当前位置:文档之家› 徐变与蠕变的区别、

徐变与蠕变的区别、

徐变与蠕变的区别、
徐变与蠕变的区别、

徐变和蠕变的异同

2010-05-06 22:11:14| 分类:科技论文相关技术|字号订阅

徐变是混凝土在荷载长期持续作用下,应力不变,随着时间而增长的变形。产生徐变的原因有:1)混凝土受力后,在应力不大的情况下,徐变缘于水泥石中的凝胶体产生的粘性流动(颗粒间的相对滑动)要延续一个很长的时间。2)在应力较大的情况下,骨料和水泥石结合面裂缝的持续发展,导致徐变加大。徐变对混凝土结构的不利影响:1)徐变作用会使结构的变形增大。2)在预应力混凝土结构中,它还会造成较大的预应力损失。3)徐变还会使构件中混凝土和钢筋之间发生应力重分布,导致混凝土应力减小,钢筋应力增大,使得理论计算产生误差。一定要注意避免高应力下的非线性徐变.

蠕变:固体材料在保持应力不变的情况下,应变随时间缓慢增长的现象。金属、高分子材料和岩石等在一定条件下都具有蠕变性质。蠕变材料的瞬时应力状态不仅与瞬时变形有关,而且与该瞬时以前的变形过程有关。瞬时响应后随时间发展的蠕变一般可分成3个阶段:第一阶段是衰减蠕变,应变率(应变的时间变化率)随时间增加而逐渐减小;第二阶段是定常蠕变,应变率近似为常值;第三阶段是加速蠕变,应变率随时间逐渐增加,最后导致蠕变断裂。同一材料在不同的应力水平或不同温度下,可处在不同的蠕变阶段。通常温度升高或应力增大会使蠕变加快。不同材料的蠕变微观机制不同。引起多晶体材料蠕变的原因是原子晶间位错引起的点阵滑移以及晶界扩散等;而聚合物的蠕变机理则是高聚物分子在外力长时间作用下发生的构形和位移变化。研究材料的蠕变性质对安全而经济地设计结构和机械零件具有重要意义。

徐变是应力不变,应变增加,它的出现不一定需要材料有处于或曾处于塑性阶段;蠕变则是材料在塑性变形后,应变有所回落的现象。两者的机理都是因为材料的粘性,但徐变还有可能是因为其他原因的。也许从某种意义上,徐变着眼于宏观,蠕变更基于微观。

在英语中,徐变和蠕变是一个词:creep。照我的理解,刚性结构如混凝土结构一般叫徐变,而柔性结构如膜结构叫蠕变。徐变和蠕变的叫法应该是跟材料特性有关

flac3D蠕变基础知识

flac3D蠕变基础知识 分类:岩土蠕变 | 标签:FLAC3D creep 2009-06-09 18:37 阅读(1422)评论(0) 收集了一些FLAC3D的蠕变基础知识,希望对有需要的人起到帮助作用,欢迎下载! 蠕变模型 将flac3d的蠕变分析option进行了简单的翻译,目的是为了搞清楚蠕变过程中系统时间是如何跟真实时间对应的。 1. 简介 Flac3d可以模拟材料的蠕变特性,即时间依赖性,flac3d2.1提供6种蠕变模型: 1. 经典粘弹型模型model viscous 2. model burger 3. model power 4. model wipp 5. model cvisc 6. powe蠕变模型结合M-C模型产生cpow蠕变模型(model cpow) 7. 然后WIPP蠕变模型结合D-P模型产生Pwipp蠕变模型(model pwipp); 8 model cwipp 以上模型越往下越复杂,第一个模型使用经典的maxwell蠕变公式,第二个模型使用经典的burger蠕变公式,第三个模型主要用于采矿及地下工程,第四个模型一般用于核废料地下隔离的热力学分析,第五个模型是第二个模型的M-C扩展,第六个模型是第三个模型的M-C扩展,第七个模型是第四个模型的D-P扩展,第八个模型也是第四个模型的一种变化形式,只是包含了压硬和剪缩行为。 2. flac3d解流变问题 2.1简介

