当前位置:文档之家› 空域、频域图像增强举例

空域、频域图像增强举例

空域、频域图像增强举例
空域、频域图像增强举例

MATLAB图像增强程序举例

1.灰度变换增强程序:

% GRAY TRANSFORM

clc;

I=imread('pout.tif');

imshow(I);

J=imadjust(I,[0.3 0.7],[0 1],1); %transforms the walues in the

%intensity image I to values in J by linealy mapping values

% between 0.3 and 0.7 to values between 0 and 1.

figure;

imshow(J);

J=imadjust(I,[0.3 0.7],[0 1],0.5); % if GAMMA is less than 1,the % mapping si weighted toward higher (brighter) output values. figure;

imshow(J);

J=imadjust(I,[0.3 0.7],[0 1],1.5); % if GAMMA is greater than

% 1,the mapping si weighted toward lower (darker) output values. figure;

imshow(J)

J=imadjust(I,[0.3 0.7],[0 1],1); % If TOP

% image is reversed,as in a photographic negative.

figure;

imshow(J);

2.直方图灰度变换

%直方图灰度变换

[X,map]=imread('forest.tif');

I=ind2gray(X,map);%把索引图像转换为灰度图像

imshow(I);

title('原图像');

improfile%用鼠标选择一条对角线,显示线段的灰度值

figure;subplot(121)

plot(0:0.01:1,sqrt(0:0.01:1))

axis square

title('平方根灰度变换函数')

subplot(122)

maxnum=double(max(max(I)));%取得二维数组最大值

J=sqrt(double(I)/maxnum);%把数据类型转换成double,然后进行平方根变换%sqrt函数不支持uint8类型

J=uint8(J*maxnum);%把数据类型转换成uint8类型

imshow(J)

title('平方根变换后的图像')

3.直方图均衡化程序举例

% HISTGRAM EAQUALIZATION

clc;

% Clear command window

I=imread('tire.tif');

% reads the image in tire.tif into I

imshow(I);

% displays the intensity image I with 256 gray levels figure;

%creates a new figure window

imhist(I);

% displays a histogram for the intensity image I

J=histeq(I,64);

% transforms the intensity image I,returning J an intensity figure;

%image with 64 discrete levels

imshow(J);

figure;

imhist(J);

J=histeq(I,32);

%transforms the intensity image ,returning in % J an intensity figure;

%image with 32 discrete levels

imshow(J);

figure;

imhist(J);

4.直方图规定化程序举例

% HISTGRAM REGULIZATION

clc;

%Clear command window

I=imread('tire.tif');

%reads the image in tire.tif into I

J=histeq(I,32);

%transforms the intensity image I,returning in

%J an intensity image with 32 discrete levels

[counts,x]=imhist(J);

%displays a histogram for the intensity image I

Q=imread('pout.tif');

%reads the image in tire.tif into I

figure;

imshow(Q);

figure;

imhist(Q);

M=histeq(Q,counts);

%transforms the intensity image Q so that the

%histogram of the output image M approximately matches counts

figure;

imshow(M);

figure;

imhist(M);

空域滤波增强部分程序

1.线性平滑滤波

I=imread('eight.tif');

J=imnoise(I,'salt & pepper',0.02);

subplot(221),imshow(I)

title('原图像')

subplot(222),imshow(J)

title('添加椒盐噪声图像')

K1=filter2(fspecial('average',3),J)/255;%应用3*3邻域窗口法subplot(223),imshow(K1)

title('3x3窗的邻域平均滤波图像')

K2=filter2(fspecial('average',7),J)/255;%应用7*7邻域窗口法subplot(224),imshow(K2)

title('7x7窗的邻域平均滤波图像')

2.中值滤波器

MATLAB中的二维中值滤波函数medfit2来进行图像中椒盐躁声的去除%IMAGE NOISE REDUCTION WITH MEDIAN FILTER

clc;

hood=3;%滤波窗口

[I,map]=imread('eight.tif');

imshow(I,map);

noisy=imnoise(I,'salt & pepper',0.05);

figure;

imshow(noisy,map);

filtered1=medfilt2(noisy,[hood hood]);

figure;

imshow(filtered1,map);

hood=5;

filtered2=medfilt2(noisy,[hood hood]);

figure;

imshow(filtered2,map);

hood=7;

filtered3=medfilt2(noisy,[hood hood]);

