i i i i i 3141421 8-=+-=+- 实部:( )1421 8=+-i i i Re 虚部:( )3421 8-=+-i i i Im 共轭复数:() i i i i 314218+=+- 模:103142221 8 =+=+-i i i 辐角:( )()πππk arctg k arctg k i i i i i i Arg 2321324421821 8 +-=+?? ? ??-=++-=+-arg 2. 当x 、y 等于什么实数时,等式 ()i i y i x +=+-++13531成立? 解:根据复数相等,即两个复数的实部和虚部分别相等。有: ()()()i i i y i x 8235131+=++=-++ ?? ?=-=+8321y x ? ??==?111 y x 即1=x 、11=y 时,等式成立。

第四章习题详解 1.下列数列a是否收敛?如果收敛,求出它们的极限: n 1)a n 1 1 ni mi ; 2) a n n i 1; 2 3)a i n n1; n1 4) ni 2 a n e; 1ni a n e。 n 5)2 0,a1 2.证明:lim n a n 1 , , a a1 1 不存在,a1,a1 3.判别下列级数的绝对收敛性与收敛性:n i 1) ;n n1 n i 2) ;ln n n2 3) 65i n 08 n;

4) n cos 02 n in 。 4.下列说法是否正确?为什么? 1)每一个幂级数在它的收敛圆周上处处收敛; 1

2)每一个幂级数的和函数在收敛圆内可能有奇点; 3)每一个在z连续的函数一定可以在z 0的邻域内展开成泰勒级数。 5.幂级数 n c能否在z0收敛而在z3发散? n z2 n0 6.求下列幂级数的收敛半径: 1) n1 n z p n (p为正整数); 2 n! n 2)z ; n nn1 3) 1 n n iz; n0 4) i n ez; n n1 5) n1 i n chz1; n nz 6) 。ln in n1 7.如果 n c n z的收敛半径为R,证明 n Re的收敛半径R。[提示: c n z n n Re c n zcz] n n0n0 8.证明:如果 c n1 lim存在,下列三个幂级数有相同的收敛半径 nc n n c n z; c n1z n1 n1 ; n1 nc n z。

2

9.设级数c收敛,而 n c发散,证明 n n c n z的收敛半径为1。 n0n0n0 10.如果级数 n c n z在它的收敛圆的圆周上一点z0处绝对收敛,证明它在收敛圆所围的闭区域上绝对收n0 敛。 11.把下列各函数展开成z的幂级数,并指出它们的收敛半径: 1) 11 3 z ; 2) 11 z 22 ; 3) 2 cos z; 4)shz; 5)chz; 6)e 2 z sin; 2 z z 7) z1 e; 8) 1 sin。 1z 12.求下列各函数在指定点z处的泰勒展开式,并指出它们的收敛半 径: 1) z z 1 1 ,z1; 2) z z 1z2 ,z2; 3

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1--; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3 k k +=±±; 主辐角为 4π3 ;原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为 4π i 3 2e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+==+==+ 1.2 计算下列复数 1)() 10 3i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2)()1 3π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1

(2)(/62/3)i n e ππ+ 1.4 已知x 为实数,求复数的实部和虚部. 【解】 令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得 到 22 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且 ()()k k z z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端 取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明:2222 12 1212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=-

第二章习题详解 1. 利用导数定义推出: 1) ()1-=n n nz z '(n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-??????++-++=-+=--→→ 2210 0121lim lim ' ()()11210121----→=??????++-+= n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: ()()2000111111z z z z z z z z z z z z z z z z z -=+-=+-=-+=??? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??,0=??y u ,0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。 2) ()3332y i x z f += 解:设()iv u z f +=,则32x u =,33y v = 26x x u =??,0=??y u ,0=??x v ,29y y v =??都是连续函数。 只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。 ()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 22+= 解:设()iv u z f +=,则2xy u =,y x v 2=

