当前位置:文档之家› 铝合金微弧氧化陶瓷膜表面复合化学镀Ni_P_SiC的研究_吴珺仪

铝合金微弧氧化陶瓷膜表面复合化学镀Ni_P_SiC的研究_吴珺仪

铝合金微弧氧化陶瓷膜表面复合化学镀Ni_P_SiC的研究_吴珺仪
铝合金微弧氧化陶瓷膜表面复合化学镀Ni_P_SiC的研究_吴珺仪

化学镀工艺流程

化学镀所需仪器:电热恒温水浴锅;8522型恒温磁力搅拌器控温搅拌;增力电动搅拌机。 化学镀工艺流程:机械粗化→化学除油→水洗→化学粗化→水洗→敏化→水洗→活化→水洗→解胶→水洗→化学镀→水洗→干燥→镀层后处理。 1化学镀预处理 机械粗化:用机械法或化学方法对工件表面进行处理(机械磨损或化学腐蚀),从而在工件表面得到一种微观粗糙的结构,使之由憎水性变为亲水性,以提高镀层与制件表面之间结合力的一种非导电材料化学镀前处理工艺。 1.1 化学除油 镀件材料在存放、运输过程中难免沾有油污,为保证预处理效果,必须首先进行除油处理,去除其表面污物,增加基体表面的亲水性,以确保基体表面能均匀的进行金属表面活化。化学除油试剂分有机除油剂和碱性除油剂两种;有机除油剂为丙酮(或乙醇)等有机溶剂,一般用于无机基体如鳞片状石墨、膨胀石墨、碳纤维等除油;碱性除油剂的配方为:NaOH:80g/l,Na2CO3(无水):15g/l,Na3PO4:30g/l,洗洁精:5ml/l,用于有机基体如聚乙烯、聚氯乙烯、聚苯乙烯等除油;无论使用哪种除油试剂,作用时都需要进行充分搅拌。 1.2 化学粗化 化学粗化的目的是利用强氧化性试剂的氧化侵蚀作用改变基体表面微观形状,使基体表面形成微孔或刻蚀沟槽,并除去表面其它杂质,提高基体表面的亲水性和形成适当的粗糙度,以增强基体和镀层金属的结合力,以保证镀层有良好的附着力。粗化是影响镀层附着力大小的很关键的工序,若粗化效果不好,就会直接影响后序的活化和化学镀效果。化学粗化试剂的配方为:CrO3:40g/l,浓H2SO4:35g/l,浓H3PO4(85%):5g/l。化学粗化的本质是对基体表面的轻度腐蚀作用;因此,有机基体采用此处理过程,无机基体因不能被粗化液腐蚀而不需此处理。 1.3 敏化 敏化处理是使粗化后的有机基体(或除油后的无机基体)表面吸附一层具有还原性的二价锡离子Sn2+,以便在随后的活化处理时,将银或钯离子由金属离子还原为具有催化性能的银或钯原子。敏化液配方为:SnCl2·2H2O:20g/l,浓HCl:40ml/l,少量锡粒;加入锡粒的目的是防止二价锡离子的氧化。 1.4 活化 活化处理是化学镀预处理工艺中最关键的步骤, 活化程度的好坏,直接影响后序的施镀效果。化学镀镀前预处理的其它各个工序归根结底都是为了优化活化效果,以保证催化剂在镀件表面附着的均匀性和选择性,从而决定化学镀层与镀件基体的结合力以及镀层本身的连续性。活化处理的目的是使活化液中的钯离子Pd2+或银离子Ag+离子被镀件基体表面的Sn2+离子还原成金属钯或银微粒并紧附于基体表面,形成均匀催化结晶中心的贵金属层, 使化学镀能自发进行。目前,普遍采用的活化液有银氨活化液和胶体钯活化液两种;化学镀铜比较容易,用银即能催化;化学镀钴、化学镀镍较困难,用银不能催化,必须使用催

铝及铝合金的微弧氧化技术

铝及铝合金的微弧氧化技术 1.技术内容及技术关键 (1)微弧氧化技术的内容和工艺流程 铝及铝合金材料的微弧氧化技术内容主要包括铝基材料的前处理;微 弧氧化;后处理三部分。其工艺流程如下:铝基工件7化学除油7清洗7微弧氧化7清洗7后处理7成品检验。 (2)微弧氧化电解液组成及工艺条件 例1.电解液组成:K2SiO3 砂10g/L, Na2O2 4?6g/L, NaF 0.5? 1g/L, CH3COONa 23g/L, Na3VO3 1 ?3g/L;溶液pH 为11 ?13;温度为20?50 C;阴极材料为不锈钢板;电解方式为先将电压迅速上升至300V,并保持5?10S,然后将阳极氧化电压上升至450V,电解5?10min。例2两步电解法,第一步:将铝基工件在200g/L的K2O?nSiO2 (钾水玻璃)水溶液中以1A/dm2的阳极电流氧化5min; 第二步:将经第一步微弧氧化后的铝基工件水洗后在 70g/L的 Na3P2O7水溶液中以1A/dm2的阳极电流氧化15min。阴极材料为:不锈钢 板;溶液温度为20?50 C o (3)影响因素 ①合金材料 及表面状态的影响:微弧氧化技术对铝基工件的合金成分要求不高,对一些普通阳极氧化难以处理的铝合金材料,如含铜、 高硅铸铝合金的均可进行微弧氧化处理。对工件表面状态也要求不高,一般不需进行表面抛光处理。对于粗糙度较高的工件,经微弧氧化处理后表面得