MATLAB数字图像处理基本操作及空域滤波

实验一 MATLAB数字图像处理基本操作及空域滤波实验目的 1、了解有关数字图像处理的基本概念,熟悉Matlab软件中关于数字图像处理的基本命令,掌握利用Matlab软件进行数字图像处理的简单方法。 2、了解并掌握直方图统计方法以及分段线性拉伸、直方图均衡等亮度调整算法,通过观察对这些运算建立感性认识。 3、掌握空域滤波中常用的平滑和锐化滤波器。 实验内容 1. 观察各类图像的直方图;操作LUT灰度对照表,进行分段线性拉伸;采用直方图均衡方法对低对比度的图像进行对比度增强。 2.掌握图像模板卷积运算的实质,认识各种模板的处理效果; 3. 掌握邻域平均及中值滤波降噪方法的特点,认识其功能及适用场合; 4. 掌握拉普拉斯算子、Sobel算子、Prewitt算子和Isotropic算子的特点,认识其功能及适用场合。 实验原理 1、数字图像以一定的格式存放在计算机的存储器中(如磁盘),常见的格式有BMP,TIF,PCX等等,要进行数字图像处理,第一项工作就是把图像读到计算机的内存中,以便进行进一步的处理。在Matlab中,函数imread()完成此项工作。下面一小段Matlab语句即可实现将图像“rice.tif”显示在一个图像窗口的左边,将其轮廓图显示在该窗口的右边。 I=imread('rice.tif'); subplot(1,2,1); imshow(I) subplot(1,2,2); imcontour(I); 这里,imread(‘rice.tif’)将磁盘上的图像文件rice.tif读入内存变量I中,subplot(1,2,1)生成一个可以横向放置2幅图像的窗口,并设置下一显示位置在左边,imshow(I)显示图像I,subplot(1,2,2)准备下一图像的显示位置,imcontour(I)生成图像I 的轮廓并显示在窗口的右边。 数字图像一般可分为二值图、灰度图和真彩图等几类。

数字图像处理实验报告.docx

谢谢观赏 数字图像处理试验报告 实验二:数字图像的空间滤波和频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日 1.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2.实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一 图像窗口中。 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要 求在同一窗口中显示。 3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填 充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图 像。 4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波,查看其特点, 显 示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要 求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 2. 锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5 ×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] 3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_moon.tif 谢谢观赏

数字图像处理(频域增强)

数字图像处理(频域增强)

数字图像处理图像频域增强方法的研究 姓名: 班级: 学号:

目录一.频域增强的原理 二.频域增强的定义及步骤三.高通滤波 四. MATLAB程序实现 五.程序代码 六.小结

一.频域图像的原理 在进行图像处理的过程中,获取原始图像后,首先需要对图像进行预处理,因为在获取图像的过程中,往往会发生图像失真,使所得图像与原图像有某种程度上的差别。在许多情况下,人们难以确切了解引起图像降质的具体物理过程及 其数学模型,但却能估计出使图像降质的一些可能原因,针对这些原因采取简单易行的方法,改善图像质量。图像增强一般不能增加原图像信息,只能针对一些成像条件,把弱信号突出出来,使一些信息更容易分辨。图像增强的方法分为频域法和空域法,空域法主要是对图像中的各像素点进行操作;而频域法是在图像的某个变换域内,修改变换后的系数,例如傅立叶变换、DCT 变换等的系数,对 图像进行操作,然后再进行反变换得到处理后的图像。 MATLAB矩阵实验室(Matrix Laboratory)的简称,具有方便的数据可视化功能,可用于科学计算和工程绘图。它不仅在一般数据可视化软件都具有的功能方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。它具有功能丰富的工具箱,不但能够进行信号处理、语音处理、数值运算,而且能够完成各种图像处理功能。本文利用MATLAB工具来研究图像频域增强技术。图像增强是为了获得更好质量的图像,通过各种方法对图像进行处理,例如图像边缘检测、分割以及特征提取等技术。图像增强的方法有频域处理法与空域处理法,本文主要研究了频域处理方法中的滤波技术。从低通滤波、高通滤波、同态滤波三个方面比较了图像增强的效果。文章首先分析了它们的原理,然后通过MATLAB软件分别用这三种方法对图像进行处理,处理后使图像的对比度得到了明显的改善,增强了图像的视觉效果。

空域和频域图像处理增强

实验目的: 1.熟悉Matlab处理图像的基本原理,并熟练地运用进行一些基本的图像操作; 2.能够用Matlab来进行亮度变换,直方图处理以及一些简单的空间滤波; 实验内容: 去噪,灰度变换,直方图处理,空域和频域平滑锐化,同态滤波;结果分析: 1.直方图处理: ⑴显示原图直方图以及原图: 代码: >> imread(''); >> imshow(f); >> imhist(f); 原图以及原图直方图为:

⑵直方图均衡化: 代码: >> f=imread(''); >> n=imnoise(f); >> imwrite(n,''); >> [thr,sorh,keepapp] = ddencmp('den','wv',im2double(n)); >> r=wdencmp('gbl',im2double(Noise),'sym2',2,thr,sorh,keepapp); >> r=wdencmp('gbl',im2double(n),'sym2',2,thr,sorh,keepapp); >> imwrite(r,''); >> imshow(f); 现在的图片以及直方图为: 结论: 直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效