p178第四章习题(一)[ 3, 4, 6, 7(4), 10, 12, 13, 14 ] 3. 如果lim n (c n + 1/c n )存在( ),试证下列三个幂级数有相同的收敛半径: (1) n 0 c n z n ;(2) n 0 (c n /(n + 1)) z n + 1;(3) n 0 (n c n ) z n – 1. 【解】事实上,我们只要证明下面的命题: 若 n 0 c n z n 的收敛半径为R ,则 n 0 (n c n ) z n – 1的收敛半径也为R . 从这个命题,就可以得到幂级数(1)的收敛半径与幂级数(2)的收敛半径相同,幂级数(3)的收敛半径与幂级数(1)的收敛半径相同. step 1. 当R 是正实数或+时.若| z | < R ,则存在r 使得| z | < r < R . 因 n 0 c n z n 的收敛半径为R ,根据收敛半径定义及Abel 定理, 知 n 0 | c n r n |收敛. 因| (n c n ) z n – 1 | = ( | n /r | · ( | z | /r )n – 1 ) · | c n r n |; 而lim n ( | n /r | · ( | z | /r )n – 1 ) = 0,故M > 0使得0 | n /r | · ( | z | /r )n – 1 M . 所以| (n c n ) z n – 1 | M · | c n r n |. 由Weierstrass 判别法知 n 0 | (n c n ) z n – 1 |收敛,所以 n 0 (n c n ) z n – 1收敛. 因此 n 0 (n c n ) z n – 1的收敛半径R 1 R . 特别地,若 n 0 c n z n 的收敛半径为+,则 n 0 (n c n ) z n – 1的收敛半径也为 +. step 2. 当R 是非负实数时.对任意的满足R < r < | z |的实数r , 根据收敛半径定义, n 0 c n r n 发散.从而 n 0 | c n r n |发散. 当n > r + 1时,| c n r n | = | r /n | · | (n c n ) r n – 1 | | (n c n ) r n – 1 |; 因此, n 0 | (n c n ) r n – 1 |发散. 由Abel 定理, n 0 (n c n ) z n – 1的收敛半径R 1 r . 由r 的任意性,得R 1 R . 特别地,若 n 0 c n z n 的收敛半径为0,则 n 0 (n c n ) z n – 1的收敛半径也为0. step 3. 综合step 1和step 2的结论,当R 为正实数时,也有R 1 = R . 即若 n 0 c n z n 的收敛半径为R ,则 n 0 (n c n ) z n – 1的收敛半径也为R . [这个证明中,我们没有用到条件lim n (c n + 1/c n )存在( ),说明该条件是 可以去掉的.因为一般的幂级数并不一定满足这个条件,因此去掉这个条件来证明结论是有意义的.] 4. 设 n 0 c n z n 的收敛半径为R (0 < R < +),并且在收敛圆周上一点绝对收 敛,试证明这个级数对所有的点z : | z | R 为绝对收敛且一致收敛. 【解】设z 0在收敛圆周上,且 n 0 | c n z 0 n |绝对收敛. 那么对于点z : | z | R ,都有| z | | z 0 |. 因此级数 n 0 | c n z n |收敛,即 n 0 c n z n 绝对收敛. 而由Weierstrass 判别法知知级数 n 0 c n z n 对所有的在闭圆| z | R 上一致收 敛. 6. 写出e z ln(1 + z )的幂级数展式至含z 5项为止,其中ln(1 + z )|z = 0 = 0. 【解】在割去射线L = { z | Im(z ) = 0,Re(z ) 1}的z 平面上,能分出 Ln(1 + z )的无穷多个单值解析分支(Ln(1 + z ))k = ln| (1 + z ) | + i arg(1 + z ) + 2k i ,k .

