当前位置:文档之家› 异烟酸-吡唑啉酮光度法测定水中

异烟酸-吡唑啉酮光度法测定水中

异烟酸-吡唑啉酮光度法测定水中
异烟酸-吡唑啉酮光度法测定水中

异烟酸-吡唑啉酮光度法测定水中

总氰化物的测量不确定度评定

1 检测方法

1.1 方法依据

依据异烟酸-吡唑啉酮光度法,对水中总氰化物的测量不确定度进行评定。

1.2 方法原理

向水样中加入磷酸和Na2-EDTA,在pH<2条件下,加热蒸馏,利用金属与EDTA络合能力比氰离子络合能力强的特点,使络合氰化物离解处氰离子,并以氰化氢形式被蒸馏出来,并用氢氧化钠吸收。

在中性条件下,样品中的氰化物与氯胺T反应生成氯化氢,再与异烟酸作用,经水解后生成戊烯二醛,最后于吡唑啉酮缩合生成蓝色染料。其色度与氰化物的含量成正比,在638nm波长进行光度测定。

1.3 主要仪器

25ml比色管分光光度计

1.4 操作步骤

1.4.1 标准曲线绘制

1.4.1.1 标准使用液配制

标准溶液从中国计量科学研究院够买,编号为8052,质量浓度为70mg/L,相对扩展不确定为1%。用15.00mL无刻度吸管(A级)准确吸取标准溶液15.00mL至1000mL容量瓶中,用0.1%氢氧化钠溶液稀释至标线,得到质量浓度为1.05mg/L的总氰化物标准使用液。共稀释66.7倍。

1.4.1.2 标准曲线绘制

吸取氰化物标准使用溶液0,0.10,0.20,0.40,0.60,0.80,1.00,1.50,2.00mL 于25mL比色管,各加0.1%氢氧化钠溶液至10mL,加入5mL磷酸盐缓冲溶液,混匀,加入0.25mL氯胺T溶液,立即盖塞,混匀,放置3~5min,加入5mL异烟酸-吡唑啉酮溶液,混匀,加水稀释至标线,摇匀,在25~35℃水浴中放置40min。在638nm波长下,用10mm比色皿,零浓度空白液管作参比,测定吸光度。

由测得的吸光度,减去零浓度空白的吸光度后,得到校正吸光度,绘制以氰化物质量(μg)对校正吸光度的校准曲线。

1.4.2 样品测定

(1)量取200mL样品移入500mL蒸馏瓶中,加数粒玻璃珠;

(2)往接收容器内加入10mL1%氢氧化钠溶液作为吸收液;

(3)馏出液导管上端接冷凝管出口,下端插入接收容器的吸收液中,检查连接部位,使其严密;

(4)将10mL Na2-EDTA溶液加入蒸馏瓶内;

(5)迅速加入10mL磷酸,使PH<2,立即塞号瓶塞。打开冷凝水,调节可调电炉,由抵挡逐渐升高,以2~4mL/min馏出液速度进行加热蒸馏;

(6)接受瓶内溶液近100mL时,停止蒸馏,用少量水洗馏出液导管,用水稀释至标线。此碱性馏出液供测定总氰化物用。

吸取10.00mL样品馏出液与25mL比色管中,加入5mL磷酸盐缓冲溶液,混匀,以下操作同标准曲线步骤,测量吸光度。

2 数学模型

由标准曲线计算总氰化物的质量数计算公式为:

y=a+bx (A18.1)

式中:y——测量吸光度;

x——总氰化物的质量,μg;

a——标准曲线的截距;

b——标准曲线的斜率。

水中总氰化物质量浓度的计算公式为:

c(CN,mg/L)=m/V×V1/V2 (A18.2)

式中:m——从校准曲线上查出的样品的氰化物含量(μg),同上式中x;

V——预蒸馏所取水样的体积,mL;

V1——水样预蒸馏馏出液的体积,mL;