地扩展常用的亮度来实现这种功能。 2.灰度变换: 代码: >> f=imread(''); >> n=imnoise(f); >> imwrite(n,''); >> [thr,sorh,keepapp] = ddencmp('den','wv',im2double(n)); >> r=wdencmp('gbl',im2double(Noise),'sym2',2,thr,sorh,keepapp); >> r=wdencmp('gbl',im2double(n),'sym2',2,thr,sorh,keepapp); >> imwrite(r,''); >> imshow(f); 变换的图像(f为图a,a1为图b,a2为图c,a3为图d): (图a)(图b)

数字图像处理matlab代码

一、编写程序完成不同滤波器的图像频域降噪和边缘增强的算法并进行比较,得出结论。 1、不同滤波器的频域降噪 1.1 理想低通滤波器(ILPF) I1=imread('eight.tif'); %读取图像 I2=im2double(I1); I3=imnoise(I2,'gaussian',0.01); I4=imnoise(I3,'salt & pepper',0.01); figure,subplot(1,3,1); imshow(I2) %显示灰度图像 title('原始图像'); %为图像添加标题 subplot(1,3,2); imshow(I4) %加入混合躁声后显示图像 title('加噪后的图像'); s=fftshift(fft2(I4)); %将灰度图像的二维不连续Fourier 变换的零频率成分 移到频谱的中心 [M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整 n2=floor(N/2); %对N/2进行取整 d0=40; %初始化d0 for i=1:M for j=1:N d=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if d<=d0 %点(i,j)在通带内的情况 h=1; %通带变换函数 else %点(i,j)在阻带内的情况 h=0; %阻带变换函数 end s(i,j)=h*s(i,j); %ILPF滤波后的频域表示

end end s=ifftshift(s); %对s进行反FFT移动 s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复 数的实部转化为无符号8位整数 subplot(1,3,3); %创建图形图像对象 imshow(s); %显示ILPF滤波后的图像 title('ILPF滤波后的图像(d=40)'); 运行结果: 1.2 二阶巴特沃斯低通滤波器(BLPF) I1=imread('eight.tif'); %读取图像 I2=im2double(I1); I3=imnoise(I2,'gaussian',0.01); I4=imnoise(I3,'salt & pepper',0.01); figure,subplot(1,3,1); imshow(I2) %显示灰度图像 title('原始图像'); %为图像添加标题 subplot(1,3,2); imshow(I4) %加入混合躁声后显示图像 title('加噪后的图像'); s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分 移到频谱的中心 [M,N]=size(s); %分别返回s的行数到M中,列数到N中n=2; %对n赋初值

图像的傅立叶变换与频域滤波

实验四 图像的傅立叶变换与频域滤波 一、 实验目的 1了解图像变换的意义和手段; 2熟悉傅里叶变换的基本性质; 3熟练掌握FFT 方法的应用; 4通过实验了解二维频谱的分布特点; 5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。 6、掌握怎样利用傅立叶变换进行频域滤波 7、掌握频域滤波的概念及方法 8、熟练掌握频域空间的各类滤波器 9、利用MATLAB 程序进行频域滤波 二、 实验原理 1应用傅立叶变换进行图像处理 傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。 2傅立叶(Fourier )变换的定义 对于二维信号,二维Fourier 变换定义为 : ??∞ ∞ -+-==dxdy e y x f v u F y x f F vy ux j )(2),(),()},({π

二维离散傅立叶变换为: ∑ ∑-=+--== 1 ) (21 1),(),(N y N y u M x u j M x MN e y x f v u F π 图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。 3利用MATLAB 软件实现数字图像傅立叶变换的程序: I=imread(‘原图像名.gif’); %读入原图像文件 imshow(I); %显示原图像 fftI=fft2(I); %二维离散傅立叶变换 sfftI=fftshift(fftI); %直流分量移到频谱中心 RR=real(sfftI); %取傅立叶变换的实部 II=imag(sfftI); %取傅立叶变换的虚部 A=sqrt(RR.^2+II.^2);%计算频谱幅值 A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化 figure; %设定窗口 imshow(A); %显示原图像的频谱 域滤波分为低通滤波和高通滤波两类,对应的滤波器分别为低通滤波器和高通滤波器。频域低通过滤的基本思想: G(u,v)=F(u,v)H(u,v) F(u,v)是需要钝化图像的傅立叶变换形式,H(u,v)是选取的一个低通过滤器

数字图像处理频域增强

中国地质大学(武汉) 数字图像处理上机实习 (第三专题) 学生姓名: 班级: 学号: 指导老师:

实验内容 一图计算图象的傅氏变换频谱函数 要求(1-6):设计图象f6(x,y) 为3*30*30/256*256,居中垂直排列,选用Matlab函数直接调用实现,重点观察空域图象和频域频谱的对应关系; 补充完成:设计120*30/256*256,观察空域图象和频域频谱的对应关系。 1.算法设计 2.程序代码 %观察空域图象和频域频谱的对应关系 %设计图象f6(x,y) 为3*30*30/256*256 f=zeros(256,256); f([30:60],[113:143])=1; f([90:120],[113:143])=1; f([150:180],[113:143])=1; subplot(221);imshow(f); % 设计图象f2(x,y)为120*30/256*256,并作fft变换 f2 = zeros(256,256); f2(114:143,69:188) = ones(30,120); subplot(223);imshow(f2); %二维傅里叶变换 F=fft2(f); F2 = fft2(f2); %绘制fft图 subplot(222);imshow(fftshift(log(abs(F)))); %title('频谱图') subplot(224);imshow(fftshift(log(abs(F2)))); %title('频谱图(量化)') figure subplot(121);mesh(fftshift(abs(F))); subplot(122);mesh(fftshift(abs(F2))); 3.结果分析 (1)空域图象和频域频谱对比 (2)频谱图(量化)对比 二计算显示图象的频谱函数 要求(2-6):对f6(x,y)的离散余弦变换,显示其频谱函数 补充完成:实现离散傅立叶变换、离散余弦变换、Walsh变换和Hadamard变换,比较四种变换所得到的频谱。 1.程序代码 clc; clear; f=zeros(256,256); f([30:60],[113:143])=1;

空域和频域图像处理增强

空域和频域图像处理增强 实验目的: 1.熟悉Matlab处理图像的基本原理,并熟练地运用进行一些基本的图像操作; 2.能够用Matlab来进行亮度变换,直方图处理以及一些简单的空间滤波; 实验内容: 去噪,灰度变换,直方图处理,空域和频域平滑锐化,同态滤波;结果分析: 1.直方图处理: ⑴显示原图直方图以及原图: 代码: >> imread('hui.jpg'); >> imshow(f); >> imhist(f); 原图以及原图直方图为:

⑵直方图均衡化: 代码: >> f=imread('test2.jpg'); >> n=imnoise(f); >> imwrite(n,'n.tif'); >> [thr,sorh,keepapp] = ddencmp('den','wv',im2double(n)); >> r=wdencmp('gbl',im2double(Noise),'sym2',2,thr,sorh,keepapp); >> r=wdencmp('gbl',im2double(n),'sym2',2,thr,sorh,keepapp); >> imwrite(r,'r.tif'); >> imshow(f); 现在的图片以及直方图为: 结论: 直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效

地扩展常用的亮度来实现这种功能。 2.灰度变换: 代码: >> f=imread('test2.jpg'); >> n=imnoise(f); >> imwrite(n,'n.tif'); >> [thr,sorh,keepapp] = ddencmp('den','wv',im2double(n)); >> r=wdencmp('gbl',im2double(Noise),'sym2',2,thr,sorh,keepapp); >> r=wdencmp('gbl',im2double(n),'sym2',2,thr,sorh,keepapp); >> imwrite(r,'r.tif'); >> imshow(f); 变换的图像(f为图a,a1为图b,a2为图c,a3为图d): (图a)(图b)

数字图像处理课设图像频域增强正文

第1章绪论 MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连matlab开发工作界面接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB 成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JA V A 的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

第2章数字图像处理的相关知识 2.1图像频域增强原理 图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。 图像增强的方法分为空域法和频域法两类,空域法主要是对图像中的各个像素点进行操作;而频域法是在图像的某个变换域内,对图像进行操作,修改变换后的系数,例如傅立叶变换、DCT变换等的系数,然后再进行反变换得到处理后的图像。 卷积理论是频域技术的基础。设函数f(x,y)与线性位不变算子h(x,y)的卷积结果是g(x,y),即g(x,y)=h(x,y)*f(x,y),那么根据卷积定理在频域有: G(u,v)=H(u,v)F(u,v) (2.1)其中G(u,v),H(u,v),F(u,v)分别是g(x,y),h(x,y),f(x,y)的傅立叶变换。用线性系统理论的话来说,H(u,v)是转移函数。 在具体的增强应用中,f(x,y)是给定的(所以F(u,v)可利用变换得到),需要确定的是H(u,v),这样具有所需特性的g(x,y)就可由式(1)算出G(u,v)而得到:g(x,y)=F-1[H(u,v)F(u,v)] (2.2) 2.2实现步骤 根据以上讨论,在频率域中进行增强是相当直观的,其主要步骤有: (1)计算需增强图的傅立叶变换; (2)将其与1个(根据需要设计的)转移函数相乘; (3)再将结果傅立叶反变换以得到增强的图。 频域增强的两个关键步骤: (1)将图像从空域转换到频域所需的变换及将图像从频域空间转换回空域所需的变换. (2)在频域空间对图像进行增强加工操作