到修复变得更均匀平整;而对于粗糙度较低的工件, 经微弧氧化后,表面粗糙度有所提高。 ②电解质溶液及其组分的影响:微弧氧化电解液是获到合格膜层的技术关键。不同的电解液成分及氧化工艺参数,所得膜层的性质也不同。微弧氧化电解液多采用含有一定金属或非金属氧化物碱性盐溶液(如硅酸盐、磷酸盐、硼酸盐等),其在溶液中的存在形式最好是胶体状态。溶液的pH 范围一般在9?13之间。根据膜层性质的需要,可添加一些有机或无机盐类作为辅助添加剂。在相同的微弧电解电压下,电解质浓度越大,成膜速度就越快,溶液温度上升越慢,反之, 成膜速度较慢,溶液温度上升较快。 ③氧化电压及电流密度的影响:微弧氧化电压和电流密度的控制 对获取合格膜层同样至关重要。不同的铝基材料和不同的氧化电解液,具有不同的微弧放电击穿电压(击穿电压:工件表面刚刚产生微弧放电的电解电压),微弧氧化电压一般控制在大于击穿电压几十至上百伏的条件进行。氧化电压不同,所形成的陶瓷膜性能、表面状态和膜厚不同,根据对膜层性能的要求和不同的工艺条件,微弧氧化电压可在200?600V范围内变化。微弧氧化可采用控制电压法或控制电流法进行,控制电压进行微弧氧化时,电压值一般分段控制,即先在一定的阳极电压下使铝基表面形成一定厚度的绝缘氧化膜层;然后增加电压至一定值进行微弧氧化。当微弧氧化电压刚刚达到控制值时, 通过的氧化电流一般都较大,可达10A/dm2左右,随着氧化时间的延长,陶瓷氧化膜不断形成与完善,氧化电流逐渐减小,最后小于

铝合金表面微弧氧化技术的应用及发展

龙源期刊网 https://www.doczj.com/doc/eb3681818.html, 铝合金表面微弧氧化技术的应用及发展 作者:张彦涛 来源:《环球市场信息导报》2013年第06期 微弧氧化是一种在金属表面原位生长陶瓷膜的表面处理技术,可大幅提高铝合金表面耐磨性及耐蚀性。本文阐述了铝合金微弧氧化技术的特点及应用概况,以及微弧氧化技术的发展趋势。 微弧氧化技术又称微等离子体氧化、火花放电阳极氧化。它是将铝,镁,钛等有色金属及其合金,在适当的电参数条件下使其与电解液中的溶质发生反应,最终在金属表面生成了具有一定厚度的陶瓷膜。利用该技术在铝及其合金上生长一层Al2O3陶瓷膜,该陶瓷膜具有良好 的耐磨、耐蚀性,而且可通过改变电参数和电解液等得到不同性能、不同颜色的陶瓷膜。 铝合金微弧氧化过程 微弧氧化过程中具有等离子体放电通道的高温高压及电解液温度低的特点,在此极限条件下的反应过程可赋予陶瓷膜层其它技术难以获得的优异的耐磨、耐腐蚀等性能,同时使铝合金基体的保持原有性能。液相中参与反应并形成陶瓷膜的粒子在电场力的作用下传输到基体附近的空间参与成膜,陶瓷膜层的厚度、组成、结构可以通过电源电参数和改变电解液组成进行控制,从而实现陶瓷膜层的设计与构造。微弧氧化过程一般可以分为以下四个阶段: 普通阳极氧化阶段:在氧化初期,样品表面颜色变暗,形成一层较在电流密度恒定的条件下,电压迅速升高。该阶段形成的阻挡层是后续阶段产生火花放电的必要条件。 微弧氧化阶段:随着电压的不断升高,在氧化膜层的相对薄弱的地方将会被击穿,在样品表面能够观察到火花放电现象。这些火花较小,但密度很大(约为105个/cm2),它在样品表面形成了大量的等离子微区。这些熔融物与电解液发生反应,并被溶液冷却形成Al2O3,从而使这一区域的膜相应地增厚。 微弧氧化和弧放电共存阶段:该阶段样品表面开始出现较大的红色放电弧斑,它是由某些部位经过多次放电后,使得原来较小的放电通道彼此相连而形成较大的放电气孔。在这一阶段可以观察到电压缓慢下降。 弧放电阶段至反应结束随着薄膜的增厚,红色放电弧斑逐渐减少,电压迅速上升。最终在样品表面形成具有内部致密层和外部疏松层的双层结构。 铝合金微弧氧化技术特点 微弧氧化是在传统阳极氧化基础上发展而来的,但与阳极氧化相比较,具有其优越的特点:

(完整版)PCB化学镀铜工艺流程解读(一)

PCB化学镀铜工艺流程解读(一) 化学镀铜(Eletcroless Plating Copper)通常也叫沉铜或孔化(PTH)是一种自身催化性氧化还原反应。首先用活化剂处理,使绝缘基材表面吸附上一层活性的粒子通常用的是金属钯粒子(钯是一种十分昂贵的金属,价格高且一直在上升,为降低成本现在国外有实用胶体铜工艺在运行),铜离子首先在这些活性的金属钯粒子上被还原,而这些被还原的金属铜晶核本身又成为铜离子的催化层,使铜的还原反应继续在这些新的铜晶核表面上进行。化学镀铜在我们PCB制造业中得到了广泛的应用,目前最多的是用化学镀铜进行PCB的孔金属化。PCB孔金属化工艺流程如下: 钻孔→磨板去毛刺→上板→整孔清洁处理→双水洗→微蚀化学粗化→双水洗→预浸处理→胶体钯活化处理→双水洗→解胶处理(加速)→双水洗→沉铜→双水洗→下板→上板→浸酸→一次铜→水洗→下板→烘干 一、镀前处理 1.去毛刺 钻孔后的覆铜泊板,其孔口部位不可避免的产生一些小的毛刺,这些毛刺如不去除将会影响金属化孔的质量。最简单去毛刺的方法是用200~400号水砂纸将钻孔后的铜箔表面磨光。机械化的去毛刺方法是采用去毛刺机。去毛刺机的磨辊是采用含有碳化硅磨料的尼龙刷或毡。一般的去毛刺机在去除毛刺时,在顺着板面移动方向有部分毛刺倒向孔口内壁,改进型的磨板机,具有双向转动带摆动尼龙刷辊,消除了除了这种弊病。 2.整孔清洁处理 对多层PCB有整孔要求,目的是除去钻污及孔微蚀处理。以前多用浓硫酸除钻污,而现在多用碱性高锰酸钾处理法,随后清洁调整处理。 孔金属化时,化学镀铜反应是在孔壁和整个铜箔表面上同时发生的。如果某些部位不清洁,就会影响化学镀铜层和印制导线铜箔间的结合强度,所以在化学镀铜前必须进行基体的清洁处理。最常用的清洗液及操作条件列于表如下:

铝型材表面处理工艺

表面处理简介 总则 表面处理:它是通过机械和化学的方法处理后,能在产品的表面上形成一层保护机体的保护层.在自然界中能达到稳定状态,增加机体的抗蚀性和增加产品的美观,从而提升产品的价值.表面处理种类的选择首先要从使用环境,使用寿命,人为欣赏的角度出发,当然经济价值也是考虑的核心所在. 表面处理的流程包括前处理,成膜,膜后处理.包装,入库.出货等工序,其中前处理包括机械处理,化学处理。 .机械处理包括喷吵,抛丸,打磨,抛光,打蜡等工序.机械处理目的使产品表面剔除凹凸不平,补救表面其它外观不良现象. 化学处理使产品表面的油污锈迹去除,并且形成一层能使成膜物质更好的结合或和化成活性金属机体,确保镀层有一个稳定状态,增加保护层的结合力,从而达到保护机体的作用。 第一章,铝材表面处理 一,铝材常见的化学处理有铬化,喷漆,电镀,化学镀,阳极氧化,电泳等工艺。.其中机械处理有拉丝,抛光,喷吵,打磨,等工艺: 第一节铬化 铬化会便产品表面形成一层化学转化膜,膜层厚度在0.5-4um,这层转化膜吸附性好,主要作为涂装底层。外观有金黄色,铝本色,绿色等。这种转化膜导电性能好,是电子产品的最好选项,如手机电池内导电

条,磁电设备等.该膜层适合所有铝及铝合金产品.但该转化膜质软,不耐磨,因此不利于做产品外部件利用。 铬化工艺流程: 脱脂铝酸脱铬化包装入库 铬化适合于铝及铝合金,镁及镁合金产品。 品质要求:1)颜色均匀,膜层细致,不可有碰伤,刮伤,用手触摸,不能有粗糙,掉灰等现象。 2)膜层厚度0.3-4um。 第二节,阳极氧化 阳极氧化:可以使产品表面形成一层均匀,致密的氧化层,(Al2O3。6H2O俗名钢玉)这种膜能使产品的表面硬度达到(200-300HV),如果特种产品可以做硬质阳极氧化,产品表面硬度可达400-1200HV,因而硬质阳极氧化是油缸,传动,不可缺的表面处理工艺.,另外这种产品耐磨性非常好,可做航空,航天相关产品的必用工艺.阳极氧化和硬质阳极氧化不同之处:阳极氧化可以着色,装饰性比硬质氧化要好的多.施工要点:阳极氧化对材质要求很严格,不同的材质表面有不同的装饰效果,常用的材质有6061,6063,7075,2024等,其中,2024相对效果要差一些,由于材质中CU的含量不同,因此7075硬质氧化呈黄色,6061,6063呈褐色,但普通阳极氧化6061,6063,7075没多大的差别,但2024就容易出现很多金斑.. 一,常见工艺 常见的阳极氧化工艺有拉丝雾面本色,拉丝亮面本色,拉丝亮面染色,雾面拉丝染色(可染成任何色系).抛光亮面本色,抛光雾面本色,抛光亮

不锈钢表面金属陶瓷涂层技术

摘要 近年来,随着现代化工业的不断进步与发展,人们对于材料的性能要求越来越高,其中较为重要的一点便是材料的耐磨性。众所周知,磨损现象不论在科研实践还是日常生活中都是很常见的,并且若不及时更换调整便极有可能造成严重的安全事故。因此,如何提高易磨损材料的耐磨性能便显得尤为重要。 锌锅沉没辊是热浸镀锌设备中一种重要零件,我国锌锅沉没辊的辊轴与辊套需要从国外进口,不仅价格昂贵而且磨损严重,平均一周就需要更换一次设备,导致轧制的成本很高。所以锌锅沉没辊辊轴与辊套的耐磨性是一个越来越受到重视的问题。本设计旨在制备316L不锈钢表面的耐磨陶瓷涂层来缓解锌锅沉没辊的辊轴与辊套过于严重的磨损,以此延长锌锅沉没辊的辊轴与辊套的寿命,提高生产效率。 我们通常用表面合金化、表面形变强化、表面涂层强化等方法来提高材料耐磨性。本设计借助钎涂原理,分别以氧化铝和碳化钨作为陶瓷增强相材料,Ni82CrSiB合金为钎料,利用真空钎涂的方法制作出较为耐磨的陶瓷涂层,从而达到提高不锈钢表面耐磨性的要求。试验结果表明:氧化铝与钎料的润湿效果不够理想,在涂层中没能发现氧化铝相,即以氧化铝作为陶瓷增强相材料无法达到预期目标;而碳化钨颗粒在涂层中分布较均匀,涂层表面光滑,有金属光泽,并且与不锈钢表面冶金结合良好,硬度达到了不锈钢基体的6倍以上,有望大幅提高材料的耐磨性能。 关键词:金属陶瓷涂层;钎涂技术;硬度

Brazing Process of Metal-ceramic Coating on Stainless Steel Abstract In recent years, with the continuous progress and modernization of industrial development, people are increasingly demanding high-performance materials, one of the important points is the wear resistance. As we all know, the wear phenomena both in research and practice is still very common in daily life, and if not timely replacement of adjustments it is very likely result in serious accidents. Therefore, how to improve the wear resistance of the material is particularly important. The zinc pot sink roll is one of the important parts of hot dip galvanizing equipments. The bush of zinc pot sink rolls needs to be imported from abroad, and it is not only expensive but also badly worn., it needs to be replaced once per week, and that would lead to the high cost of rolling. Therefore, the wear resistance of the zinc pot sink roller bearing is a question with more and more attention. This design is in order to prepare the surface of 316L stainless steel wear-resistant ceramic coating to solve the zinc pot sink roll shaft and insert wear too serious problem to extend the life of the equipment and The main methods of improving the wear resistance for material are surface strain hardening, surface alloying, surface coating strengthened and so on. In this design, we use the braze coating principle, and make the Al2O3 and WC as ceramic reinforcement materials, Ni82CrSiB as the brazing. The method of using the vacuum braze coating to produce more wear-resistant ceramic coating, so as to improve wear resistance of the stainless steel surface requirements. The results showed that: The wetting effect of Al2O3 and brazing filler is not satisfactory, and we could not find alumina phase in the coating, that is to say, Al2O3 as the ceramic reinforcement materials can not achieve the desired goal. However, WC particles in the coating are distributed more evenly. The coating surface is smooth, with a metallic luster, and it is a good metallurgical bond with the stainless steel surface. Its hardness is more than 6 times the stainless steel substrate, and it can be required to improve the wear resistance. Key Words:metal-ceramic coating; braze coating process; hardness

化学镀工艺流程详解.