V2——显色测定所取馏出液的体积,mL。

3 不确定度分量的来源分析

由检测方法和数学模型分析,其不确定度来源有以下几个方面:

(1)样品测量重复性引入的不确定度;

(2)配置氰化物标准使用液引入的不确定度; (3)取样过程引入的不确定度; (4)工作曲线拟合引入的不确定度; (5)方法回收率引入的不确定度。

有检测方法和不确定度分量的来源分析可知,测定水中总氰化物引入的各不确定度分量,按不确定度传播率,相对合成不确定度为:

)R (u )m (u )V (u )c (u )A (u c rel rel rel rel rel rel

u

2

22122++++=

式中: u

rel

C-合成相对不确定度;

u rel

(A )-样品重复性测量的相对不确定度;

u rel

(C 1)-配制总氰化物标准使用液引入的相对不确定度; u rel

(V )-取样过程引入的相对不确定度; u rel

(m )-工作曲线拟合引入的相对不确定度; u

rel

(R )-分析方法回收率的相对不确定度。

4 不确定度分量评定

4.1 样品重复性测量引入的相对标准不确定度urel (A )

对某电镀厂排放废水中总氰化物的含量进行10次预蒸馏重复测定,数据见表A18.1。

表A18.1 水样中氧化物含量测定结果

由表A18.1数据,利用贝塞尔公示计算单次测量的标准差:

l /mg *.n x xi i s n

42103261

1-=--==

由于实际监测时,对该厂污水样测两次报出平均值。表A18.1中序号1、2的数据位该样品测量结果,样品质量浓度平均值为0.0364mg/L 。平均值的标准差:

L

/mg *.l

/mh .n

s ux 4104742

0006320--

-

==

=

样品平均值的相对标准不确定度:

0123

036400004470.l

/mg .l /mg .x )x (u A u

rel === 4.2 配置氰化物标准使用液引入的相对不确定度urel (c1)

使用由中国计量科学研究院提供的总氰化物标准溶液,由证书查得其相对扩展不确定度 为1%,按正态分布,k=2

,计算标准溶液的相对不确定度:

urel(cs)=U/k=1%/2=5.00×10-3

配置氰化物标准使用液,稀释使用的玻璃量器量取溶液体积引入的不确定度,采用B 类评定方法评定。容量瓶、移液管的刻度估读引入的不确定度,查阅文献知,1000mL 容量瓶(A 级)10次重复测量的标准差为0.20mL ;15.00mL 单标线移液管(A 级)重复测量的标准差为0.005mL 。计算温差影响的不确定度时,水的膨胀系数为2.1×10-4℃-1。容量瓶、移液管的容量允差由国家计量检定规程JJG196-2006《常用玻璃量器检定规程》中查得,计算工程与结果见表A18.2。

表A18.2 容量瓶和移液管的容量允差与标准不确定度

由表A18.2知15.00mL 单标线移液管引入的相对不确定度urel(V15)=1.04×10-3,1000mL 容量瓶引入的相对不确定度urel(V1000)=3.35×10-4。 配置氰化物标准使用液的相对不确定度为:

3

22210002

152211012500033500010400050-=++=++=*....V u V u c u c u rel rel s rel rel

4.3 取样引入的相对不确定度urel (V )

取样包括三个环节:首先用250mL 量筒量取200mL 样品,其次用100mL 容量瓶接收 馏出液,最后用10.00mL 单标线移液管吸取10.00mL 样品馏出液测量。该过程使用这三种玻璃量器量取溶液体积引入的不确定度的评定方法同4.2。因量器体积刻度读数的不确定度被包含在本实验的重复性测量中,这里不予考虑。计算工程与结果见表A18.3。

表A18.3 量筒、容量瓶和移液管引入的相对不确定度

取样过程引入的相对不确定度为:

3

222102

10022002101930011800006260002900-=++=++=*....V u V u V u V u rel rel rel rel

4.4 工作曲线拟合引入的相对不确定度urel (m )

