当前位置:文档之家› 4-无线通信系统和收发信机结构

4-无线通信系统和收发信机结构

射频接收系统的设计与仿真

1 前言 (2) 2 工程概况 (2) 3 正文 (2) 3.1零中频接收系统结构性能和特点 (3) 3.2基于ADS2009对零中频接收系统设计与仿真 (3) 3.3超外差接收系统结构性能和特点 (12) 3.4基于ADS2009对超外差接收系统设计与仿真 (13) 4 有关说明 (16) 5 心得体会 (18) 6 致谢 (18) 7 参考文献 (19)

射频是一种频谱介于75kHz-3000GHz之间的电波,当频谱范围介于20Hz-20kHz之间时,这种低频信号难以直接用天线发射,而是要利用无线电技术先经过转换,调制达到一定的高频范围,才可以借助无线电电波传播。射频技术实质是一种借助电磁波来传播信号的无线电技术。 无线电技术应用最早从18世纪下半段开始,随着应用领域的扩大,世界已经对频谱进行了多次分段波传播。当前,被广泛采用的频谱分段方式是由电气和电子工程师学会所规定的。随着科学技术的不断发展,射频所含频率也不断提高。到目前为止,经过两个多世纪的发展,射频技术也已经在众多领域的到应用。特别是高频电路的应用。其中在通信领域,射频识别是进步最快的重要方面。 工程概况 近年来随着无线通信技术的飞速发展,无线通信系统产品越来越普及,成为当今人类信息社会发展的重要组成部分。射频接收机位于无线通信系统的最前端,其结构和性能直接影响着整个通信系统。优化设计结构和选择合适的制造工艺,以提高系统的性能价格比,是射频工程师追求的方向。由于零中频接收机具有体积小、成本低和易于单片集成的特点,已成为射频接收机中极具竞争力的一种结构,在无线通信领域中受到广泛的关注。本文在介绍超外差结构和零中频结构性能和特点的基础上,对超外差结构和零中频结构进行设计与仿真。 正文 下面设计一个接收机系统,使用行为级的功能模块实现收信机的系统级仿真。

收发信机试验方法

1.简述 专用高频收发信机一般为单频制。即发信和收信为同一频率信号,且能够自发自收。线路对端的收发信机与本侧收发信机型号、频率完全相同。因此,本侧的收发信机除能够自发自收外,也能够接收对端的信号。 发信部分包括:晶体振荡、前置放大、功率放大、输出滤波等收信部分包括:收信滤波、混频、变频、放大、检波、收信输出等 对于LFX—912型收发信机,测试项目不多,对于有些收发信机,则需要测试较多项目,如许昌继电器厂生产的SF—600型收发信机,还要测试收信带宽、混频变频输出等一些项目。现在只以LFX—912为例,叙述它的测试项目和方法。 2.测试项目和方法 发信输出电平测试: 收发信机的输出就是指高频信号的输出。输出信号的单位用“dB”或“dBm”即:电压电平或功率电平。收发信机高频信号输出端子为装置背面的“38”和“40”号端子。“38”为高频电缆的“芯”,“40”为高频电缆的“地(即屏蔽层)”。测试输出电平时,用选频电平表的“∞”档,测试档位要放的大些(防止撞表针),测试线加在“38”和“40”上,也可以将测试线插在装置前面的测试插孔上。如果没有接入通道,则要将收发信机背面的插头选择在“本机—负载”上。选频表频率选在收发信机的工作频率上。然后启动发信。读选频表的指针读数。所读的选频表读数为电压电平。 高频收发信机的输出阻抗为75Ω,因此,若要将所读的电压电平换算为功率电平,则应按下列公式换算: 式中:Pu:电压电平 Pg:功率电平 对于与RCS—901A组屏的LFX—912收发信机,在测试发信电平时(未接入通道,选择“本机—负载”),应短接发信机背面“10”和“12”端子,使发信机发信。 收信灵敏电平测试: 收信灵敏电平也称为收信启动电平。即能使收信回路正常工作的最小电平,称为收信启动电平。 正确的测试方法按下图接线:

教务管理系统(概要设计及详细设计)

概要设计说明书 1. 总体设计 1.1 需求规定 教务管理系统可分为学生信息管理系统和教师管理信息系统,系统开发的整体任务是实现学校教师和学生信息管理的系统化、规范化、自动化和智能化,从而达到提高学校管理效率的目的。 本阶段目的在于明确系统的数据结构和软件结构,此外总体设计还将给出内部软件和外部系统部件之间的接口定义,各个软件模块的功能说明,数据结构的细节以及具体的装配要求。 1.2 运行环境 软件基本运行环境为Windows XP环境。 1.3 基本设计概念和处理流程 概要说明书的目的在于明确系统的数据结构和软件结构,设计外部软件和内部软件的接口,说明各个软件模块的功能说明,数据结构的细节等。系统的总体处理流程如图1-1所示:

图1-1 系统的总体处理流程 1.4 系统体系结构 用一览表及框图的形式说明本系统的系统元素(各层模块、子程序、公用程序等)的划 教务管理系统 选择操作 基础维护 教学管理 报表统计 选择操作 选择操作 班级信息维护 课程信息维护 学生选课 课表查询 成绩输入 打印成绩单 学生信息维护 教 师信息维护