流变模型和flac3d其他模型最大的不同在于模拟过程中时间概念的不同,对于蠕变,求解时间和时间步代表着真实的时间,而一般模型的静力分析中,时间步是一个人为数量,仅仅作为计算从迭代到稳态的一种手段来使用。 2.2 flac3d的蠕变时间步长 对于蠕变等时间依赖性问题,flac3d容许用户自定义一个时间步长,这个时间步长的默认值为零,那么材料对于粘弹性模型表现为线弹性,对于粘塑性模型表现为弹塑性。(命令set creep off也可以用来停止蠕变计算。)这可以用来在系统达到平衡后再开始新的蠕变计算。蠕变公式中包含时间,所以计算中时间步长对程序响应有影响。 虽然用户可以对时间步进行设置,但并不是任意的。 蠕变过程由偏应力状态控制,从数值计算的精度来讲,最大蠕变时间步长可以表示成材料粘性常数和剪切模量的比值: For the power law ----------省略。For the WIPP law -----------省略 For the cvisc model, 上面方程应该写成:tmax = min ( ηK/GK,ηM/GM) 上标K和M分别代表Kelvin和Maxwell。 蠕变压缩的时间限制包括系统体积反应,并且估计为粘性和体积模量的比值。粘性可以表示为σ和体积蠕变压缩速率的比值。 建议利用FLAC3D作蠕变分析开始时所采用的蠕变时间步,比根据上式算得的时间tmax小两到三个数量级。通过调用SET creep dt auto on ,可以利用自动时间步自动调整。作为一项规则,时间步的最大值(SET creep maxdt )不能超过tmax。 用来计算tmax的应力σ大小,可由蠕变开始之前的初始应力状态决定。同样,σ作为von Mises不变量,可以用FISH函数计算。 涉及体积变化响应的蠕变分析,其最大时间步长可以表示成材料粘性常数和体积模量的比值,这里粘性常数就是平均应力和蠕变体应变率的比值。 一般flac3d推荐使用的初始蠕变时间步长比最大时间步长(由上述公式计算得到的)约小2到3个数量级。如果使用set creep dt auto on命令,那么程序将自动调整蠕变的时间步长,同样应当记住通过命令(set creep maxdt)设置的最大蠕变时间步不能超过。 2.3自动调整蠕变时间步长 用户可以设置蠕变时间步为一个常数值,也可以使用set creep dt auto on命令自动调节。如果时间步长自动变化,那么当最大不平衡力超过某一阀值时,它就会减小;当最大不平衡力小于某一水平时它就会增大。系统将该阀值定义为最大不平衡力和平均节点力的比值。

岩石蠕变模型研究进展及若干问题探讨

0引言 岩石在长时间应力、温度和差应力作用下发生永久变形不断增长的现象,叫做岩石的蠕变。早在 1939年Griggs [1]在对砂岩、泥板岩和粉砂岩等进行 大量蠕变试验时就发现,当荷载达到破坏荷载的 12.5%~80%时就发生蠕变,它是岩石流变力学中最 主要的一种现象,也是岩土工程变形失稳的主要原因。1980年湖北省盐池磷矿由于岩石的蠕变,160m 高,体积约100万m 3的山体突然崩塌,4层楼被抛 掷对岸,造成了巨大的伤亡。在国外岩石蠕变研究中,Okubo [2](1991)完成了大理岩、砂岩、花岗岩和灰岩等岩石的单轴压缩试验,获得了岩石加速蠕变阶段的应变-时间曲线,结果表明蠕变应变速率与时间成反比例关系。 E.Maranini [3](1999)对石灰岩等进行了单轴和三轴压剪蠕变试验,研究表明,石灰岩的蠕变最主要的表现在是低围压情况下的扩张、裂隙,而在高围压状态下,岩石内部则发生孔隙塌陷,得出石灰岩的蠕变对岩石主要影响是其屈服应力的降低。Hayano K [4](1999)等进行了沉积软岩的长期蠕变试验。K.Shina [5](2005)对日本的6种岩石进行了各种条件下单轴和三轴压缩,拉伸试验,统计了各种蠕变影响参数,如蠕变应力对时间的依赖性参数δ,蠕变寿命相关系数α和β等,并对其强度和蠕变寿命做了分析。由此可见,研究和开展岩石蠕变特性的研 基金项目:安徽建筑工业学院2010年度大学生科技创新基金 (20101018)。 作者简介:马珂(1987—),男,安徽安庆人,硕士,主要从事岩石力学 方面研究。 收稿日期:2011-05-26责任编辑:樊小舟 岩石蠕变模型研究进展及若干问题探讨 马珂,宛新林,贾伟风,宛传虎 (安徽建筑工业学院土木工程学院,安徽合肥230022) 摘要:岩石蠕变是岩土工程变形失稳的主要原因之一。近年来蠕变研究正处于一个探索阶段,本文从四个方面综述了蠕变模型的研究进展。研究发现,在岩石蠕变的三个阶段中利用经典本构模型均很难描述加速蠕变阶段,研究者们通过新的元件或者改进的非线性黏弹塑性本构模型可以很好的模拟岩石蠕变实际曲线;基于损伤理论的岩石蠕变模型是近年来发展的主要方向,可以很好的解决岩石微观裂纹所带来的蠕变;随着岩石深部工程的发展,岩体受到周围实际环境下的影响是不可忽略的,从而研究含水量的变化与水力和其它应力耦合下的岩石蠕变也是今后的重点。最后指出,由于试验仪器的原因,高温高压和各向异性下的岩石蠕变模型研究进行的还不是很多,是今后岩石蠕变研究的难点。 关键词:岩石蠕变;本构模型;非线性黏弹塑性;损伤;各向异性:高温高压中图分类号:TU454 文献标识码:A Advances in Rock Creep Model Research and Discussion on Some Issues Ma Ke,Wan Xinlin,Jia Weifeng and Wan Chuanhu (Civil Engineering Department,Anhui University of Architecture,Hefei,Anhui 230022) Abstract:The rock creep is one of major causes in geotechnical engineering deformation and destabilization.The creep research is just in an exploring stage in recent years,the paper has summed up the progress of creep model research from 4aspects.The research has found,among three stages of rock creep,the accelerated creep stage is hard to describe through classic constitutive models,the researchers have found that through new elements or using modified nonlinear visco-elastoplastic constitutive models can modulate rock creep active curves commendably.Rock creep model based on damage theory is the major development direction in recent years;it can solve the rock creep issues brought by microfissures.Along with development of deep rock engineering,impacts from peripheral practical setting on rock mass should not be ignored,thus to study rock creep under coupled moisture content variation and hydraulic,as well as other stresses is also emphasized from now on.Finally,the paper has point out,in virtue of testing instrument,the studies on rock creep model under high temperature,high pressure and anisotropy are not many thus far,and thus the nodus in rock creep studies henceforth. Keywords:rock creep;constitutive model;nonlinear visco-elastoplastic;damage;anisotropy;high temperature and high pressure 中国煤炭地质 COAL GEOLOGY OF CHINA Vol.23No.10Oct .2011 第23卷10期2011年10月 文章编号:1674-1803(2011)10-0043-05 doi :10.3969/j.issn.1674-1803.2011.10.10