采用722光栅分光光度计测定氰化物,绘制工作曲线,数据见表A18.4。

表A18.4 氰化物校准曲线测定结果

根据表A18.4数据计算得拟合曲线:截距a=-0.001,斜率b=0.154,相关系数r=0.9996,拟合曲线一元线性回归方程为:y=0.154x-0.001。本次试验测量样品2次,平均吸光度0.110,由式(A18.1)计算样品平均质量m=0.722μg ,由式(A18.2)计算样品平均质量浓度:

L /mg .ml

ml

*ml ug .c 03610101002007220==

利用表A18.4的相关数据计算拟合曲线的剩余标准差:

[]32103672

1-=-+-==*.n bx a y i s n

i i R

绘制工作曲线时,每个点重复测三次吸光度,曲线拟合的不确定度u(m):

ug

*.)

x x (i )x m (n

p b s um i R 22

210583111-=-=-+

++=

式中:p ——实际样品进行重复测定次数,p=2; n ——测量标准溶液的总次数,n=7。

其相对不确定度为:

210964722003580-===

*.ug

.ug

.m )m (u m u rel 4.5 方法回收率的不确定度urel (R )

在《水和废水监测分析方法》第四版实验室质控指标体系一节中,给出总氰化物质量浓 度≤0.05mg/L,加标回收率允许范围为85%~115%。以上信息表明,回收率范围上、下界相对于平均值呈对称分布。即回收率为(100±15)%,回收率最佳估计值Ri 分散区间的半宽为a ,且Ri 落于(Ri-a )~(Ri+a )区间的概率p 为100%,即全部落在此范围中。因此可采用B 类评定方法评定方法回收率的不确定度。按均匀分布考虑,取包含因子k= ,分散区间半宽a=±15%,则回收率标准不确定度:

6683

150..k a uR === 其相对标准不确定度为:

210668100668-===*..R )R (u R u rel %

5 合成不确定度

表A18.5 量筒、容量瓶和移液管引入的相对不确定度

上述不确定度各分量互不相关,按测量不确定度传播率,氰化物测量的合成相对标准不确定度为:

)R (u )m (u )V (u )c (u )A (u c rel rel rel rel rel rel

u

222122++++==0.101

6 扩展不确定度

取包含因子k=2,则扩展不确定度为:

L /mg .L /mg .*)c (ku U c 00740003702===

7 结论

(1)异烟酸-吡唑啉酮光度法测定水中总氰化物,测量结果表示为:(0.0364±0.0074)mg/L (k=2)。或报出测量结果:(0.036±0.007)mg/L (k=2)。

(2)分析得出对不确定度贡献较大的分量,是方法回收率和工作曲线拟合引入的不确定度,所以注意控制和掌握好这两个实验过程中的条件和操作细节是非常必要的。

实验四邻菲罗啉分光光度法测定铁的含量(精)

实验四邻菲罗啉分光光度法测定水样中的铁 一、实验目的: 1、掌握邻菲罗啉分光光度法测定微量铁的原理和方法; 2、学会标准曲线的绘制方法及其使用。 二、原理: 亚铁离子(Fe2+)在pH=3~9时与邻菲罗啉生成稳定的橙红色络合物,应用此反应可用比色法测定铁。橙红色络合物的吸光度与浓度的关系符合朗伯-比耳定律。若用还原剂(如盐酸羟胺)把高铁离子还原为亚铁离子,则此法还可测定水中的高价铁和总铁的含量。 三、仪器: 721型分光光度计、1cm比色皿、具赛比色管(50ml)、移液管、吸量管、容量瓶等。 四、试剂: 1、铁贮备液(100μg/mL):准确称取0.7020克分析纯硫酸亚铁铵 [(NH4)2Fe(SO4)2·6H2O]于100毫升烧怀中(或0.8640g分析纯的 NH4Fe(SO42·12H2O,其摩尔质量为482.18g/mol),加50毫升1+1 H2SO4,完全溶解后,移入1000ml的容量瓶中,并用水稀释到刻度,摇匀,此溶液中Fe的质量浓度为 100.0μg/mL。(实验室准备好) 2、铁标准使用液(20μg/mL):准确移取铁贮备液20.00ml于100ml 容量瓶中,用水稀释至刻度,摇匀。此溶液中Fe2+的质量浓度为20.0μg/mL。(学生配制)