化学镀工艺流程 化学镀是一种在无电流通过的情况下,金属离子在同一溶液中还原剂的作用下通过可控制的氧化还原反应在具有催化表面(催化剂一般为钯、银等贵金属离子的镀件上还原成金属,从而在镀件表面上获得金属沉积层的过程,也称自催化镀或无电镀。化学镀最突出的优点是无论镀件多么复杂,只要溶液能深入的地方即可获得厚度均匀的镀层,且很容易控制镀层厚度。与电镀相比,化学镀具有镀层厚度均匀、针孔少、不需直流电源设备、能在非导体上沉积和具有某些特殊性能等特点;但化学镀镀层质量不很好,厚度上不去,且可镀的品种不多,故主要用于不适于电镀的特殊场合。 近年来, 化学镀技术得到了越来越广泛的应用,在各种非金属纤维、微球、微粉等粉体材料上施镀成为研究的热点之一;用化学镀方法可以在非金属纤维、微球、微粉镀件表面获得完整的非常薄而均匀的金属或合金层,而且镀层厚度可根据需要确定。这种金属化了的非金属纤维、微球、微粉镀件具有良好的导电性,作为填料混入塑料时能获得较好的防静电性能及电磁屏蔽性能,有可能部分取代金属粉用于电磁波吸收或电磁屏蔽材料。美国国际斯坦福研究所采用在高聚物基体上化学镀铜来研制红外吸收材料。毛倩瑾等采用化学镀的方法对空心微珠进行表面金属化改性研究,发现改性后的空心微珠具有较好的吸波性能,可用于微波吸收材料、轻质磁性材料等领域。 化学镀所需仪器:电热恒温水浴锅;8522型恒温磁力搅拌器控温搅拌;增力电动搅拌机。化学镀工艺流程:机械粗化→化学除油→水洗→化学粗化→水洗→敏化→水洗→活化→水洗→解胶→水洗→化学镀→水洗→干燥→镀层后处理。 1化学镀预处理 需进行化学镀的镀件一般不溶于水或者难溶于水。化学镀工艺的关键在于预处理,预处理的目的是使镀件表面生成具有显著催化活性效果的金属粒子,这样才能最终在基体表面沉积金属镀层。由于镀件微观表面凸凹不平,必须进行严格的镀前预处理,否则易造成镀层不均匀、密着性差,甚至难于施镀的后果。

分析微弧氧化表面处理对铝合金拉伸性能的影响

分析微弧氧化表面处理对铝合金拉伸性能的影响 摘要:弧氧化技术又称微等离子体氧化、火花放电阳极氧化。它是将铝,镁, 钛等有色金属及其合金,在适当的电参数条件下使其与电解液中的溶质发生反应,最终在金属表面生成了具有一定厚度的陶瓷膜。利用该技术在铝及其合金上生长 一层Al2O3陶瓷膜,该陶瓷膜具有良好的耐磨、耐蚀性,而且可通过改变电参数 和电解液等得到不同性能、不同颜色的陶瓷膜。 关键词:微弧氧化;表面处理;铝合金拉伸;性能 铝合金本身存在一定的缺点,比如其硬度低、耐磨性差,所以要进行一定的 处理。微弧氧化技术的诞生,使得它克服了传统阳极氧化的不足,该技术可以控 制工艺过程,能够生成具有优异的耐磨和耐蚀性能的陶瓷薄膜,与其他技术相比 较有较高的硬度和绝缘电阻,并且大大提高了膜层的综合性能;此技术具有很多 的优点,比如工艺简单,操作简易,效率高、环保;开创了一个新的技术。但此 技术的应用会对铝合金表面的拉伸性能产生一定的影响,笔者在本文进行了探讨。 1.微弧氧化技术 1.1微弧氧化的基本原理 微弧氧化工艺的基础,是在阳极氧化工艺上慢慢摸索出来的。阳极需要进行 氧化,其在法拉第区进行,升高金属阳极的电位,这样会升高金属阳极的电流, 连续的升压,当升到一定的强度时,会进入电火花放电区,此时,会属阳极会出 现一些特殊的现象,比如铝合金表面会出现电晕、辉光及电火花放电现象,发生 微区放电现象。笔者本文通过对铝阳极为例,铝的阳极氧化膜的成份是A12O3、 Y-AI2O3和AIOOH。由于铝的氧化物在高温会出现一定的转化,如下:所以一般在进行微区高温高压等离子体放电的阶段,铝阳极氧化膜的转变过 程会出现晶化转变,比如Y—A1203和a—A1203,形成微弧陶瓷氧化膜,具有高 硬度及良好耐腐蚀性,一般情况下陶瓷氧化膜的显微硬度可以达到2000HV以上。继续升高电压,这时会进入弧光放电区,此时会出现阳极表面电流密度增大,并 伴有强烈的弧光放电现象。由于弧光放电时会产生强大的冲击力,所以微弧氧化 应避免弧光放电区。 1.2微弧氧化的特点 微弧氧化技术是近几十年发展起来的铝合金表面处理的新技术,目前微弧氧 化技术不是很成熟,还处于研究阶段,对其描述的资料较少。但铝合金微弧氧化 技术有其独特的优点: 1.2.1耐磨性能高 一般情况下,Al、Mg、Ti 合金,在进行微弧氧化后会产生Al2O3、MgO、 TiO2。陶瓷相的产物是具有很强的硬度,所以经微弧氧化的铝合金具有很高的硬度,最硬的硬度可达2500 HV,因此铝合金表面具有优越的耐磨强度,其耐磨性 大大高于传统工艺的膜层.其优良的耐磨性还与一些特殊的因素有关,比如润滑油 的自润滑特性有关。 1.2.2耐腐蚀性能高 一般在经微弧氧化后的陶瓷层会存在大量的喷射口,但是这些喷射口一般为 盲孔;与此同时陶瓷层具可分为三层结构,疏松层、致密层以及过渡层,这样的 分层结构能够为金属内部起到良好的保护作用,所以能够提高耐腐蚀性能。 1.2.3工序简单、生产效率高 微弧氧化技术一般处理工序简单,且生产速度快,一般情况下,要完成一个