蠕变中文解释

ANSYS提供了两个用户徐变方程:USERCR.F和USERCREEP.F。其中: 显式徐变用USERCR.F;前提是C6 = 100 隐式徐变用USERCREEP.F,前提是TBOPT=100 (1)用户徐变子程序usercr,用于显式徐变 subroutine usercr (elem,intpt,mat,ncomp,kfirst,kfsteq,e,posn,d, x proptb,timval,timinc,tem,dtem,toffst,fluen,dfluen,epel,epcrp, x statev,usvr,delcr) c c *** 基本功能: 允许用户写自己的徐变规律。该逻辑仅在C6=100时可用。 c *** 次要功能: 演示用户徐变方程的编写 c *** 注意-本文件包含ANSYS 机要信息*** c *** ansys(r) copyright(c) 2000 c *** ansys, inc. c c 输入变量: c | (译者注) c | c | 类型:int-整型 c | dp-双精度型 c | 长度:sc-标量 c | ar( , )-数组 c | 目的:in-输入 c | out-输出 c | inout-输入输出 c 变量(类型,长度,目的)-描述 c elem (int,sc,in) -单元号(标识) c intpt (int,sc,in) -单元积分点数 c mat (int,sc,in) -材料引用号 c ncomp (int,sc,in) -应力/应变分量数(1,4 or 6) c 1 -x c 4 -x,y,z,xy c 6 -x,y,z,xy,yz,xz c kfirst (int,sc,in) -若是首次则值为1,否则为0 c (对把状态变量初始化为非零值有用) c kfsteq (int,sc,in) -若是子步中首次平衡迭代则为1,否则为0 c e (dp,sc,in) -杨氏弹性模量 c posn (dp,sc,in) -泊松比 c d (dp,ar(ncomp,ncomp),in) -弹性应力-应变矩阵

creep蠕变基础知识

蠕变模型 将flac3d 的蠕变分析option 进行了简单的翻译,目的是为了搞清楚蠕变过程中系统时间是如何跟真实时间对应的。 2.1 简介 Flac3d 可以模拟材料的蠕变特性,即时间依赖性,flac3d2.1提供6种蠕变模型: 1. 经典粘弹型模型 model viscous 2. model burger 3. model power 4. model wipp 5. model cvisc 6. powe 蠕变模型结合M-C 模型产生cpow 蠕变模型(model cpow ) 7. 然后WIPP 蠕变模型结合D-P 模型产生Pwipp 蠕变模型(model pwipp ); 8 model cwipp 以上模型越往下越复杂,第一个模型使用经典的maxwell 蠕变公式,第二个模型使用经典的burger 蠕变公式,第三个模型主要用于采矿及地下工程,第四个模型一般用于核废料地下隔离的热力学分析,第五个模型是第二个模型的M-C 扩展,第六个模型是第三个模型的M-C 扩展,第七个模型是第四个模型的D-P 扩展,第八个模型也是第四个模型的一种变化形式,只是包含了压硬和剪缩行为。 2.2蠕变模型描述 2.2.1只介绍经典粘弹型模型即maxwell 蠕变公式 牛顿粘性的经典概念是应变率正比于应力,对于粘性流变应力应变关系以近似于弹性变形的方式发展。粘弹型材料既有粘性又有弹性,maxwell 材料就是如此,在一维空间它可以表示为一根弹簧(弹性常数κ)连接一个粘壶(粘性常数η),它的力-位移增量关系可以写成: η κ μF F + = ? ? (2.1) 式中? μ是速度,F 是力,设力的初始值为 F ,增量值为F '经过一个t ?时间步,式(2.1)可以写成