分,扼要说明每个系统元素的标识符和功能,分层次地给出各元素之间的控制与被控制关系。 本系统的体系架构如图1-2所示: 图1-2 系统体系架构 本系统体系结构大致可以定义为:客户机层上的表示层主要是通过Struts 框架实现的,由显示视图产生一个请求。请求被ActionServlet(控制器)接收,它在struts-config.xml文件中寻找请求的URI,找到对应的Action类后,Action类执行相应的业务逻辑。Action类执行建立在模型组件基础上的业务逻辑,模型组件是和应用程序关联的。一旦Action类处理完业务逻辑,它把控制权返回给ActionServlet,Action类提供一个键值作为返回的一部分,它指明了处理的结果。ActionServlet使用这个键值来决定在什么视图中显示Action的类处理结果。当ActionServlet把Action类的处理结果传送到指定的视图中,请求的过程也就完成了。中间业务层是通过Spring框架实现的,首先建立一个BaseAction,它继承了Action类,而其他定义的Action都要继承这个BaseAction。这个BaseAction需要导入AppContext工具类,这个AppContext需要导入Spring中org.springframework.context.support.*;这样一个继承BaseAction的Action,就可以getXXXService()的方法得到某一个service的实例-----服务定位器的设计模式。持久(PO)层是由hibernate 架构实现的,它包括关于整体数据库的hibernate.cfg.xml文件、每个表的JavaBean类和每个表的hbm.xml文件,通过Spring集成模板HibernateTemplate提供DAO 来使用PO。在Spring 的配置文件(applicationContext. xml)中配置sessionFactory的bean 来管理hibernate。

通信系统建模与仿真课程设计

1 任务书 试建立一个基带传输模型,采用曼彻斯特码作为基带信号, 发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高 斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps , 要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据 与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功 率谱进行估计。假设接收定时恢复是理想的。 2 基带系统的理论分析 2.1基带系统传输模型及工作原理 基带系统传输模型如图1所示。 发送滤波器 传送信道 接收滤波器 {an} n(t) 图1 基带系统传输模型 1)系统总的传输特性为(w)()()()H GT w C w GR w ,n (t )是信道中 的噪声。 2)基带系统的工作原理:信源是不经过调制解调的数字基带信号, 信源在发送端经过发送滤波器形成适合信道传输的码型,经过含有加

性噪声的有线信道后,在接收端通过接收滤波器的滤波去噪,由抽样 判决器进一步去噪恢复基带信号,从而完成基带信号的传输。 2.2 基带系统设计中的码间干扰及噪声干扰 码间干扰及噪声干扰将造成基带系统传输误码率的提升,影响基 带系统工作性能。 1)码间干扰及解决方案 a ) 码间干扰:由于基带信号受信道传输时延的影响,信号波形 将被延迟从而扩展到下一码元,形成码间干扰,造成系统误码。 b) 解决方案: ① 要求基带系统的传输函数H(ω)满足奈奎斯特第一准则: 2(),||i i H w Ts w Ts Ts ππ+ =≤∑ 不出现码间干扰的条件:当码元间隔T 的数字信号在某一理想低通 信道中传输时,若信号的传输速率位Rb=2fc (fc 为理想低通截止频 率),各码元的间隔T=1/2fc ,则此时在码元响应的最大值处将不 产生码间干扰。传输数字信号所要求的信道带宽应是该信号传输速 率的一半:BW=fc=Rb/2=1/2T ② 基带系统的系统函数H(ω)应具有升余弦滚降特性。 如图2所示:滚降系数:a=[(fc+fa)-fc]/fc

基站射频收发信机指标分解

美信Maxim技术文档《基站收发信机设计》,以WCDMA为例进行讲解基站收发信机射频前端指标分解和设计。虽然文档以WCDMA为例进行讲解,但宽带收发信机射频前端原理基本一致,因此适用于LTE等其他制式的设计。以下为学习笔记和总结。 1.接收机 接收机主要射频指标包括Reference Sensitivity Level,Adjacent Channel Selectivity(ACS),Blocking(In-Band和Out-of-Band),Receiver Inter-modulation。其中带内blocking指标和ACS 分析类似,考量的都是工作带内信道外干扰信号对接收机影响的分析,因此Bolcking指标支队Out-of-band指标进行了讲解和说明。 1.1Reference Sensitivity Level 接收机的最小可接收电平(接收机灵敏度)= -174dBm/Hz + 10logBW + NF + Eb/N0 1.Eb/No由基带解调能力决定,与射频前端无关; 2.BW由无线系统协议标准定义; 3.-174dBm/Hz及总的热噪声; 因此针对某一无线系统设计,灵敏度指标的分解即根据协议灵敏度指标要求来设计接收机的噪声系数(Noise Figure)要求,以保证满足灵敏度指标允许的最大输入噪声(总噪声,包括输入热燥和引入的系统噪声) 上图说明如下: Step1:系统要求灵敏度指标为-121dBm/3.84MHz; Step2:Eb/No = 5dB ——不考虑编码增益允许的总输入噪声=-121dBm – 5dB = -126dBm Step3:12.2Kbps数据速率到3.84Mcps码片速率的扩频增益为:10*log(3.84M/12.2K) ≈25dB,考虑扩频增益后总的输入噪声要求为-101dBm; Step4:3.84MHz带内总的热噪声= -174dBm + 10log3.86MHz/1Hz = -108.1dBm 所以为满足灵敏度指标要求,系统接收机连续噪声系数需要≤-101dBm+108.1dBm

10无线电广播接收机的基础知识

10无线 电广播 接收机 的基础 知识 课题 10.1.1无线电波 课型 新课授课班级授课时数 1 教学目标 1.了解无线电波的基础知识 2.培养学生学习无线电通信的兴趣 教学重点 无线电基础知识 教学难点 无线电播的传播方式 学情分析 教学效果

新课 教后记 A .引入 1.无线电信号的初步概念 2.无线电接收机 B .新授课 10.1.1 无线电波 一、无线电波 1.概念:当一根导线中通过高频电流时,导线的周围就产生变化的磁场,变化的磁场周围又产生变化的电场,而变化的电场周围再产生变化的磁场。这种电场和磁场的交替变化向四周传播并能把能量传送出去的波,称为电磁波,就是我们通常所说的无线电波。 2.公式: f c = λ 解c = 3×108m/s ,λ:波长;c :波速;f :信号频率。 例:频率为1 000 kHz 的无线电波,其波长为多少? 解:m 300m 1010001033 8 =??= =f c λ 结论:不同频率的无线电波,其波长不同,频率越高,波长越短;频率越低,波长越长。 过渡:由于不同波长的信号,其主要用途,传播距离不同。因此,为了便于分析和应用,一般将无线电波划分为若干区域。 3.无线电波的波段划分(见下表) 波段名称 波长范围 频率范围 频段名称 用 途 短长波 104~105m 30~3kHz 甚低频VLF 海上远距离通信 长 波 103~104m 300~30kHz 低频LF 电报通信 中 波 2×102~103m 500~300 kHz 中频MF 无线电广播 中短波 50 ~2×102m 6 000~1500 kHz 中高频IF 电报通信、业余者通信