实验三 图像空域平滑和频域平滑

实验三图像空域平滑和频域平滑 一、实验目的 1)掌握图像典型噪声的基本特点; 2)掌握图像空域高斯平滑的基本方法; 3)掌握图像空域中值滤波的基本方法; 4)掌握图像频域高斯平滑的基本方法; 5)掌握根据图像特点进行平滑滤波的基本原理和方法。 6)通过编程,上机调试程序,进一步提高编程能力及使用计算机解决问题 的能力。 二、实验原理 1. 图像的典型噪声 噪声可理解为影响传感器对所接收图像源信息进行理解或分析的各种因素。噪声一般是不可预测的随机信号,只能用概率统计的方法去认识。噪声对图像的输入、采集和处理的各种环节,以及输出结果的全过程均有影响。因此,去噪己经成为图像处理中极其重要的手段,也是图像处理领域研究的一个重点。本节对典型噪声的来源和性质进行简要介绍。 对图像信号而言,灰度图像可视为二维亮度分布,噪声可看作是对亮 度的干扰,用表示。噪声具有随机性,因而需要用随机过程来描述,即要 求知道其分布函数和密度函数。在许多情况下,这些函数很难测定和描述,甚至无法得到,所以常用均值、方差、相关函数等统计特征来描述噪声,如噪声的总功率描述为;噪声的交流功率可由方差描 述;噪声的直流功率可用均值的平方表示。 图像噪声的描述与建模方式主要有以下几种: (1)白噪声(White Noise):它具有常量的功率谱。白噪声的一个特例是高斯噪声(Gaussian Noise),其直方图曲线服从一维高斯型分布: (1) 其中为均值与标准差。MATLAB产生函数为J = IMNOISE(I,'gaussian',M,V), M,V为均值与方差,高斯噪声示例如图1所示。

图1 高斯噪声示例 (2)椒盐噪声(Pepper & Salt Noise):一种在图像中产生黑色、白色点的脉冲噪声。该噪声在图像中显现较为明显,对图像分割、边缘检测、特征提取等后续处理具有严重破坏作用。MATLAB产生函数为J = IMNOISE(I, ‘salt & pepper’, D),D为噪声密度。椒盐噪声示例如图2所示。 图2 椒盐噪声示例 (3)乘性噪声(Multiplicative Noise):乘性噪声与加性噪声对应,加性噪声一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在。而乘性噪声一般由信道不理想引起,它们与信号的关系是相乘,依附于信号而存在。一般图像处理中把加性随机性噪声看成是系统的背景噪声;而乘性随机性噪声看成系统的时变性(如衰落或多普勒)或非线性所造成的。具体而言乘性噪声是指一幅图像被斑点噪声像素破坏,而且这些像素的亮度与其邻域的亮度显著不同,公式可表达为。MATLAB产生函数为J = IMNOISE(I,'speckle',V),其中V为噪声方差。乘性噪声示例如图3所示。

数字图像处理图像变换与频域处理

南京信息工程大学 计算机图像处理 实验(实习)报告 实验(实习)名称 图像变换与频域处理 实验(实习)日期 得分 指导老师 系 专业 班级 姓名 学号 一、 实验目的 1.了解离散傅里叶变换的基本性质; 2.熟练掌握图像傅里叶变换的方法及应用; 3.通过实验了解二维频谱的分布特点; 4.熟悉图像频域处理的意义和手段; 5.通过本实验掌握利用MATLAB 的工具箱实现数字图像的频域处理。 二、 实验原理 (一)傅立叶变换 傅立叶变换是数字图像处理中应用最广的一种变换,其中图像增强、图像复原 和图像分析与描述等,每一类处理方法都要用到图像变换,尤其是图像的傅立 叶变换。 离散傅立叶(Fourier )变换的定义: 二维离散傅立叶变换(DFT )为: 逆变换为: 式中, 在DFT 变换对中, 称为离散信号 的频谱,而 称为幅度谱, 为相位角,功率谱为频谱的平方,它们之间的关系为: 图像的傅立叶变换有快速算法。 (二)图像的频域增强 常用的图像增强技术可分为基于空域和基于变换域的两类方法。最常用的变换域是频域空间。在频域空间,图像的信息表现为不同频率分量的组合。如果能让某个范围内的分量或某些频率的分量受到抑制而让其他分量不受影响,就可以改变输出图像的频率分布,达到不同的增强目的。 频域增强的工作流程: 频域空间的增强方法对应的三个步骤: (1) 将图像f(x,y)从图像空间转换到频域空间,得到F(u,v); (2) 在频域空间中通过不同的滤波函数H(u,v)对图像进行不同的增强,得到G(u,v)(注:傅立叶变换 滤波器 傅立叶反变换 ),(v u H ),(v u F ),(v u G ) ,(y x g ),(y x f ∑∑-=-=-=101 0)(2exp ),(1),(M x N y N vy M ux j y x f MN v u F π∑∑ -=-=+=101 0)(2ex p ),(1),(M u N v N vy M ux j v u F MN y x f π}1,,1,0{,-∈M x u }1,,1,0{,-∈N y v ),(v u F ),(y x f ),(v u F ) ,(v u ?),(),()],(exp[),(),(v u jI v u R v u j v u F v u F +==?