铝合金化学镀镍

铝合金化学镀镍 前言:所谓化学镀就是指不使用外电源,而是依靠金属的催化作用,通过可控制的氧化—还原反应,使镀液中的金属离子沉积到镀件上去的方法,因而化学镀也被称为自催化镀或无电镀。化学镀液组成一般包括金属盐、还原剂、络合剂、pH缓冲剂、稳定剂、润湿剂和光亮剂等。当镀件进入化学镀溶液时,镀件表面被镀层金属覆盖以后,镀层本身对上述氧化和还原反应的催化作用保证了金属离子的还原沉积得以在镀件上继续进行下去。目前已能用化学镀方法得到镍、铜、钴、钯、铂、金、银、锡等金属或合金的镀层。化学镀既可以作为单独的加工工艺,用来改善材料的表面性能,也可以用来获得非金属材料电镀前的导电层。化学镀在电子、石油化工、航空航天、汽车制造、机械等领域有着广泛的应用。化学镀具有以下优点:表面硬度高,耐磨性能好;硬化层的厚度及其均匀,处理部件不受形状限制,不变形,特别是适用于形状复杂,深盲孔及精度要求高的细小及大型部件的表面强化处理;具有优良的抗耐蚀性能,在许多酸、碱、盐、氨和海水中具有良好的耐蚀性,其耐蚀性要比不锈钢优越的多;处理后的部件,表面光洁度高,表面光亮,不需要重新的机械加工和抛光,可直接装机使用;镀层与基体的结合力高,不易剥落,其结合力比电镀硬铬和离子镀要高;可处理的基体材料广泛。〔1〕 化学镀分类(广义分类): 1.置换镀(离子交换或电荷交换沉积):一种金属浸在第二种金属的金属盐溶液中,第一种金属的表面上发生局部溶解,同时在其表面自发沉积上第二种金属上。在离子交换的情况下,基体金属本身就是还原剂。 2.接触镀:将欲镀的金属与另一种或另一块相同的金属接触,并沉浸在沉积金属的盐溶液中的沉积法。当欲镀的导电基体底表面与比溶液中待沉积的金属更为活泼的金属接触时,便构成接触沉积。 3.真正的化学镀:从含有还原剂的溶液中沉积金属〔1〕。 日前工业上应用最多的是化学镀镍和化学镀铜。可以使用化学镀进行表面加工的金属及合金有很多,下面以铝合金镀镍为例进行说明,而铝合金化学镀镍属于化学镀的第三种即真正的化学镀。 铝合金简介 铝合金具有机械强度高、密度小、导热导电性好、韧性好、易加工等特点,因而在工业部门,特别是航空航天、国防工业,乃至人们的日常生活中,都有较广泛的应用。铝合金表面覆盖一层致密的氧化膜,它可将铝合金与周围环境隔离开来,避免被氧化。但是这层氧化膜易受到强酸和强碱的腐蚀,同时铝合金易产生晶间腐蚀,表面硬度低,不耐磨。化学镀是赋予铝合金表面良好性能的新型工艺手段之一,它不仅是其抗蚀性、耐磨性、可焊性、和电接触能得到提高,镀层与铝合金机体间结合力好,镀层外观漂亮,而且通过镀覆不同的镍基合金,可以赋予铝合金各种新性能,如磁性能、润滑性等。〔2〕 铝合金化学镀镍原理: 化学镀镍是利用镍盐溶液在强还原剂次亚磷酸钠的作用下,使镍离子还原成金属镍,同时次磷酸钠分解析出磷,因而在具有催化表面的镀件上,获得镍磷合金镀层。 对于次磷酸钠还原镍离子的总反应可以写成: 3NaH 2PO 2 +3H 2 O+NiSO 4 -----3 NaH 2 PO 3 +H 2 SO 4 +2H 2 +Ni 同样的反应可写成如下离子式: 2 H 2PO 2 -+ Ni2++2H 2 O-----2 H 2 PO 3 -+ H 2 +2H++ Ni 或写成另一种形式:Ni 2++H 2 PO 2 -+H 2 O------H 2 PO 3 -+Ni+2H+ 所有这些反应都发生在催化活性表面上,需要外界提供能量,即在较高温度(60≤T≤