(完整word版)数据库课程设计教务管理系统

洛阳理工学院 课程设计报告 课程名称数据库课程设计 设计题目教务管理系统 专业计算机科学与技术 班级 学号 姓名 完成日期

课程设计任务书 设计题目:教务管理系统 设计内容与要求: 设计教务管理系统,类似于我校教务管理系统,有四类用户:教务员、学生、教师、管理员教务员可以输入学生、教师、班级、课程信息。一个班级只属于一个专业,一个学生只属于一个班级。教务员负责输入每个专业、每个班级需要学习哪些课程,指定课程的任课教师。教师可以查看学习该课程的学生名单。课程结束后,教师可以录入课程成绩。一个教师可以教授多个班的多门课程,每门课由多位老师讲授。课程分两类,必修课和选修课。系统要记录每个学生学习各门必修课的成绩,还要记录学生选修了哪些选修课以及课程成绩。学生可以查看自己各门课程的成绩。学生还可以进行评教,给老师打分。管理员可以输入教室信息,并结合班级、课程、教室信息实现自动排课。 要求: 1.完成本系统的需求分析,写出功能需求和数据需求描述; 2.完成数据库的概念结构设计、逻辑结构设计、物理结构设计; 3.完成本系统的部分功能模块的程序界面设计。 指导教师: 2017 年12 月29 日 课程设计评语 成绩: 指导教师:_______________ 年月日

目录 一、概述 (2) 1.1、本设计的目的与意义 (2) 1.2、数据库开发工具和应用程序开发工具 (2) 二、需求分析 (2) 2.1功能需求 (2) 2.2数据需求 (2) 三、概念结构设计 (2) 3.1、E-R模型设计 (2) 3.2、总体E-R图描述 (4) 四、逻辑结构设计 (4) 4.1、关系模型 (4) 4.2、关系模式的优化与说明 (4) 五、物理结构设计 (5) 5.1建立数据库 (5) 5.2表与表结构 (5) 六、应用程序设计 (6) 6.1、系统总体结构 (6) 6.2、系统界面与源代码 (7) 6.2.1、界面 (8) 6.2.2、功能描述 (9) 6.2.3、程序源代码 (10) 七、设计总结 (23)

无线电广播接收机的基础知识

第9章 无线电广播 接收机的基础知识 本章重点 1.了解电磁波的性质和传输途径。 2.理解无线电广播发射与接收系统的组成。 3.理解调制、解调的概念,掌握调幅波和调频波的性质和特点。 4.了解超外差式调幅收音机各基本单元电路的作用和整机工作原理。 本章难点 1.接收机中变频器和检波器的工作原理。 学时分配 9.1 无线电波的发射与接收 无线电接收机是接收无线电信号的电子设备。 9.1.1 无线电波 一、无线电波 指在高频电流作用下,导线周围的电场和磁场交替变化向四周传播能量的电磁波。无线电波的参数包括:波长 λ、频率f 、自由空间中的传播速度c ,这三个参量之间的关系为 c = λf (9.1.1) [例9.1.1] 频率为1000 kHz 的无线电波,其波长为多少? 解 由式(9.1.1)可得 m 300m 1010001033 8 =??==f c λ 可见,无线电波的频率越高,波长越短;反之,波长越长。

二、无线电波的频段 无线电波的频率范围一般用频段(或波段)表示。其波段划分如表9.1.1所示。 三、无线电波的传播途径 1.沿地面传播——地面波; 2.在空间直线传播——空间波; 3.依靠折射和反射传播——天波。 表9.1.1 无线电波的波段划分 9.1.2 无线电广播的发射与接收 动画无线电调幅发射机工作原理 一、无线电广播的发射 调制和发射:在无线电波发射过程中,只有天线长度和电波波长可比拟时,才能有效地把电波发射出去。声音信号的波长范围在15 ? 103 ~ 15 ? 106 m,要想制作对应尺寸的天线显然不现实。为此,利用频率较高(即波长极短)的无线电波携带声音信号发射出去,使天线的制作变成了现实。 高频振荡器:在发射机中,用来产生高频振荡信号的部件。 载波:用来“装载”声音信号的高频振荡信号。 调制:把声音信号“装载”到高频振荡信号中的过程。 已调信号:调制后的高频振荡信号。 所谓发射是指利用传输线把已调波送到天线,变成电磁波向空间辐射的过程。 发射机的组成: 1.低频:声音变换和放大; 2.高频:高频振荡的产生、放大、调制和高频功放; 3.传输线与天线:传输和发射已调高频信号; 4.直流电源:各部分电路工作电源。