材料蠕变

蠕变定义 蠕变(creep)(缓慢变形) (德语名:kriechen) 蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。它与塑性变形不同,塑 蠕变曲线 性变形通常在应力超过弹性极限之后才出现,而蠕变只要应力的作用时间相当长,它在应力小于弹性极限时也能出现。 岩石在地质条件下的蠕变可以产生相当大的变形而所需要的应力却不一定很大。蠕变随时间的延续大致分3个阶段:①初始蠕变或过渡蠕变,应变随时间延续而增加,但增加的速度逐渐减慢;②稳态蠕变或定常蠕变,应变随时间延续而匀速增加,这个阶段较长;③加速蠕变,应变随时间延续而加速增加,直达破裂点。应力越大,蠕变的总时间越短;应力越小,蠕变的总时间越长。但是每种材料都有一个最小应力值,应力低于该值时不论经历多长时间也不破裂,或者说蠕变时间无限长,这个应力值称为该材料的长期强度。岩石的长期强度约为其极限强度的2/3。 蠕变条件 蠕变机制有扩散和滑移两种。在外力作用下,质点穿过晶体内部空穴扩散而产生的蠕变称为纳巴罗-赫林蠕变;质点沿晶体边界扩散而产生的蠕变称为柯勃尔蠕变。由晶内滑移或者由位错促进滑移引起的蠕变称为滑移蠕变,也称魏特曼蠕变。蠕变作用解释了岩石大变形在低应力下可以实现的原因。 蠕变在低温下也会发生,但只有达到一定的温度才能变得显著,称温度为蠕变温度。对各种金属材料的蠕变温度约为0.3Tm,Tm为熔化温度,以热力学温度表示。通常碳素钢超过300-350℃,合金钢在400-450℃以上时才有蠕变行为,对于一些低熔点金属如铅、锡等,在室温下就会发生蠕变。

改善蠕变方法 改善蠕变可采取的措施有: 1.高温工作的零件要采用蠕变小的材料制造,如耐热钢等; 2.对有蠕变的零件进行冷却或隔热; 3.防止零件向可能损害设备功能或造成拆卸困难的方向蠕变。 铸造砂型(砂芯)起模后的变形叫蠕变。如:酯固化水玻璃自硬砂砂型(芯)起模后常发生蠕变。改善蠕变可采取的措施有:尽可能缩短可使用时间;用复合固化剂;砂型强度允许条件下少加水玻璃;适当增加固化剂加入量;鼓热风强制硬化。

材料力学第一章

4一些高科 技及其在 各工业领 域的应用 与力学的 指导密不 可分。 6

78 9 吊 车 10 材料力学作为一门技术基础课,是全体同学必备的基础。 材料的力学行为是工程材料研究的重要方面。 材料力学发展简史 中国古代有关材料力学的应用 12 试弓定力图—东汉 赵州桥—隋朝

13 斗拱 1103年,李诫在《营造法式∑大木作制度》指出: “凡梁之大小,各随其广分为三分,以二分为厚” 材料力学在近代的发展 1638年:材料力学的开端《关于两种新14 伽利略(Galileo,1564~1642) 科学的对话》 提出了梁强度的计算公式开创了用系统科学实验与观察的方法进行研究 1678年: 发现“胡克定律”雅各布.伯努利,马略特:得出了有关梁、柱性能的15 胡克的弹性实验装置 基础知识,并研究了材料的强度性能与其它力学性能。库伦: 修正了伽利略、马略特关于梁理论中的错误,得到了梁的弯曲正应力和圆杆扭转切应力的正确结果 主要研究梁的变形: 《曲线的变分法》,推导出受横向力的悬臂杆的挠度表达式 《关于柱的承载力》,讨16 (瑞士)欧拉像 论了压杆稳定问题,引入了临界载荷的概念。 还研究了大变形问题、变截面梁的问题、具有初始曲率杆的问题。 17 (瑞士)约翰.伯努利像(意大利)拉格朗日像 提出“虚位移原理” 阐述了“虚功原理” 18 (英国)托马斯.杨像 (法国)纳维像 定义“弹性模量” 研究了扭转问题、梁的弯曲问题、提出了解超静定问题的位移法1826年,第一本《材料力学》