A空域和频域处理方法分析

空域处理 1、灰度变换 RGB=imread('img.bmp','bmp'); %读入彩色图片 figure(1),imshow(RGB),title('彩色图'); %显示彩色图片 I=rgb2gray(RGB); %彩色转化成灰度图figure(2),imshow(I),title('灰度图'); %显示灰度图 2、直方图修正 1.1直方图均衡化 I=imread(‘tire.tif’); J=histep(I); /直方图均衡化 imshow(J) title(“直方图均衡化”) imhist(J,64) /均衡变化后的直方图 1.2 直方图规定化 I=imread(‘tire.tif’); Hgram=50:2:250; /规定化函数 J=histep(I,hgram); Imshow(J) Imhist(J,64) /规定化后的直方图 3、空域平滑 3.1 平滑滤波 %线性平滑滤波 I=imread('beauty.tif'); J=imnoise(I,'salt & pepper',0.02); subplot(221),imshow(I) title('原图像') subplot(222),imshow(J) title('添加椒盐噪声图像') K1=filter2(fspecial('average',3),J)/255;%应用3*3邻域窗口法 subplot(223),imshow(K1) title('3x3窗的邻域平均滤波图像') K2=filter2(fspecial('average',7),J)/255;%应用7*7邻域窗口法 subplot(224),imshow(K2) title('7x7窗的邻域平均滤波图像')

数字图像的频域增强论文

数字图像处理结课作业 --数字图像频域增强方法 及在matlab中的实现数字图像的频域增强

摘要:图像增强处理技术是图像处理领域中一项基本的,也是很重要的技术,一直是图像处理领域中不可回避的研究课题。因为一幅图像总是可能受到各种因素的干扰影响,造成图像质量的下降。图像增强包含两个方面内容:一是消除噪声,二是增强(或保护)图像特征。对图像恰当增强,能使图像去噪的同时特征得到较好保护,使图像更加清晰明显,从而提供给我们准确的信息。常用的图像增强技术各有其特点和效果。 论文在介绍图像频域增强原理的基础上,在频域内通过对Butterworth低通滤波器增强方法进了研究,介绍了相关的理论和数学模型,并给利用MATLAB工具进行实现。通过各种滤波后图像比较,实验证明在质量较差的图像中,选择不同的滤波算法对图像的增强在准确性上均有不同。 关键词:图像增强;Butterworth低通滤波器;MATLAB

1.频域图像增强的目的、意义及主要内容 1.1频域图像增强技术的目的: 分析几种频域图像增强方法,并能够用频域法进行图像增强,通过形态学方法进行图像特征抽取和分析。熟练的运用MATLAB,掌握修改图像的傅里叶变换来实现图像的增强技术。 1.2频域图形增强技术的意义: 图像增强是图像处理中用来消除原始图像边缘模糊、对比度差等缺点的常用技术,它需要解决的问题包括边缘增强、噪声的滤除、高斯噪声的平滑和细节的保护等等。本论文主要是针对整体偏暗图像而提出的图像增强的方法。对于整体偏暗的图像,我们可以用直方图均衡化来调节图像的灰度分布,使图像变亮。此外,为了进一步提高图像的视觉效果,即解决包括边缘增强、噪声滤除等问题,我们还可以用频域图像增强方法(高通滤波器和低通滤波器)来处理,因为高通滤波器可以突出图像边缘,增强有用信息,使图像更加清晰,而低通滤波器可以平滑去噪,抑制无用信息,从而提高图像成分的可分辨性。 1.3主要内容