无线电收发信机基础

无线电发射机(Radio Transmitter)是实现信号在无线信道中有效传输的通信设备之一。它的作用是将要传输的基带信号通过调制,放大、变频等一系列处理,最终使信号通过天线以高频电磁波的形式进入到无线空间。 2.5.1 无线电发射机的基本组成 2.5.2 发射机的主要技术指标 1.输出功率 2.频率范围与频率间隔 3.频率准确度与频率稳定度 4.邻道功率 5.寄生辐射 6.调制特性 2.5.3 短波单边带发射机 2.5.4 调频发射机 2.5.1 无线电发射机的基本组成 无线电发射机的基本组成包括基带信号处理电路、载波发生器、调制器、高频功 率放大器和发射天线等五部分:如图2-19。基带信号处理电路包括了对来自于话筒 (或各种音频设备)的音频信号的各种前端处理,如音频放大、音频滤波(将频率限制在 300~3400Hz)和可能需要的语音压缩(幅度限制,防止出现过大的调制度)和预加重 (用于FM发射机中)等;调制器用于将处理过的音频信号调制到高频载波上,不同的调 制方式采用不同的调制器,在直接调频中,调制器与载波发生器合二为一;高频功率 放大器将高频已调波进行功率放大,使发射机的输出功率满足要求。发射天线是一种 将高频电信号转换成电磁波的单元,对于发射机来说,它是一种负载。 图2-19只是一个无线电发射机的基本组成部分。实际的发射机根据具体的功能和 技术指标要求还必须增加一些电路,如各种滤波器、变频器以及一些控制电路等,其 放大器也往往是多级的。 2.5.2 无线电发射机的主要技术指标 1.输出功率 发射机的输出功率对于AM波和FM波来说是指发射机的载波输出功率,即无调制时

收发信机概述

收发信机概述 一、概述 在当前航空通信突飞猛进的今天,从小型的驻留气球、无人机、歼击机到大型的专业飞机,装机的电子设备的种类和数量在成倍地增长,短波、超短波、L波段、卫星通信等各个频段的通信设备、多种导航设备、敌我识别设备、侦察设备等均在各类平台上装备,造成了各类平台拥挤不堪,为了解决其体积、重量、功耗等问题,不得不在航行速度和续航时间等方面做出牺牲,因此小型化、综合化势在必行。全机的综合化牵涉的方面较多,成本、技术等方面的因素目前还不可逾越,但小型化的技术已日趋成熟,表面贴装、厚/薄膜集成电路技术、大规模逻辑门阵列技术均可使设备在一定程度上小型化。本文讨论的是寻求另外的一种途径,即改变收发信机的一些传统结构,来实现信道的集成化。 二、接收机体系结构 用于航空通信的接收机,已逐步走向减小功耗、降低成本、提高集成度的道路。采用单片放大,利用数字信号处理技术来完成调频调幅信号的解调、扩频信号的解扩,这些措施可以大大减少接收机系统的尺寸、成本和功率。现在已发展到探索新的拓扑结构形式来进一步小型化。近年来出现的各种各样的接收机拓扑结构,每种都有其优点和缺点。 1.超外差体系 超外差体系结构自问世以来已被广泛采用,现在仍占据了绝对地位。图1所示为一个超短波超外差接收机双变频体系结构。 低噪声放大器(LNA)对微弱信号进行了放大,其噪声系数对整机的贡献最大,但它提供的增益可减小后级引入的噪声系数。之前的射频滤波器衰减了带外信号和镜像干扰。使用可变本振,全部频谱就被下变频到一个固定的中频。通过在下变频模块之前使用一个外部镜像干扰抑制滤波器,镜像干扰可以被大大削弱到一个可接受的水平。在下变频之后使用中频滤波器可以滤除带外的杂波及噪声,对于后面的各个模块就降低了动态范围要求。第二下变频通常是正交的,以使同相和正交(I&Q)信号的数字处理变得容易。 由于有多个变频级,DC补偿和泄漏问题基本不存在,但它是以较大的硬件成本来获得较好的性能。实现镜像干扰抑制、互调等均需要的外部高Q带通滤波器,这些滤波器大都采用晶体滤波器、陶瓷滤波器和声表面波滤波器,其价格昂贵,尺寸较大。由于在第一中频就实现良好的信道选择,所以一、二本地振荡器就要求有良好的相位噪声性能。但所有的这些外部信道的要求使得在单芯片上集成收发器变得很困难。

电报收发信机电原理及设计实现

电报收发信机电原理及设计实现 工作原理:如图1所示,Q1与周围元件构成了典型的考毕兹振荡器并且一直保持振荡(故在接收时有1mW左右振荡信号泄漏),信号通过82pF电容直接耦合到Q2,在发射状态下(电键按下),Q2作为C类功放,放大后的信号经0.01uF电容耦合到π型低通滤波器,然后送天线发射;在接收状态下(电键放开),Q1与周围元件构成差拍振荡器(BFO),Q2被偏置在非线性区(可以这么想,三极管无非就是背对背接着的两个二极管嘛!),将天线接收的信号与BFO的信号进行混频,混频得到的音频信号经过0.1uF电容耦合送到LM386构成的音频功率放大器,放大后的音频信号在LM386的5脚经10uF电容隔直后送耳机。电键不但控制LM386电源的通断,也切换Q2的偏置,使之工作在不同的状态下。 图1 “皮鞋”200mW微功率等幅电报收发信机电原理图 元件选择 所有电感选择色环电感,其中L3在80米波段时使用2.2uH。C6和C7在80米波段时使用820pF。三极管Q1和Q2并没有严格的规定,放大倍数在100到200之间的硅NPN三极管都能正常使用,比如,9011,9013,9018,8050,2N2222A,2N3904等,推荐Q1和Q2都使用9013或都使用2N3904。晶体需是基频晶体,7.060M 和7.042M晶体在天线都有售。建议在电路板上晶体和L3、C6、C7处使用插座,以便切换波段或频率。如为了增大发射功率,可以使用12V电源,但需将C10 增加到100u左右。