19 (法国)泊松像 定义“泊松比” (法国)圣维南像 研究了扭转和弯曲问题,提出了“圣维南原理” 建立“铁摩辛柯梁”模型 研究了圆孔附近的应力集中问题,梁板的弯曲振动问题,薄壁杆件扭转问题,弹性系统稳定性问题等 20 (乌克兰)铁摩辛柯像 出版了大量力学教材: 《材料力学》,《高等材料力学》,《结构力学》, 《板壳理论》等20多部 §1材料力学的任务Objective of the course 22 埃菲尔铁塔 铁塔承受风载的计算简图 铁塔变形示意图 Tacoma 海峡大桥Tacoma 海峡新桥 Tacoma 大桥破坏全过程 24 (点击图象)

蠕变分析

蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18 应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。

上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。 对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。对蠕变方程积分时,我们使用经过修改的总应变,其表达式为: 经过修改的等效总应变为: 其等效应力由下式算出: 其中:G=剪切模量= 等效蠕应变增量由程序给出的某一种公式进行计算,一般为正值,如果在数据表中,则使用的是衰减的蠕应变率而不是常蠕变率,但这个选项一般不被推荐,因为在初始蠕变所产生的应力为主的情况下,它可能会严重的低估蠕变值。如果,程序使用修正的等效蠕应变增量来代替蠕应变增量。 其中:e=(自然对数的底数) 下面是计算积分点的蠕应变率与弹性应变比率的公式: 将本次迭代的所有单元的所有积分点的的最大值记为,并且作为“CREEPRATIO”输出。 计算出等效蠕应变增量后,可将它转换成分量的形式,假设 Nc是某个特定单元类型的应变分量的个数。 如果则有:

flac3D蠕变基础知识03

flac3D蠕变基础知识 蠕变模型 将flac3d的蠕变分析option进行了简单的翻译,目的是为了搞清楚蠕变过程中系统时间是如何跟真实时间对应的。 1. 简介 Flac3d可以模拟材料的蠕变特性,即时间依赖性,flac3d2.1提供6种蠕变模型: 1. 经典粘弹型模型model viscous 2. model burger 3. model power 4. model wipp 5. model cvisc 6. powe蠕变模型结合M-C模型产生cpow蠕变模型(model cpow) 7. 然后WIPP蠕变模型结合D-P模型产生Pwipp蠕变模型(model pwipp); 8 model cwipp 以上模型越往下越复杂,第一个模型使用经典的maxwell蠕变公式,第二个模型使用经典的burger蠕变公式,第三个模型主要用于采矿及地下工程,第四个模型一般用于核废料地下隔离的热力学分析,第五个模型是第二个模型的M-C扩展,第六个模型是第三个模型的M-C 扩展,第七个模型是第四个模型的D-P扩展,第八个模型也是第四个模型的一种变化形式,只是包含了压硬和剪缩行为。 2. flac3d解流变问题 2.1简介 流变模型和flac3d其他模型最大的不同在于模拟过程中时间概念的不同,对于蠕变,求解时间和时间步代表着真实的时间,而一般模型的静力分析中,时间步是一个人为数量,仅仅作为计算从迭代到稳态的一种手段来使用。 2.2 flac3d的蠕变时间步长 对于蠕变等时间依赖性问题,flac3d容许用户自定义一个时间步长,这个时间步长的默认值为零,那么材料对于粘弹性模型表现为线弹性,对于粘塑性模型表现为弹塑性。(命令set creep off也可以用来停止蠕变计算。)这可以用来在系统达到平衡后再开始新的蠕变计算。蠕变公式中包含时间,所以计算中时间步长对程序响应有影响。 虽然用户可以对时间步进行设置,但并不是任意的。 蠕变过程由偏应力状态控制,从数值计算的精度来讲,最大蠕变时间步长可以表示成材料粘性常数和剪切模量的比值: For the power law ----------省略。For the WIPP law -----------省略 For the cvisc model, 上面方程应该写成:tmax = min ( ηK/GK,ηM/GM) 上标K和M分别代表Kelvin和Maxwell。 蠕变压缩的时间限制包括系统体积反应,并且估计为粘性和体积模量的比值。粘性可以表示为σ和体积蠕变压缩速率的比值。 建议利用FLAC3D作蠕变分析开始时所采用的蠕变时间步,比根据上式算得的时间tmax 小两到三个数量级。通过调用SET creep dt auto on ,可以利用自动时间步自动调整。作为