金属陶瓷复合材料的应用

金属陶瓷复合材料的应用 我公司提供以下热喷涂技术服务:修复各类设备主轴、曲轴以及所有轴的轴颈、轴承档、油封档、键槽的磨损、拉伤等缺陷。“锅炉四管”(水冷壁管、过热器管、预热器管和省煤器管)喷涂防护、循环硫化床锅炉、膜式壁热喷涂防护、风机叶片、拉丝塔轮、拨丝缸、水轮机的导风叶、水轮机叶片的迷宫环等部件的防汽蚀、防磨处理。大型液压油缸的陶瓷涂覆活塞杆和液压缸以及位置测量成套系统、化工泵中往复泵柱塞陶瓷涂层、机械密封环和轴套表面喷涂、陶瓷蝶阀密封面喷涂代替镶圈结构、高参数球阀喷涂陶瓷、在石油、天然气勘测和钻采过程中所用设备的关键部件如钻头、轴、轴套、灌浆泵等表面热喷涂防护。 在塑料工业设备中,塑料挤出机螺杆、塑料切碎机喷嘴、塑料薄膜生产辊。冶金工业中,连续退火炉辊、张紧辊和偏转器辊自清理炉辊、热浸镀锌用沉没辊、稳定辊等先进涂层。热轧无缝管顶头的表面强化涂层、铜合金热挤压模具强化涂层。在化纤工业中,各种槽辊、锭杯、牵伸辊、导丝辊、表面陶瓷涂层、造纸烘缸表面防腐防磨防护、上光砑光棍、纸浆真空吸水箱板、印刷工业中铸铁印刷滚表面喷涂防护、陶瓷网纹辊、电晕辊。 在玻璃工业中,铜电板的抗高温氧化保护涂层、喂料柱塞和喂料管、内燃机燃烧室的热障陶瓷涂层(汽缸盖底面、活塞底面、活塞顶面、汽门全部底面缸套、活塞环、水泵动密封环、气门顶杆、增压器涡轮) 热喷涂涂层工业应用介绍 随着涂层新材料和新工艺的不断涌现,热喷涂涂层已在国民经济各个工业部门广泛地应用。加之现代计算机技术、传感测试技术、自动化及机器人技术、真空技术与热喷泉涂技术的结合和渗透,使得热喷涂技术的深入发展和工业规模化生产均有大幅度的进步和提高。对未来热喷涂发展的方向以及市场与工业规模的预测为:技术附加值高、效益好的如生物工程,航空航天,工、模具,电子工业等,但规模相对较小;要求成本低的大规模产业如汽车工业和钢结构,但技术附加值低;应用面最广的仍是机械工业,包括石油化工、轻纺、能源、冶金、航空、汽车等也均属此范畴。 热喷涂技术能赋予各类机械产品,特别是关键零部件许多特种功能涂层,形成复合材料结构具有的综合作用,真正做到了“ 好钢用在刀刃上” ,是材料科学表面技术发展的一个方向。但热喷涂技术仅通过涂层在机械产品基体表面获得一定的特殊功能,而不能代替基材或提高产品的结构性能。 钢铁长效防腐蚀涂层 由于锌、铝、锌铝、铝镁涂层的电极电位均负于钢铁,故对钢铁结构能起到阴极保护作用。从20世纪40年代起,国外已将它们喷涂于钢铁构件上作为长效抗腐涂层。国内自70年代起开始推广应用,迄今成功的实例不胜枚举。目前大面积钢结构喷涂锌、铝涂层一般采用电弧喷涂工艺,局部辅助以氧乙炔火焰线材喷涂补遗。现在国内每年采用热喷涂大面积施工工程均在数百万平方米以上。

化学镀镍工艺

化学镀镍工艺 化学镀镍机理: 1)原子氢析出机理。原子氢析出机理是1946年提出的,核心是还原镍的物质是原子氢,其反应过程如下: H2P02-+H20→HP032-+H++2H Ni2++2H→Ni+2H+ H2P02-+H++H→2H20+P 2H→H2 水和次磷酸根反应产生了吸附在催化表面上的原子氢,吸附氢在催化表面上还原镍离子。同时,吸附氢在催化表面上也产生磷的还原过程。原子态的氢相互结合也析出氢气。2)电子还原机理(电化学理论)电子还原机理反应过程如下: H2P02-+H20→HP032-+H++2e Ni2++2e→Ni H2P02-+2H++e→2H20+P 2H++2e→H2 酸性溶液中,次磷酸根与水反应产生的电子使镍离子还原成金属镍。在此过程中电子也同时使少部分磷得到还原。 3)正负氢离子机理。该理论最大特点在于,次磷酸根离子与磷相连的氢离解产生还原性非常强的负氢离子,还原镍离子、次磷酸根后自身分解为氢气。 H2P02-+H20→HP032-+H++H- Ni2++2H-→Ni+H2 H2P02-+2H++H-→2H20+P +1/2H2 H-+H+→H2 分析上述机理,可以发现核心在于次磷酸根的P-H键。次磷酸根的空间结构是以磷为中心的空间四面体。空间四面体的4个角顶分别被氧原子和氢原子占据,其分子结构式为: 各种化学镀镍反应机理中共同点是P-H键的断裂。P-H键吸附在金属镍表面的活性点上,在镍的催化作用下,P-H键发生断裂。如果次磷酸根的两个P-H键同时被吸附在镍表面的活性点上,键的断裂难以发生,只会造成亚磷酸盐缓慢生成。对于P-H键断裂后,P-H间共用电子对的去向,各种理论具有不同的解释。如电子在磷、氢之间平均分配,这就是原子氢析出理论;如果电子都转移至氢,则属于正负氢理论;而电子还原机理则认为电子自由游离出来参与还原反应。因此,可以根据化学镀镍机理的核心对各种宏观工艺问题进行分析解释。 化学镀镍工艺过程 化学镀镍前处理工艺 一:除油:

铝合金微弧氧化(MAO)

铝合金微弧氧化(MAO) 1.微弧氧化概述 微弧氧化也称微等离子体表面陶瓷化技术,是指在普通阳极氧化的基础上,利用弧光放电增强并激活在阳极上发生的反应,从而在以铝、钛、镁金属及其合金为材料的工件表面形成优质的强化陶瓷膜的方法,是通过用专用的微弧氧化电源在工件上施加电压,使工件表面的金属与电解质溶液相互作用,在工件表面形成微弧放电,在高温、电场等因素的作用下,金属表面形成陶瓷膜,达到工件表面强化的目的。 2.微弧氧化现象及其特点 在阳极氧化过程中,当铝合金上施加的电压超过一定范围时,铝合金表面的氧化膜就会被击穿。随着电压的继续不断升高,氧化膜的表面会出现辉光放电、微弧和火花放电等现象。表面辉光放电的温度比较低,对氧化膜的结构影响不大;火花放电温度,甚至可能使铝合金表面熔化,同时发射出大量的电子及离子,使火花放电区出现凹坑及麻点,这对材料表面是一种破坏作用;只有微弧去的温度适中,即可使氧化膜的结构发生变化,有不造成铝合金材料表面的破坏,微弧氧化就是利用这个温度区对材料表面进行改造处理的。 铝合金说施加的电压变化所产生的辉光、微弧和火花放电区域 在微弧氧化的过程下,原来生成的氧化膜不会脱落,只有表面一部分氧化膜可能会被粉化而沉淀在溶液中。铝合金表面可以继续氧化,随着外加电压的升高,或时间的延长,微弧氧化膜厚度不会继续增加,直至达到外加电压对应的最终厚度。在工艺过程中,随着微弧氧化膜厚度的增加,微弧的亮度会逐渐暗淡下去,直至最后消失。但是微弧消失后,只要微弧消失后,只要外加电压继续存在,氧化膜还好继续生长,从实际中发现,微弧氧化膜的最大厚度可以达到200~300μm。