调试方法 焊接结束应检查是否存在短路,若无,加上9V叠层电池,接上耳机,不要接天线,正常情况下应该听到微小的“沙沙”声,接上天线噪音增加或者可以听到一些信号,整机电流在10mA以下。若听到很大的啸叫声或电流过大,说明电路自激,解决办法是在“SPEAKER”两端接一个103瓷片电容,若无效,再在LM386电源滤波的10uF电容两端并接一个103瓷片电容,若仍无效,在9V电源输入端并接一个103瓷片电容。至此接收应基本正常。 图2 带1W 50欧姆假负载的高频功率表电路原理图 然后接上带假负载的高频功率表(图2给出了参考电路图),短接“KEY”两端,耳机中应迅速无声,高频功率表有一定输出。发射状态下整机电流为40-100mA。发射时在旁边0.5米处放一个短波/中波收音机,检查所有的接收频率范围,除了载频和倍频外,应听不到其它由“皮鞋”产生的信号。如有其它信号(特别是啸叫声),说明存在高频自激。割开Q1和Q2之间的电源线,用100uH电感和100欧姆电阻并联后再串联进去,可有效消除高频自激。附表给出了发射和接收状态下各主要元件的直流参考电压。 本电报发射机的基本指标 电源:7V-12V(推荐9V叠层电池) 电路板:56mm x 41 mm 天线:50欧姆,不平衡式,BNC/Q9接口 本振泄漏:约1mW(50欧姆假负载上) 频率范围:7.060-7.064MHz(7.060M晶体上串联50p微调电容) 接收: 电流:小于10mA(9V供电时) 耳机:低阻耳机(推荐SONY、aiwa等高灵敏Walkman耳机) 发射: 功率:约200mW 电流:约50mA(9V供电时) 杂散(谐波)抑制:-20dB 主观评价 接收灵敏度和选择性较差,容易受广播干扰(BCI)。频率稳定度好,听SSB信号可懂度高。电路底噪小。收发切换时开关声大,容易导致发错电码。

matlab通信仿真课程设计样本

《matlab通信仿真设计》课程设计指导书 11月

课程设计题目1: 调幅广播系统的仿真设计 模拟幅度调制是无线电最早期的远距离传输技术。在幅度调制中, 以声音信号控制高频率正弦信号的幅度, 并将幅度变化的高频率正弦信号放大后经过天线发射出去, 成为电磁波辐射。 波动的电信号要能够有效地从天线发送出去, 或者有效地从天线将信号接收回来, 需要天线的等效长度至少达到波长的1/4。声音转换为电信号后其波长约在15~1500km之间, 实际中不可能制造出这样长度和范围的天线进行有效信号收发。因此需要将声音这样的低频信号从低频率段搬移到较高频率段上去, 以便经过较短的天线发射出去。 人耳可闻的声音信号经过话筒转化为波动的电信号, 其频率范围为20~20KHz。大量实验发现, 人耳对语音的频率敏感区域约为300~3400Hz, 为了节约频率带宽资源, 国际标准中将电话通信的传输频带规定为300~3400Hz。调幅广播除了传输声音以外, 还要播送音乐节目, 这就需要更宽的频带。一般而言, 调幅广播的传输频率范围约为100~6000Hz。 任务一: 调幅广播系统的仿真。 采用接收滤波器Analog Filter Design模块, 在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。采用另外两个相同的接收滤波器模块, 分别对纯信号和纯噪声滤波, 利用统计模块计算输出信号功率和噪声功率, 继而计算输出信噪比, 用Disply显示结果。 实例1: 对中波调幅广播传输系统进行仿真, 模型参数指标如下。

1.基带信号: 音频, 最大幅度为1。基带测试信号频率在100~6000Hz 内可调。 2.载波: 给定幅度的正弦波, 为简单起见, 初相位设为0, 频率为550~1605Hz 内可调。 3.接收机选频放大滤波器带宽为12KHz, 中心频率为1000kHz 。 4.在信道中加入噪声。当调制度为0.3时, 设计接收机选频滤波器输出信噪比为20dB, 要求计算信道中应该加入噪声的方差, 并能够测量接收机选频滤波器实际输出信噪比。 仿真参数设计: 系统工作最高频率为调幅载波频率1605KHz, 设计仿真采样率为最高工作频率的10倍, 因此取仿真步长为 8max 1 6.2310(1-1)10step t s f -==? 相应的仿真带宽为仿真采样率的一半, 即 18025.7(1-2)2step W KHz t == 设基带测试正弦信号为m(t)=Acos2πFt, 载波为c(t)=cos2πf c t, 则调制度为m a 的调制输出信号s(t)为 ()(1cos 2)cos 2(1-3)a c s t m Ft f t ππ=+ 容易求出, s(t)的平均功率为 21(1-4)24a m P =+ 设信道无衰减, 其中加入的白噪声功率谱密度为N 0/2, 那么仿真带宽(-W, W)内噪声样值的方差为 2002(1-5)2N W N W σ=?=

微功率电报收发信机设计毕业论文

微功率电报收发信机设计 毕业论文 目录 第一章引言 (1) 1.1 无线通信的概念 (1) 1.2 课题的研究背景及意义 (1) 1.2.1 无线电传输的发展历史 (1) 1.2.2 无线电的应用 (1) 1.2.2 无线通信中收发电路的研究意义 (2) 1.3 课题研究的主要容 (2) 第二章无线收发的基本组成及工作原理 (3) 2.1 通信系统的基本结构 (3) 2.1.1 通信系统的结构框图 (3) 2.1.2 无线通信系统的分类 (3) 2.2 无线收发电路的调制与解调 (3) 2.2.1 调制与解调的基本概念 (3) 2.2.2 幅度调制与解调 (4) 2.2.3 ASK的调制与解调 (6) 2.3 无线收发电路的基本组成 (9) 2.3.1 无线发射电路的基本结构及原理 (9) 2.3.2 无线接收电路的基本结构及原理 (9) 第三章基于DDS的微功率电报收发信机设计 (11) 3.1 无线收发电路总体设计 (11) 3.2 无线发射电路的设计 (12) 3.2.1 本振电路的设计 (12) 3.2.2 功率放大器的设计 (19) 3.2.3 滤波电路的设计 (22)