3、0.5%邻菲罗啉水溶液:配制时加数滴盐酸能助溶液或先用少许酒精溶解,再用水稀释至所需体积。(临用时配制) 4、10%盐酸羟胺水溶液: 5、醋酸-醋酸钠缓冲溶液(pH=4.6):称取40克纯醋酸铵加到50毫升冰醋酸中,加水溶解后稀释至100毫升。 五、测定步骤: 1、标准曲线的绘制: (1)分别吸取铁的标准溶液0.00、1.00、2.00、4.00、6.00、8.00、10.00ml于7支50ml比色管中,加水至刻度; (2)依次分别加入10%盐酸羟胺溶液1ml,混匀,加入5ml醋酸-醋酸铵缓冲溶液,摇匀,加入0.5%邻菲罗啉溶液2ml,摇匀,(3)放置15分钟后,在510nm波长处,用1cm比色皿,以空白作为参比,测定各溶液的吸光度。 (4)以吸光度为纵坐标,铁含量(μg,50ml)为横坐标,绘制出标准曲线。 2、试样中铁含量的测定 吸取待测水样溶液10.00ml于50ml比色管中,按绘制标准曲线的操作,测得水样的吸光度A,由标准曲线查得相应的铁含量,计算出试样的铁的质量浓度。做平行样。 实验四邻菲罗啉分光光度法测定水样中的铁原始记录表

异噻唑啉酮

异噻唑啉酮 Isothiazolinones CAS No.:26172-55-4,2682-20-4 相对分子质量:115.16 结构式 2-甲基-4-异噻唑啉-3-酮(MI) 5-氯-2-甲基-4-异噻唑啉-3-酮(CMI)一、性能与用途 异噻唑啉酮主要由5-氯-2-甲基-4-异噻唑啉-3-酮(CMI)和2-甲基-4-异噻唑啉-3-酮(MI)组成。异噻唑啉酮是通过断开细菌和藻类蛋白质的键而起杀生作用的。异噻唑啉酮与微生物接触后,能迅速地不可逆地抑制其生长,从而导致微生物细胞的死亡,故对常见细菌、真菌、藻类等具有很强的抑制和杀灭作用。杀生效率高,降解性好,具有不产生残留、操作安全、配伍性好、稳定性强、使用成本低等特点。能与氯及大多数阴、阳离子及非离子表面活性剂相混溶。高剂量时,异噻唑啉酮对生物粘泥剥离有显著效果。 异噻唑啉酮是一种广谱、高效、低毒、非氧化性杀生剂。广泛运用于油田、造纸、农药、切削油、皮革、油墨、染料、制革等行业。 二、技术指标符合HG/T3657-2008 指标 项目 1类2类 外观琥珀色透明液体淡黄或淡绿色透明液体 活性物含量 % 14.0-15.0 1.50-1.80