第四章 复级数 §1.级数的基本性质 教学目的与要求:了解复数项级数收敛、发散及绝对收敛一致收敛等概念,掌握解析函数项级数的性质. 重点: 解析函数项级数. 难点:一致收敛的函数项级数;解析函数项级数. 课时:2学时 1.复数项级数 定义4.1 复数项级数就是 其中为复数 定义4.2 对于复数项级数,设 若存在,则称级数收敛,否则为发散. 据此定义,我们立即推出:若级数收敛,则 其次,由复数的性质易于推得 定理4.1 设 其中均为实数,则级数收敛的充要条件为基数与均收敛,复数项级数具有与实数项级数完全相同的性质,不再一一给出. 定理4.2(柯西收敛准则)级数收敛的充要条件是,使及,均有定义4.3 若级数收敛,则称级数为绝对收敛. 由关系式及 及定理4.1即可推得. 定理4.3 级数绝对收敛的充要条件为:级数及绝对收敛. 再由定理4.2可知:绝对收敛级数必为.收敛级数. 例1.对于级数当时,由于 , 而当时,,于是 因此级数收敛且有, 显然,当时,级数亦为绝对收敛的级数. 2.复函数项级数 定义4.4设函数在复平面点集上有定义,则称级数 为定义在上的复函数项级数. 定义4.5 设函数在上有定义,如果,级数均收敛于,则称级数收敛于,

或者说级数和函数记作 定义4.6 如果,使得当时,对任一,均有 则称级数在一致收敛于. 与定理4.2类似地我们有 定理4.4 级数在上一致收敛的充要条件是: ,使当时,对任一及均有 由此我们即得一种常用的一致收敛的判别法: 定理4.5 魏尔斯特拉斯-判别法设在点集上有定义 为一收敛正项级数,若在上成立则级数 在上一致收敛于,则在上一致收敛. 与实数项级数一样,不难证明以下定理: 定理4.6 设在复平面点集上连续,级数在上一致收敛于,则在上连续. 定理4.7 设在简单曲线上连续,级数在上一致收敛于,则. 对于复函数项级数的逐项求导问题,我们考虑解析函数项级数,首先,引入一个新概念. 定义4.7 设函数在区域内解析,如果级数在内任一有界闭区域上一致收敛于函数,则称级数在内闭一致收敛于. 由此,我们有下列重要的魏尔斯特拉斯定理. 定理设函数在区域内解析,级数在内中闭一致收敛于函数,则在内解析,且在内成立 证明: ,取,使得.在内任作一条简单闭曲线,根据定理及柯西定理推得.因而由莫勒拉定理知在内解析,再由的任意性即得在内解析. 其次,设的边界,由已知条件得在上一致收敛于,从而 在上一致收敛于,根据定理,我们有 即 于是定理结论成立. 作业:第178页 1. §2幂级数 教学目的与要求:了解幂级数收敛圆的概念,掌握简单的幂级数收敛半径的求法.掌握幂级数在收敛圆内一些基本性质及幂级数在收敛圆周上的性质. 重点: 幂级数收敛半径的求法; 幂级数在收敛圆内一些基本性质. 难点:幂级数在收敛圆周上的性质.

第一章习题解答 (一) 1 .设z ,求z 及Arcz 。 解:由于3i z e π-== 所以1z =,2,0,1, 3 Arcz k k ππ=-+=±。 2 .设121z z =,试用指数形式表示12z z 及12 z z 。 解:由于6412,2i i z e z i e ππ -==== 所以()6 46 41212222i i i i z z e e e e π πππ π --=== 54()14612 26 11222i i i i z e e e z e πππππ +-===。 3.解二项方程44 0,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+====。 4.证明2 2 21212122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212122Re()z z z z z z +=++ 2 2 2 12 12122Re()z z z z z z -=+- 所以2 2 21212 122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。证明z 1,z 2,z 3 是内 接于单位圆 1 =z 的一个正三角形的顶点。 证 由于1 321 ===z z z ,知 321z z z ?的三个顶点均在单位圆上。 因为 3 33 31z z z == ()[]()[]212322112121z z z z z z z z z z z z +++=+-+-= 21212z z z z ++= 所以, 1212 1-=+z z z z , 又 ) ())((1221221121212 21z z z z z z z z z z z z z z +-+=--=- ()322121=+-=z z z z

相关主题
文本预览
相关文档 最新文档