图像平滑处理的空域算法和频域分析

图像平滑处理的空域算法和 频域分析 1 技术要求 对已知图像添加高斯白噪声,并分别用低通滤波器(频域法)和邻域平均法(空域法)对图像进行平滑处理(去噪处理),并分析比较两种方法处理的效果。 2 基本原理 2.1 图像噪声 噪声在理论上可以定义为“不可预测,只能用概率统计方法来认识的随机误差”。实际获得的图像一般都因受到某种干扰而含有噪声。引起噪声的原因有敏感元器件的内部噪声、相片底片上感光材料的颗粒、传输通道的干扰及量化噪声等。噪声产生的原因决定了噪声的分布特性及它和图像信号的关系。 根据噪声和信号的关系可以将其分为两种形式: (1)加性噪声。有的噪声与图像信号g(x,y)无关,在这种情况下,含噪图像f(x,y)可表示为 f(x,y)=g(x,y)+n(x,y) (2)乘性噪声。有的噪声与图像信号有关。这又可以分为两种情况:一种是某像素处的噪声只与该像素的图像信号有关,另一种是某像点处的噪声与该像点及其邻域的图像信号有关,如果噪声与信号成正比,则含噪图像f(x,y)可表示为 f(x,y)=g(x,y)+n(x,y)g(x,y) 另外,还可以根据噪声服从的分布对其进行分类,这时可以分为高斯噪声、泊松噪声和颗粒噪声等。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声,一般为加性噪声。

2.2 图像平滑处理技术 平滑技术主要用于平滑图像中的噪声。平滑噪声在空间域中进行,其基本方法是求像素灰度的平均值或中值。为了既平滑噪声又保护图像信号,也有一些改进的技术,比如在频域中运用低通滤波技术。 (1)空域法 在空域中对图像进行平滑处理主要是邻域平均法。这种方法的基本思想是用几个像素灰度的平均值来代替每个像素的灰度。假定有一幅N*N 个像素的图像f(x,y),平滑处理后得到一幅图像g(x,y)。g(x,y)由下式决定 式中,x,y=0,1,2,…,N-1;S 是(x,y)点邻域中点的坐标的集合,但其中不包括(x,y)点;M 是集合内坐标点的总数。上式说明,平滑化的图像g(x,y)中每个像素的灰度值均由包含在(x,y)的预定邻域中的f(x,y)的几个像素的灰度值的平均值来决定。 (2)频域法 低通滤波法是一种频域处理方法。在分析图像信号的频率特性时,一幅图像的边缘、跳跃部分以及颗粒噪声代表图像信号的高频分量,而大面积的背景区则代表图像信号的低频分量。用滤波的方法滤除其高频部分就能去掉噪声,使图像得到平滑。 由卷积定理可知 其中F(u,v)是含有噪声的图像的傅立叶变换,G(u,v)是平滑处理后的图像的傅立叶变换,H(u,v)是传递函数。选择传递函数H(u,v),利用H(u,v)使F(u,v)的高频分量得到衰减,得到G(u,v)后再经傅立叶反变换后就可以得到所希望的平滑图像g(x,y)了。根据前面的分析,显然H(u,v)应该具有低通滤波特性,所以这种方法叫低通滤波法平滑化处理。 常用的低通滤波器有如下几种: a.理想低通滤波器 一个理想的二维低通滤波器有一个参数 。它是一个规定的非负的量,叫做理想低通滤波器的截止频率。所谓理想低通滤波器是指以截频 为半径的圆内的所有频率都能无损地通过,而在截频之外的频率分量完全被衰减。理想低通滤波器可以用计算机模拟实 M n m f y x g S n m ∑∈=),(),(),() ,(),(),(G v u F v u H v u ?=0D 0

中南大学数字图像处理实验报告

实验报告 实验名称图像变换及频域滤波课程名称数字图像处理 姓名成绩 班级学号 日期地点

实验一 图像变换及频域滤波 一.实验目的 (1)编写快速傅里叶变换算法程序,验证二维傅里叶变换的平移性和旋转不变。; (2)实现图像频域滤波,加深对频域图像增强的理解。 二.实验环境及开发工具 Windws XP 、MATALAB7.0、Visual C++、Visual Basic 三.实验方法 1.验证二维傅里叶变换的平移性和旋转不变性; a .要验证证其平移特性,就先建立一个二维图象,然后再对其平移,通过观察两者的频谱图来观察平移特性,为了方便起见,我们选择特殊情况来分析,令u0=v0=N/2,使),()1(),(12y x f y x f y x +-= F(u-N/2,v-N/2),达到将原始F(U,V)四周频谱移到中心的效果,及达到频谱中心化。 b .验证旋转不变性可以通过将原始数组的通过移动45度,然后再比较旋转后与旋转前的频谱,得出频谱旋转不变性的结论。 具体步骤: 1)产生如图1所示图像),(1y x f (128×128大小,暗处=0,亮处=255) 2)同屏显示原图1f 和)(FFT 1f 的幅度谱图。 3)若令),()1(),(12y x f y x f y x +-=,重复以上过程,比较二者幅度谱的异同。 4)将),(2y x f 顺时针旋转45度得到),(3y x f ,显示)(FFT 3f 的幅度谱,并与 )(FFT 2f 的幅度谱进行比较。 图1实验图象f 1(x , y )