蠕变分析

4.4 蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18 应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。 上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。 对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。 对蠕变方程积分时,我们使用经过修改的总应变,其表达式为:

蠕变分析实例

蠕变分析实例 采用ANSYS 分析软件对螺栓进行了蠕变计算,以下给出了计算用的原始数据、分析步骤、计算结果以及与理论解的比较。 1, 原始数据 螺栓几何参数:长L=150mm ;截面面积A=100mm 2 螺栓材料参数:弹性模量E=200GPa 蠕变应变率:n K dt d σε=/,s K /10530-?=,7=n 载荷:预紧力MPa 10000=σ,恒定温度C T ?=900 2, 分析过程 计算时间为1000h ,积分步时间选择10,迭代次数选择100。具体分析步骤如下: 一、定义工作文件名 启动ANSYS ,选择File →Change Jobname 命令,在Enter new jobname 输入栏中输入工作文件名, 并将New log and error files 设置为Yes 。 二、定义单元类型 选择Preprocessor →Element Type →Add/Edit/Delete 命令,单击add 按钮,在Library of Element Type 复选框中选择Structural Link ,2D spar 1,在Element type reference number 输入栏中输入1。 三、定义材料性能参数 1)选择Preprocessor →Material Props →Material Models 命令,出现Define Material Model Behavior 对话框。 2)在Material Models Available 中依次双击Structural 、Linear 、Elastic 、Isotropic 选项,在EX 中输入弹性模量,点击OK 。 3)在Material Models Available 中依次双击Structural 、Nonlinear 、Inelastic 、Rate Dependent 、Creep 、Creep only 、Emplicit 选项,在C1、C2所对应的行中分别输入5E-30、7,点击OK 。 四、创建有限元模型 1)选择Preprocessor →Create →Nodes →In Active CS 命令,在当前坐标下创建节点。取Node number 为1,在X,Y,Z Location in active CS 的三个输入栏中分别输入0,0,0,单击Apply ,再创建节点2(150,0,0)。 2)选择Preprocessor →Create →Elements →Auto Numbered →Thru Nodes 命令,出现Element from Nodes 拾取菜单,选择编号为1、2的节点,单击OK 按钮,

蠕变

蠕变(英语:Creep),也称潜变,是在应力影响下固体材料缓慢永久性的移动或者变形的趋势。它的发生是低于材料屈服强度的应力长时间作用的结果。当材料长时间处于加热当中或者在熔点附近时,蠕变会更加剧烈。蠕变常常随着温度升高而加剧。 蠕变变形发生的温度范围因材料不同而不同。例如,钨需要几千度才能发生蠕变变形,然而冰将在冰点下蠕变。通常,在金属熔点的大约30%和陶瓷熔点的40%-50%时蠕变效果开始逐渐明显。事实上,任何材料在接近其熔点的时候都会蠕变。由于最低温度和熔点有关,蠕变可以在相对较低的温度下在一些材料上发生,如塑料和低熔点金属,包括许多焊料。室温蠕变可以很明显的发生在旧的铅热水管上。 蠕变在低温下也会发生,但只有达到一定的温度才能变得显著,称该温度为蠕变温度。对各种金属材料的蠕变温度约为0.3Tm,Tm为熔化温度,以热力学温度表示。通常碳素钢超过300-350℃,合金钢在400-450℃以上时才有蠕变行为,对于一些低熔点金属如铅、锡等,在室温下就会发生蠕变。 在开始的阶段,或者初步蠕变,形变率相对较大,但是随着应变的增加减慢。这主要来自形变硬化。形变率最后达到一个最小值并接近常数。这是由于形变硬化和退火(热软化)的一个平衡。这个阶段就是第二阶段或者稳态蠕变。这个阶段最被了解。“蠕变应变率”就是指这一阶段的应变率。应力和应变率的关系随蠕变机制不同而不用。在第三阶段,由于颈缩现象,应变率随着应变增大指数性的增长。 1 改善蠕变可采取的措施有: (1).高温工作的零件要采用蠕变小的材料制造,如耐热钢等; (2).对有蠕变的零件进行冷却或隔热; (3).防止零件向可能损害设备功能或造成拆卸困难的方向蠕变。 铸造砂型(砂芯)起模后的变形叫蠕变。如:酯固化水玻璃自硬砂砂型(芯)起模后常发生蠕变。改善蠕变可采取的措施有:尽可能缩短可使用时间;用复合固化剂;砂型强度允许条件下少加水玻璃;适当增加固化剂加入量;鼓热风强制硬化。 2 对于结构材料的抗蠕变性能的提高 (1):材料在其Tg(玻璃化温度)以下使用。(2)使大分子产生交联。 (3):主链引入芳杂环或极性基团