3.3 无线接收电路的设计 (25) 3.3.1 一般接收机的主要功能规格 (25) 3.3.2 混频电路的设计 (26) 3.3.3 音频放大电路设计 (27) 3.3.4 收发控制电路设计 (28) 第四章焊接调试 (30) 第五章总结 (34) 参考文献 (35) 致谢 (36) 附录A 硬件原理图、PCB图、实物图 (37) 附录B 源程序 (39) 第一章引言 1.1 无线通信的概念 无线通信就是利用无线收发电路发射和接收信号,主要用在人们日常生活中的信息的传播。无线收发电路可分为发射电路和接收电路,发射电路直接把信息转换成电磁波在空中传播;接收电路则是把接收到的电磁波再还原成人们所需要的信号[1]。 1.2 课题的研究背景及意义 1.2.1 无线电传输的发展历史 在人们的日常生活中,需要把自己有信息发送出去,然后在另一个地方接收到这个信息,我们称之为通信。通信的主要任务就是传输消息,一般含义就是发送者到接收者的消息传递,利用某种信号实现消息传送的系统称之为通信系统。人们最早的传递信息方式是在视线围来传播,例如用火炬、烽火、旗语等来传播

无线通信收发信机架构漫谈(TRX)

无线通信收发信机架构漫谈 2015/4/9 enrich_you@https://www.doczj.com/doc/ea811062.html, 十年便是一个轮回。在无线通信领域,昔日的霸主摩托罗拉、西门子、阿尔卡特等已渐渐远去,爱立信也在积极转型,最近又听说诺基亚要收购阿朗,国内通信大厂在这场盛宴中风流至极。利润率的降低使得高大上的欧美企业不得不另寻出路。移动通信作为无线通信最大的市场,总是引领着技术的进步。广电覆盖、集群通信、卫星通信等细分市场,体量相对较小,竞争也颇为激烈,但技术大都差不多。本人从一个无线电的爱好者变成一个通信民工,见证了这个行业的高傲、残酷和苦逼。本文仅从技术角度闲聊收发信机架构的现状。 关键词:无线通信零中频收发信机RFIC SDR 发射机的架构主要分为零中频、复中频、实中频、RFDAC实现直接射频输出,架构示意图如Fig1所示。接收机类似,只不过RFDAC变为射频直接采样。 Fig1 发射机的几种常用架构 最古老的发射机架构为实中频架构(c),传统的收音机还有二次变频技术。该架构需要射频设计者考虑混频杂散、镜像抑制等指标,射频链路较长,对时延、平坦度等要求也较高。这应该是十多年前的主流架构,那个时代对于射频工程师而言是黄金时代,总有调不完板子。然而对于接收机而言,在带宽较窄的场景下,实中频架构依然是主流。带宽窄意味着采样率不高,ADC的价格也可以承受,窄带的射频系统也很容易实现,同时不需要较复杂的射频算法,因为门槛低,射频的高复杂度也就忍了。 零中频和复中频具有相同的硬件架构(Fig1 A、B),可以看到混频器变成了调制器,零中频带通滤波器变成了低通滤波器,单DAC变成了双DAC。因为集成工艺的先进,双DAC 比较容易实现,且差异性很小;同时低通滤波器较带通滤波器更容易实现;通过QMC算法,可以基本消除调制器的镜像,最后一个带通滤波器也可以去掉。但是在复中频发射机中,仍然需要带通滤波器,相比于实中频,并没有太大提升,所以复中频发射机一般不用。从Fig2可以看到,在多载波情况下,QMC算法需要校正调制器带来的镜像。考虑到宽带数字预失真的要求,配合QMC算法,零中频发射机已经非常成熟,成为现代通信发射机的不二选择。

教务管理系统分析与设计

教务管理系统分析与设计 系统规划 ●系统名称:教务管理系统 ●系统简述:高等学校的教务管理系统是一项重要的工作,它主要为学生提供选修课的选修, 记录学生的成绩等。 ●项目目标:在预定时间内开发出一个界面友好、功能较完整的教务管理系统。 系统分析 ●系统功能:该教务管理系统主要包括课程选修、用户管理、成绩管理和课表管理四大功能, 具体如下: 图1 教务管理系统功能层次图 ●系统业务流程:该教务管理系统的使用者为学生、教师和教务员,根据他们之间的数据传 递关系可画出系统业务流程图,如下图所示:

系统数据流程:根据系统的功能层次图,可得该教务管理系统的数据流程图(DFD)如下: 图3 教务管理系统顶层DFD 图4教务管理系统第一层DFD

图6学籍管理系统第二层用户管理功能之DFD 图7学籍管理系统第二层成绩管理功能之DFD

数据字典:现对该系统数据流程图各元素定义如下: 图9 数据字典之数据流定义 图10 数据字典之数据存储定义 图11 数据字典之数据项定义

图13 数据字典之外部实体定义 (说明:要求从系统底层数据流程图中分别选出一个数据流、数据存储、数据项、处理逻辑以及外部实体,对其进行数据字典的定义。) ●处理逻辑描述:系统中的“登录”功能需要分类处理,现用决策树表示其处理过程,如下: 图14 “登录”功能之决策树 ●系统数据库概念模型 该系统数据库中的主要实体有: ?用户:用户名,密码,姓名,班级,性别,年龄,职业 ?课程:课程号,课程名,性质,学时,学分,学期,专业 实体之间的联系为: ?用户与课程(选修):m:n联系 ?用户与课程(考试):p:q联系 该系统数据库概念模型E-R图为:

无线通信系统和收发信机结构_TRxArch

《射频集成电路设计基础》讲义 <<>><>? 无线通信系统和收发信机结构 概述 混频:更数学地看问题 无线接收机 超外差(Super-heterodyne)结构 零中频接收机 镜像抑制接收机 低中频结构 二次变频宽中频接收机 无线发射机 附录 镜像抑制混频原理推导 参考文献

概述 ? 接收机或发射机是一个系统,系统级的设计和优化具有更重要的意义– 决定总体大小、功耗、性能 – 协调各电路模块,确保达到指标 ? 收发机(Transceiver)结构对电路设计的影响 – 片外元件的数量和种类 – 电路的复杂度 – 各级电路的工作频率、增益、噪声系数、线性度、功耗 ? 收发机结构对集成度和成本的影响 – PCB线路的复杂度 – 片外元件,尤其是高Q值滤波器、谐振器的费用 – 元件安装(焊接)的成本 – 电路调试的费用 <<>><>?