微弧氧化与普通阳极氧化一样,也存在着表面氧化和氧离子渗透到基体内与铝离子氧化结合,俗称渗透氧化的过程。。实际发现有大约70%的氧化层存在于铝合金的基体中,因此样品表面的几何尺寸变动不大。由于渗透氧化,氧化层与基体之间存在着相当厚的过渡层,使氧化膜和基体呈闹牢固的冶金结合,不易脱落,这也是微弧氧化优于电镀和喷涂的地方。图9-5是微弧氧化的剖面结构图,由图9-5可以看出,微弧氧化膜有三层组成,靠近铝基体中氧化膜于基体结合的过渡层交界面为凹凸不平,互相咬合,说明氧化膜于基体结合牢固,不易脱落,氧化膜的表面是一层疏松的白色陶瓷粉末,很容易用砂纸磨去,氧化时间越长,这层疏松层会变厚,当除去这层疏松层以后,剩下的是硬度很高、质地致密的陶瓷氧化膜。图9-6表示铝合金的微弧氧化膜截面的显微硬度和孔隙率的剖面,其纵坐标(左)表示显微硬度(HV),纵坐标(右)表示孔隙率。图9-6中明确地表明显微硬度和孔隙率与氧化膜的深度密切关系。

如何在铝上化学镀铜

铝上化学镀铜 一、概述 铝及铝合金是应用最广泛的金属之一,其具有导电性好、传热快、比重轻、强度高、易于成型等优点。但是,铝及铝合金也存在硬度低、不耐磨、易于发生晶间腐蚀、不易焊接等缺点,影响其应用范围和使用寿命。铝及其合金经过表面处理后可扬长避短,延长其使用寿命和扩大应用范围,赋予其防护、装饰等用途。 铝合金的表面处理技术包括阳极氧化、电镀、化学镀等方法。铝上电镀比其他金属上电镀要困难得多,容易出现气泡和脱皮,结合力不良等问题。究其原因是铝合金在空气中极易氧化。因此,在进行一般的除油、碱液腐蚀和浸蚀后,暴露出制件的活化表面,在电镀之前的瞬间又重新被氧化,形成的氧化膜严重地影响了镀层的结合力,造成镀层起泡和脱落。为了解决这一问题,目前普遍采用化学镀的方法。 铝合金表面化学镀因具有诸多的优良性能及特性而在电子工业、石油化工、机械和航天等领域的应用而不断增加,如何优化工艺、提高质量日益成为人们关注的焦点。所谓化学镀,是指不使用外电源,而是依靠金属的催化作用,通过可控制的氧化-还原反应,使镀液中的金属离子沉积到镀件上去的方法,因而化学镀也被称为自催化镀或无电镀。 铝及铝合金属于化学镀难镀基材,因此在其基体上进行化学镀有其自身的特点:①铝是一种化学性质比较活泼的金属,在大气中易生成一层薄而致密的氧化膜,即使在刚刚除去氧化膜的新鲜表面上,也会重新生成氧化膜,严重影响镀层与基体的结合力。②铝的电极电位很低(-1.56V),极易失去电子,当浸入镀液时,能与多种金属离子发生置换反应,析出的金属与铝表面形成接触镀层。这种接触性镀层疏松粗糙,与基体的结合力强度差,严重影响了镀层与基体的结合力。③铝属于两性金属,在酸、碱溶液中都不稳定,往往使化学镀过程复杂化。由此可知,要在铝及铝合金制品上得到良好的化学镀层,最关键的就是结合力问题,而结合力取决于化学镀的前处理。因此,对于铝及其合金来说,镀前处理是十分重要的。 二、铝的预处理 采用传统的二次浸锌法,其流程为:除油→浸蚀→第一次浸锌→硝酸退除→第二次浸锌。由于铝的电极电势较负,极易氧化,在化学除油、酸浸蚀等工序中铝试件表面易重新形成很薄的氧化膜,经化学镀后往往形成输送的金属沉积层,其结合力差,无使用价值。因此在化学镀之前,先进行两次浸锌预处理的方法,达到理想的果,使化学镀正常进行,这也是本工艺的最关键的步骤。研究发现,进行一次浸锌处理效果不佳,退除第一次浸锌预处理时所形成的粗糙的锌层后,使铝件表面呈现活化状态,再进行第二次浸锌处理,可获得均匀、细致的锌层,增强了基体金属的结合力,以利于化学镀的顺利进行。

铝及铝合金的微弧氧化技术

铝及铝合金的微弧氧化技术 1.技术内容及技术关键 (1)微弧氧化技术的内容和工艺流程 铝及铝合金材料的微弧氧化技术内容主要包括铝基材料的前处理;微弧氧化;后处理三部分。其工艺流程如下:铝基工件→化学除油→清洗→微弧氧化→清洗→后处理→成品检验。 (2)微弧氧化电解液组成及工艺条件 例1.电解液组成:K2SiO3 5~10g/L,Na2O2 4~6g/L,NaF 0.5~1g/L,CH3COONa 2~3g/L,Na3VO3 1~3g/L;溶液pH为11~13;温度为20~50℃;阴极材料为不锈钢板;电解方式为先将电压迅速上升至300V,并保持5~10s,然后将阳极氧化电压上升至450V,电解5~10min。例2两步电解法,第一步:将铝基工件在200g/L的K2O·nSiO2(钾水玻璃)水溶液中以1A/dm2的阳极电流氧化5min;第二步:将经第一步微弧氧化后的铝基工件水洗后在70g/L的Na3P2O7水溶液中以1A/dm2的阳极电流氧化15min。阴极材料为:不锈钢板;溶液温度为20~50℃。 (3)影响因素 ①合金材料及表面状态的影响:微弧氧化技术对铝基工件的合金成分要求不高,对一些普通阳极氧化难以处理的铝合金材料,如含铜、高硅铸铝合金的均可进行微弧氧化处理。对工件表面状态也要求不高,一般不需进行表面抛光处理。对于粗糙度较高的工件,经微弧氧化处理后表面得到修复变得更均匀平整;而对于粗糙度较低的工