口腔材料学详细学习知识重点

名词解释 #线胀系数linear expansion coefficient 是指固体物质的温度每改变1摄氏度时,其长度的变化和它在0摄氏度时的长度之比。它是表示物体长度随温度变化的物理量,单位为每【开尔文】,符号为K-1 #弹性模量modulus of elasticity 是量度材料刚性的量,也称杨氏模量,它是指材料在弹性状态下的应力与应变的比值,在应力-应变曲线上,弹性模量就是弹性变形阶段应力-应变线段的斜率,即单位弹性应变所需的应力,它表示材料抵抗弹性形变的能力,也称刚度 #粘结bonding/adhesion 是指两个同种或异种的固体物质通过介于两者表面的另一种物质作用而产生牢固结合的现象。 #生物相容性biocompatibility 是指在特定应用中,材料产生适当的宿主反应的能力。包括组织对材料的影响及材料对组织的影响。 #生物安全性biological safety 是指材料制品是否具有安全使用的性质,亦即材料制品对人体的毒性,人体应用后是否会因材料的有害成分对人体造成短期或长期的损害 #生物功能性biofunctionability 指材料的物理机械及化学性能能使其在应用部位行使功能的性质。 口腔材料学 是将材料科学与口腔医学结合在一起的一门界面科学,主要内容包括口腔医学应用的各种人工材料的种类、性能特点、用途和应用中应当注意的问题。 弹性形变elastic deformation 物体在外力作用下产生形变,外力去除后变形的物体可完全恢复其原始形状则称为~ 塑性形变plastic deformation 物体在外力作用下产生形变,若外力去除后变形的物体不能完全恢复其原始形状,则称为~ 应力stress 物体发生形变时内部产生了大小相等但方向相反的反作用抵抗外力,定义单位面积上的这种反作用力为应力。 弹性极限elastic limit 材料不发生永久形变所能承受的最大应力值。 汞齐化amalgamation 汞在室温下是液态,由银合金粉与汞在室温下混合后形成坚硬合金,这一形成合金的过程称~。

蠕变基本知识

蠕变 蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。它与塑性变形不同,塑性变形通常在应力超过弹性极限之后才出现,而蠕变只要应力的作用时间相当长,它在应力小于弹性极限时也能出现。 蠕变定义 蠕变(creep)(缓慢变形) (德语名:kriechen) 岩石在地质条件下的蠕变可以产生相当大的变形而所需要的应力却不一定很大。蠕变随时间的延续大致分3个阶段:①初始蠕变或过渡蠕变,应变随时间延续而增加,但增加的速度逐渐减慢;②稳态蠕变或定常蠕变,应变随时间延续而匀速增加,这个阶段较长;③加速蠕变,应变随时间延续而加速增加,直达破裂点。应力越大,蠕变的总时间越短;应力越小,蠕变的总时间越长。但是每种材料都有一个最小应力值,应力低于该值时不论经历多长时间也不破裂,或者说蠕变时间无限长,这个应力值称为该材料的长期强度。岩石的长期强度约为其极限强度的2/3。 蠕变曲线 蠕变条件 蠕变机制有扩散和滑移两种。在外力作用下,质点穿过晶体内部空穴扩散而产生的蠕变称为纳巴罗-赫林蠕变;质点沿晶体边界扩散而产生的蠕变称为柯勃尔蠕变。由晶内滑移或者由位错促进滑移引起的蠕变称为滑移蠕变,也称魏特曼蠕变。蠕变作用解释了岩石大变形在低应力下可以实现的原因。 蠕变在低温下也会发生,但只有达到一定的温度才能变得显著,称该温度为蠕变温度。对各种金属材料的蠕变温度约为0.3Tm,Tm为熔化温度,以热力学