2.实现图像频域滤波,加深对频域图像增强的理解。频率域中进行增强是相当直观的,主要步骤有: 1)计算需要增强的图象的傅立叶变换; 2)将其与一个(根据需要设计的)转移的函数相乘; 3)再将结果反傅立叶变换以得到增强的图象. 为了直观的展示频域增强,可以通过下面任务来展现: 对如图2所示的数字图像lena.img (256×256大小、256级灰度)进行频域的理想低通、高通滤波,同屏显示原图、幅度谱图和低通、高通滤波的结果图。 四.实验分析 1.验证二维傅里叶变换的平移性和旋转不变性 1)建立一个二维数组并要求该数组能够显示成图1. a=zeros(128,128) for y=54:74 for x=34:94 a(x,y)=1; end end 然后再用显示图象的函数显示即可, 在此我们用imshow(a)语句。 为了得到幅度谱图,可以地数组a 进行快速傅立叶变换,然后再用 图2 实验图象 lena.img

频域空域

频域空域

频域 一 实验目的 1了解图像变换的意义和手段; 2熟悉傅里叶变换的基本性质; 3热练掌握FFT 方法及应用; 4通过实验了解二维频谱的分布特点; 5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换及滤波锐化和复原处理; 二 实验原理 1应用傅立叶变换进行图像处理 傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。 2傅立叶(Fourier )变换的定义 对于二维信号,二维Fourier 变换定义为: ? ?∞∞-∞∞-+-=dy dx e y x f v u F vy ux j )(2),(),(π ??∞ ∞-∞∞-+=dv du e v u F y x f vy ux j )(2),(),(π θθθsin cos j e j += 二维离散傅立叶变换为: 1,...,2,1,0,1,...,2,1,0for ),(1),(1010)//(2 N v M u e y x f MN v u F M x N y N vy M ux j 1,...,2,1,0,1,...,2,1,0for ),(),(101 0)//(2 N y M x e v u F y x f M u N v N vy M ux j 图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。 3利用MATLAB 软件实现数字图像傅立叶变换的程序: I=imread('f:\11.jpg');; %读入原图像文件

图像增强技术

数字图像处理期中论文 图像增强技术综述 学院信息工程学院 专业电子信息工程 方向信息处理方向 姓名何娜娜 学号200710113081 中国传媒大学 2010 年11 月27 日

图像增强技术综述 内容摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。 关键词:图像增强直方图增强对比度增强平滑锐化彩色图像增强 Abstract Digital image processing is the procedures of converting image signal into digital format, then using the computer to process it. Image enhancement is digital image processing process often use a method to improve image quality, it plays an important role. This article first introduces the principle of image enhancement and classification,and then focus on several methods to study such as and histogram enhancement, contrast enhancement, smoothing and sharpening, and other commonly used in learning the basic digital image With the approach, through Matlab experiment that the actual effect of various algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm. The application of occasions, and its image enhancement method of performance evaluation. Keywords:Image Enhancement histogram enhancement contrast enhancement smoothing sharpening 1 图像增强概述 1.1 图像增强背景及意义 在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚

数字图像处理_图像的频域变换处理

图像的频域变换处理 1 实验目的 1. 掌握Fourier ,DCT 和Radon 变换与反变换的原理及算法实现,并初步理解Fourier 、Radon 和DCT 变换的物理意义。 2、 利用傅里叶变换、离散余弦变换等处理图像,理解图像变换系数的特点。 3、 掌握图像的频谱分析方法。 4、 掌握图像频域压缩的方法。 5、 掌握二维数字滤波器处理图像的方法。 2 实验原理 1、傅里叶变换 fft2函数:F=fft2(A); fftshift 函数:F1=fftshift(F); ifft2函数:M=ifft2(F); 2、离散余弦变换: dct2函数 :F=dct2(f2); idct2函数:M=idct2(F); 3、 小波变换 对静态二维数字图像,可先对其进行若干次二维DWT 变换, 将图像信息分解为高频成分H 、V 和D 和低频成分A 。对低频部分A ,由于它对压缩的结果影响很大,因此可采用无损编码方法, 如Huffman 、 DPCM 等;对H 、V 和D 部分,可对不同的层次采用不同策略的向量量化编码方法,这样便可大大减少数据量,而图像的解码过程刚好相反。 (1)dwt2 [CA,CH,CV,CD]=dwt2(X,’wname’) [CA,CH,CV,CD]=dwt2(X,LO_D,HI_D’) ()()???????-ψ=dt a b t t Rf a 1 b ,a W *()??? ??-ψ=ψa b t a 1t b ,a 112()00(,)[(,)](,)ux vy M N j M N x y f x y e F f x y F u v π---+==== ∑∑1100(21)(21)(,)(,)()()cos cos 22M N x y x u y v F u v f x y C u C v M N ππ--==++=∑∑

相关主题
文本预览
相关文档 最新文档