<<>><>? ? 中频(Intermediate Frequency) 我们已经知道了无线通信中使用高频载波来传输信号的必要性,现在来看一下接收信号时降低频率的必要性– 射频信道选择的困难 ? 对于GSM 系统,? 即使可以达到这么高的Q 值,滤波器通带内的损耗和带外(相邻信道)的衰减 也将带来极大的问题 ? 数字信号处理技术可以实现近乎理想的滤波器,但是直接在射频频率进行数模转换并不现实 ? 因此,射频滤波器只能用作整个系统频段的选择,滤除频段外的干扰,信道的选择(模拟或数字滤波)需要在较低的频率(中频)进行 – 中频频率的选择 ? 镜像频率和镜频抑制(Image Rejection)? 邻信道干扰和选择性(Selectivity) ? 避开其它干扰(如某些时钟和参考信号及其谐波频率) Q 900 MHz 200 kHz ----------------------≈4500=

宽带高速电台收发信机设计与实现

宽带高速电台收发信机设计与实现 未来战争是一种集成海、陆、空、天等诸多军、兵种,并以信息链为纽带的数字化战争。数字化信息战争特点是各军兵种之间每个作战单元都是信息一个支点,所有支点相互连接,组成一个信息网络,信息网络支点之间要求信息实时、透明。因此,信息化战争对各军兵种中每个作战单元节点信息的共享性、实时性提出极高要求。而作为信息化战争支撑的通信电台,应以实现信息化战争中诸多军兵种之间、各军兵种内部之间信息的无缝通信连接,实现信息的快速实时共享作为基本任务。数字化信息战场就是信息及时获取、及时共享、及时指挥,使战场效率最优化,并能做到在复杂的电磁环境下可靠通信。然而作为承载信息化战争支柱的通信电台,都是针对特定军兵种或特定使用环境研制,种类繁多,兼容性差,互通困难,抗干扰能力差,难以支持数字化部队信息化战争的需要。为满足信息战的需求,通信宽带高速电台正朝着多频段、多模式、数字化、软件化方向发展。作为承载信号收发通道的收发信机,是电台的核心和关键部分,电台众多功能、性能要求和收发信机设计方案息息相关,因此,为满足电台整机需求,电台收发信机必须具备具有开放的、可编程的宽带射频前端设计,可切换的多带宽中频设计,高动态、快速切换的频率合成器及快速AGC控制通道设计,以便于各种软件波形运行。本论文设计出一款具有多频段、高动态、小型化、低功耗的收发信机,能够适应多种数字传输体制、多种模式的高速数据传输,能够适应复杂电台环境下抗干扰需求,能够适应网络组网需求。依据客户电台实际使用需求,该收发信机采

用多带宽、多速率模式,既能实现高数据速率,完成大数据传输需求,又能在低数据情况下降低通信资源使用,提高接收机灵敏度,延伸通 信设备通信距离,满足远距离通信需要;该收发信机采用集成设计思路,采用宽频段、低功耗、小型化器件,实现多频段、多模式、多任务性能,减少电台种类,减小电台体积;收发信机还采用系列化、通用化设计,能满足手持、背负及车载电台使用,提高电台兼容性和通用性。

(完整word版)教务管理系统数据库设计

目录 第一章:项目计划 (2) 1.1项目背景: (2) 1.2系统开发目的: (2) 1.3定义: (2) 第二章:详细分析 (2) 2.1、系统功能 (2) 2.2、系统结构 (3) 2.3、数据流图 (3) 2.4、户类型与职能 (4) 2.5、系统环境需求 (5) 第三章:系统概念设计 (5) 第四章:逻辑设计 (6) 4.1系统关系模型 (6) 4.2系统数据库表结构 (6) 第五章:源码 (9) 第六章:小结 (14)

第一章:项目计划 1.1项目背景: 教务系统管理平台充分利用互联网络B/S管理系统模式,以网络为平台,为各个学校教务系统的管理提供一个平台,帮助学校管理教务系统,用一个账号解决学校教务教学管理,并且学校可以自由选择学校需要的教务管理系统,灵活地定制符合学校自己实际情况的教务系统. 1.2系统开发目的: 提高学生,老师管理和操作事务的运作效率。 1.3定义: 学生选课和老师评分必须在管理员的设置条件下进行。 第二章:详细分析 2.1、系统功能 设置学期时间:管理员登录系统后设置学期的时间,只有当时间为某个状态时,其他角色例如老师,才能做某些事情。学期时间只能由角色管理员操作:包括对学期时间表的增加,删除,对某个学期时间状态的改变。 学生选课:当管理员设置为学期开始时,学生可以选课,学生选课受学分影

响,只能选择总学分为多少的课程。 老师评分:当管理员设置为学期评分时,老师才可以评分。 个人信息管理:对自己个人信息进行添加和修改。 成绩查询:学生可以对自己成绩进行查询。 个人课表查询:按时间的不同,每个角色都有自己不同的课表。 2.2、系统结构 功能描述:学生选课和老师评分必须在管理员设置学期的条件下进行。 2.3、数据流图 顶层图