温度表示。通常碳素钢超过300-350℃,合金钢在400-450℃以上时才有蠕变行为,对于一些低熔点金属如铅、锡等,在室温下就会发生蠕变。 改善蠕变方法 1 改善蠕变可采取的措施有: (1).高温工作的零件要采用蠕变小的材料制造,如耐热钢等; (2).对有蠕变的零件进行冷却或隔热; (3).防止零件向可能损害设备功能或造成拆卸困难的方向蠕变。 铸造砂型(砂芯)起模后的变形叫蠕变。如:酯固化水玻璃自硬砂砂型(芯)起模后常发生蠕变。改善蠕变可采取的措施有:尽可能缩短可使用时间;用复合固化剂;砂型强度允许条件下少加水玻璃;适当增加固化剂加入量;鼓热风强制硬化。 2 对于结构材料的抗蠕变性能的提高 (1):材料在其Tg(玻璃化温度)以下使用。(2)使大分子产生交联。(3):主链引入芳杂环或极性基团 蠕变断裂机理 金属材料在蠕变过程中可发生不同形式的断裂,按照断裂时塑性变形量大小的顺序,可以讲蠕变断裂分为如下类型: 沿晶蠕变断裂 沿晶蠕变断裂是常用高温金属材料(如耐热钢、高温合金等)蠕变断裂的一种主要形式。主要是因为在高温、低应力较长时间作用下,随着蠕变不断进行,晶界滑动和晶界扩散比较充分,促进了空洞、裂纹沿晶界形成和发展。 穿晶蠕变断裂 穿晶蠕变断裂主要发生在高应力条件下。其断裂机制与室温条件下的韧性断裂类似,是空洞在晶粒中夹杂物处形成,并随蠕变进行而长大、汇合的过程。 延缩性断裂 延缩性断裂主要发生在高温(T > 0.6 Tm )条件下。这种断裂过程总伴随着动态再结晶,在晶粒内不断产生细小的新晶粒。由于晶界面积不断增大,空位将均匀分布,从而阻碍空洞的形成和长大。因此,动态再结晶抑制沿晶断裂。晶粒大小与应变量成反比。

不锈钢基础知识

不锈钢基础知识 不锈钢是钢铁中的精品。近年来,随着经济的飞速发展及人民生活水平的大幅度提高,不锈钢的社会需求量呈飞跃式增长。 我们公司是长期从事不锈钢材料销售、加工和配送业务的专业公司,作为销售部员工,应全面了解不锈钢的基础知识。 1.不锈钢定义 不锈钢是约含12%Wt以上Cr(铬)成分的铁基合金钢,具有表面华丽、耐腐蚀性强的特点,不经任何涂料、刷漆等表面处理情况下广泛使用于各种用途,代表钢种是13cr钢、18cr钢、18cr-8Ni钢。 2.不锈钢的分类 不锈钢大体上按化学成分和金相组织分类,按化学成分可以分为Fe-Cr系和Fe-Cr-Ni系,按金相组织可以分为奥氏体系、铁素体系、马氏体系、双相系以及析出硬化系。 (1)奥氏体系不锈钢 面心立方结构,热处理不能硬化,但通过冷加工可以硬化。代表钢种是304,18Cr-8Ni 是其基本组成。常温、高温下都为奥氏体组织,无不定性。 304钢种从熔融状态凝固成固相时,优先析出S-铁素体、常温下应该存在完全的奥氏体相组织,但是,由于成份偏析而形成部分S-铁素体,它有害于热加工。但是加工后,由于冷加工导致形变马氏体的产生,所以经冷加工的材料,会产生部分磁性,而且随着硬化程度的增加,磁性增加。 (2)铁素体系不锈钢 体心立方结构其耐蚀性不如奥氏体不锈钢,但具有抵抗应力腐蚀开裂(SCC)能力优越于奥氏体不锈钢;常温下带强磁性,热处理不能硬化,具有优秀的冷延加工性(冷轧)。 (3)马氏体系不锈钢 马氏体不锈钢常温下强磁性,一般来讲其耐蚀性不突出,但强度高,使用于高强度结构用钢。高温下具有稳定的奥氏体组织,空冷或油冷下转变成马氏体相,常温时具有完全的马氏体组织。 (4)双相不锈钢 常温下具有奥氏体和铁素体混合相,强度高,铁素体组织起着抑制应力腐蚀开裂(SCC)作用。 (5)析出硬化系不锈钢

蠕变模型

Coupled Creep and Drucker-Prager Plasticity Geomaterials may creep under certain conditions.When the loading rate is of the same order of magnitude as the creep time scale, the plasticity and creep equations must be solved using a coupled solution procedure. ABAQUS has a creep model that can be used to augment the Drucker-Prager plasticity for such problems. Basic Assumptions ABAQUS always uses the coupled solution procedure when both Drucker-Prager plasticity and creep are active. Using the Drucker-Prager creep model implies that the Drucker-Prager plasticity model uses isotropic linear elasticity, a hyperbolic plastic flow potential, and the linear Drucker-Prager yield surface with a circular yield surface in the deviatoric plane (K = 1). The creep laws for the Drucker-Prager creep models are written in terms of an equivalent creep stress, , which is a measure of the creep ―intensity‖ of the state of stress at a material point. The definition of depends upon the type of hardening (compression, tension, or shear) used with the linear Drucker-Prager plasticity model, but in all cases ()βσσ,,p q cr cr =: ()()() ββσtan 3/11tan --=p q cr (compression) ()()() ββtan 3/11tan +-= p q (tension) ()βtan p q -=(shear) The equivalent creep stress defines surfaces that are parallel to the yield surface in the meridional plane. Points on the same surface have the same creep ―intensity.‖

相关主题
文本预览
相关文档 最新文档