件,经微弧氧化后,表面粗糙度有所提高。 ②电解质溶液及其组分的影响:微弧氧化电解液是获到合格膜层的技术关键。不同的电解液成分及氧化工艺参数,所得膜层的性质也不同。微弧氧化电解液多采用含有一定金属或非金属氧化物碱性盐溶液(如硅酸盐、磷酸盐、硼酸盐等),其在溶液中的存在形式最好是胶体状态。溶液的pH范围一般在9~13之间。根据膜层性质的需要,可添加一些有机或无机盐类作为辅助添加剂。在相同的微弧电解电压下,电解质浓度越大,成膜速度就越快,溶液温度上升越慢,反之,成膜速度较慢,溶液温度上升较快。 ③氧化电压及电流密度的影响:微弧氧化电压和电流密度的控制对获取合格膜层同样至关重要。不同的铝基材料和不同的氧化电解液,具有不同的微弧放电击穿电压(击穿电压:工件表面刚刚产生微弧放电的电解电压),微弧氧化电压一般控制在大于击穿电压几十至上百伏的条件进行。氧化电压不同,所形成的陶瓷膜性能、表面状态和膜厚不同,根据对膜层性能的要求和不同的工艺条件,微弧氧化电压可在200~600V范围内变化。微弧氧化可采用控制电压法或控制电流法进行,控制电压进行微弧氧化时,电压值一般分段控制,即先在一定的阳极电压下使铝基表面形成一定厚度的绝缘氧化膜层;然后增加电压至一定值进行微弧氧化。当微弧氧化电压刚刚达到控制值时,通过的氧化电流一般都较大,可达10A/dm2左右,随着氧化时间的延长,陶瓷氧化膜不断形成与完善,氧化电流逐渐减小,最后小于1A/dm2。氧化电压的波形对膜层性能有一定影响,可采用直流、锯齿

铝及铝合金的微弧氧化技术

铝及铝合金的微弧氧化技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

铝及铝合金的微弧氧化技术 1.技术内容及技术关键 (1)微弧氧化技术的内容和工艺流程 铝及铝合金材料的微弧氧化技术内容主要包括铝基材料的前处理;微弧氧化;后处理三部分。其工艺流程如下:铝基工件→化学除油→清洗→微弧氧化→清洗→后处理→成品检验。 (2)微弧氧化电解液组成及工艺条件 例1.电解液组成:K2SiO3 5~10g/L,Na2O2 4~6g/L,NaF 0.5~ 1g/L,CH3COONa 2~3g/L,Na3VO3 1~3g/L;溶液pH为11~13;温度为20~50℃;阴极材料为不锈钢板;电解方式为先将电压迅速上升至300V,并保持5~10s,然后将阳极氧化电压上升至450V,电解5~10min。例2两步电解法,第一步:将铝基工件在200g/L的K2O·nSiO2(钾水玻璃)水溶液中以1A/dm2的阳极电流氧化 5min;第二步:将经第一步微弧氧化后的铝基工件水洗后在70g/L 的Na3P2O7水溶液中以1A/dm2的阳极电流氧化15min。阴极材料为:不锈钢板;溶液温度为20~50℃。 (3)影响因素 ①合金材料及表面状态的影响:微弧氧化技术对铝基工件的合金成分要求不高,对一些普通阳极氧化难以处理的铝合金材料,如含铜、高硅铸铝合金的均可进行微弧氧化处理。对工件表面状态也要求不高,一般不需进行表面抛光处理。对于粗糙度较高的工件,经

微弧氧化处理后表面得到修复变得更均匀平整;而对于粗糙度较低的工件,经微弧氧化后,表面粗糙度有所提高。 ②电解质溶液及其组分的影响:微弧氧化电解液是获到合格膜层的技术关键。不同的电解液成分及氧化工艺参数,所得膜层的性质也不同。微弧氧化电解液多采用含有一定金属或非金属氧化物碱性盐溶液(如硅酸盐、磷酸盐、硼酸盐等),其在溶液中的存在形式最好是胶体状态。溶液的pH范围一般在9~13之间。根据膜层性质的需要,可添加一些有机或无机盐类作为辅助添加剂。在相同的微弧电解电压下,电解质浓度越大,成膜速度就越快,溶液温度上升越慢,反之,成膜速度较慢,溶液温度上升较快。 ③氧化电压及电流密度的影响:微弧氧化电压和电流密度的控制对获取合格膜层同样至关重要。不同的铝基材料和不同的氧化电解液,具有不同的微弧放电击穿电压(击穿电压:工件表面刚刚产生微弧放电的电解电压),微弧氧化电压一般控制在大于击穿电压几十至上百伏的条件进行。氧化电压不同,所形成的陶瓷膜性能、表面状态和膜厚不同,根据对膜层性能的要求和不同的工艺条件,微弧氧化电压可在200~600V范围内变化。微弧氧化可采用控制电压法或控制电流法进行,控制电压进行微弧氧化时,电压值一般分段控制,即先在一定的阳极电压下使铝基表面形成一定厚度的绝缘氧化膜层;然后增加电压至一定值进行微弧氧化。当微弧氧化电压刚刚达到控制值时,通过的氧化电流一般都较大,可达10A/dm2左右,随着氧化时间的延长,陶瓷氧化膜不断形成与完善,氧化电流

相关主题
文本预览
相关文档 最新文档