matlab通信仿真设计

matlab通信仿真设计 课程设计指导书使用班级:光纤通信071、无线通信071 课程设计地点:信息楼C207 2009年11月

课程设计题目1:调幅广播系统的仿真设计 模拟幅度调制是无线电最早期的远距离传输技术。在幅度调制中,以声音信号控制高频率正弦信号的幅度,并将幅度变化的高频率正弦信号放大后通过天线发射出去,成为电磁波辐射。 波动的电信号要能够有效地从天线发送出去,或者有效地从天线将信号接收回来,需 要天线的等效长度至少达到波长的1/4。声音转换为电信号后其波长约在15~1500km 之间,实际中不可能制造出这样长度和范围的天线进行有效信号收发。因此需要将声音这样的低 频信号从低频率段搬移到较高频率段上去,以便通过较短的天线发射出去。人耳可闻的声音信号通过话筒转化为波动的电信号,其频率范围为 20~20KHz 。大量实验发现,人耳对语音的频率敏感区域约为 300~3400Hz ,为了节约频率带宽资源,国际 标准中将电话通信的传输频带规定为300~3400Hz 。调幅广播除了传输声音以外,还要播送音乐节目,这就需要更宽的频带。一般而言,调幅广播的传输频率范围约为 100~6000Hz 。任务一:调幅广播系统的仿真。 采用接收滤波器Analog Filter Design 模块,在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。 采用另外两个相同的接收滤波器模块,分别对纯信号和纯噪声滤波,利用统计模块计算输出信号功率和噪声功率,继而计算输出信噪比,用Disply 显示结果。 实例1:对中波调幅广播传输系统进行仿真,模型参数指标如下。 1.基带信号:音频,最大幅度为 1。基带测试信号频率在100~6000Hz 内可调。2.载波:给定幅度的正弦波,为简单起见,初相位设为0,频率为550~1605Hz 内可调。3.接收机选频放大滤波器带宽为12KHz ,中心频率为1000kHz 。 4.在信道中加入噪声。当调制度为0.3时,设计接收机选频滤波器输出信噪比为 20dB ,要求计算信道中应该加入噪声的方差,并能够测量接收机选频滤波器实际输出信噪比。仿真参数设计: 系统工作最高频率为调幅载波频率 1605KHz ,设计仿真采样率为最高工作频率的10倍,因此取仿真步长为 8max 1 6.2310(1-1) 10step t s f 相应的仿真带宽为仿真采样率的一半,即 1 8025.7(1-2) 2step W KHz t 设基带测试正弦信号为m(t)=Acos2πFt ,载波为c(t)=cos2πf c t ,则调制度为m a 的调制输出信号s(t)为

无线数据传输收发信机通用规范(标准状态:现行)

I C S33.060.01 M36 中华人民共和国国家标准 G B/T16611 2017 代替G B/T16611 1996,G B/T18120 2000 无线数据传输收发信机通用规范 G e n e r a l s p e c i f i c a t i o n f o r r a d i od a t a t r a n s m i s s i o n t r a n s c e i v e r (I E C60489-6:1999,R a d i o e q u i p m e n t u s e d i nm o b i l e s e r v i c e s- M e t h o d s o fm e a s u r e m e n t P a r t6:D a t a e q u i p m e n t,N E Q) 2017-05-31发布2017-12-01实施中华人民共和国国家质量监督检验检疫总局

目 次 前言Ⅲ 1 范围1 2 规范性引用文件1 3 术语和定义1 4 分类2 5 技术要求3 6 测试方法8 7 质量评定程序2 8 8 标志二包装二运输和贮存32 附录A (规范性附录) 不合格分类33 附录B (规范性附录) 脉冲噪声容限测量方法34 附录C (规范性附录) 多径传播条件灵敏度测量方法36 附录D (规范性附录) 传导和辐射杂散分量测量方法38

前言 本标准按照G B/T1.1 2009给出的规则起草三 本标准代替G B/T16611 1996‘数传电台通用规范“和G B/T18120 2000‘移动通信选择呼叫和数据设备测量方法“三 本标准与G B/T16611 1996相比主要变化如下: 以术语 无线数据传输收发信机 代替术语 数传电台 ;修改和增删了部分术语和定义(1996年版的第3章;本版的第3章); 修改了分类(1996年版的第4章;本版的第4章); 取消有关通话性能的具体规定(1996年版的第5章,第6章和第7章的相关内容); 取消 特征频率容差 数据接口电平 常规数传性能 指标项的要求和测量方法(1996年版的 5.4.2,5.4.4, 6.4.2.7和6.4.4中的相关内容); 取消可靠性及其试验方法的规定(1996年版的5.8和6.8); 修改了部分指标项的名称及其定义(1996年版的第5章和第6章;本版的第5章和第6章); 修改了部分指标要求(1996年版的第5章;本版的第5章); 修改了部分指标的测试方法(1996年版的第6章;本版的第6章); 增加了使用整装天线时的测试方法(见第6章); 增加了静电放电试验要求(见5.5); 增加了 脉冲噪声容限 指标项的定义和测量方法(见附录B); 修改了 多径传播条件灵敏度 指标项的定义和测量方法(1996年版的6.4.3.2.1;本版的附录C); 增加了 传导和辐射杂散分量 指标项的定义和测量方法(见附录D)三 本标准与G B/T18120 2000相比主要变化如下: 删除了有关试验条件和测量设备的详细描述(2000年版的第4章~第6章,附录A~附录D); 包含并修改了相关指标项的定义和测量方法(2000年版的第7章;本版的第5章和第6章)三本标准使用重新起草法参考I E C60489-6:1999‘移动业务无线设备的测量方法第6部分:数据设备“编制,与I E C60489-6:1999的一致性程度为非等效三 请注意本文件的某些内容可能涉及专利三本文件的发布机构不承担识别这些专利的责任三 本标准由中华人民共和国工业和信息化部提出三 本标准由中华人民共和国工业和信息化部(电子)归口三 本标准主要起草单位:中国电子科技集团公司第七研究所二广州杰赛科技股份有限公司三 本标准参加起草单位:广东省无线电监测站二深圳市华夏盛科技有限公司二浙江蓝波电子有限公司二北京德利恒通通讯科技有限公司二深圳市友讯达科技发展有限公司二国家移动通信工程中心三本标准起草人:陈健源二朱杨荷二谢慧群二黎智良二熊雄二谢杏二吴海燕二崔贺坚二边文伟二朱宪伟二崔涛二黄东辉二腾潢龙三 本标准所代替标准的历次版本发布情况为: G B/T16611 1996; G B/T18120 2000三

相关主题
文本预览
相关文档 最新文档