PH(原液) 2.0-4.0 2.0-5.0 密度(20℃)g/cm3 1.26-1.32 1.02-1.05 CMI/MI(质量百分比) 2.5-3.4 2.5-3.4 注:本厂可根据用户要求生产2%、6%、8%等不同浓度产品。 三、使用方法 异噻唑啉酮2类产品作粘泥剥离剂时,投加浓度150-300mg/l;作杀菌剂时,每隔3-7天投加一次,投加剂量80~100mg/L。能与氯气等氧化型杀菌剂同时使用,不能用于含硫化物的冷却水系统。异噻唑啉酮与季铵盐复合使用效果较佳。 异噻唑啉酮做工业杀菌防霉剂使用时,一般浓度为0.05-0.4%。 四、包装与储存 异噻唑啉酮用塑料桶包装,每桶25kg或根据用户要求确定;贮于室内阴凉处,贮存期十个月。 五、安全防护 异噻唑啉酮对皮肤有腐蚀性,会造成皮肤灼伤,引起过敏性皮炎,影响会持续数小时。严禁接触皮肤和眼睛,操作时应配备防护眼镜和胶手套等劳保用品,如接触皮肤,立即脱去被污染的衣服和鞋子,用大量清水冲洗至少15分钟,患处涂抹醋酸尿素软膏或烫伤膏,并立即就医。

邻二氮菲分光光度法测定微量铁实验报告

实验一邻二氮菲分光光度法测定微量铁 实验目的和要求 1.掌握紫外可见分光光度计的基本操作; 2.掌握邻二氮菲分光光度法测定微量铁的原理和方法; 3.掌握吸收曲线绘制及最大吸收波长选择; 4.掌握标准曲线绘制及应用。 实验原理 邻二氮菲(1,10—邻二氮杂菲)是一种有机配位剂,可与Fe2+形成红色配位离子: Fe2++3 N N N N 3 Fe 2+ 在pH=3~9范围内,该反应能够迅速完成,生成的红色配位离子在510nm波长附近有一吸收峰,摩尔吸收系数为1.1×10-4,反应十分灵敏,Fe2+ 浓度与吸光度符合光吸收定律,适合于微量铁的测定。 实验中,老师我们又见面了采用pH=4.5~5的缓冲溶液保持标准系列溶液及样品溶液的酸度;采用盐酸羟胺还原标准储备液及样品溶液中的Fe3+并防止测定过程中Fe2+被空气氧化。 实验仪器与试剂 1.752S型分光光度计 2.标准铁储备溶液(1.00×10-3mol/L) 3.邻二氮菲溶液(0.15%,新鲜配制) 4.盐酸羟胺溶液(10%,新鲜配制) 5.NaAC缓冲溶液 6.50ml容量瓶7个 7.1cm玻璃比色皿2个 8.铁样品溶液 实验步骤 1.标准系列溶液及样品溶液配制,按照下表配制铁标准系列溶液及样品溶液。

2.吸收曲线绘制用1cm比色皿,以1号溶液作为参比溶液,测定4号溶液在各个波长处的吸光度,绘制吸收曲线,并找出最大吸收波长。 3.标准曲线制作

在选定最大吸收波长处,用1cm 比色皿,以1号溶液作为参比溶液,分别测定2至7号溶液的吸光度,平行测定3次,计算吸光度平均值,绘制标准曲线。 实验数据处理 1、 样品中铁的计算 2.50 50.00 C C X ? =读取值 Cx=4.65×10-5 ×50.00/2.50=9.30×10-4 mol/L 2、 摩尔吸光系数计算 在标准曲线的直线部分选择量两点,读取对应的坐标值,计算邻二氮菲配位物在最大吸收波长出的摩尔吸光系数: 1 21 2c -c A A ε-= ε=(0.460-0.233)/(0.00006-0.00004)=2.00×10-5 7 样品溶液 4.65×10-5 mol/ml

巯基乙酸异辛酯项目简介

巯基乙酸异辛酯项目简介 一、产品介绍 巯基乙酸异辛酯又名巯基醋酸异辛酯或巯基乙酸—2—已基己酯,化学结构式HSCH2COOCH2CH(C2H5)(CH2)3CH3,分子量204,闪点118℃,密度d420=0.9730—0.9737,为无色透明液体。巯基乙酸异辛酯是制备聚氯乙烯(PVC)热稳定剂(硫醇锡、硫醇锑)的主要原料,同时还可以作为PVC树脂聚合时的阻支链剂及双酚A合成的催化剂。在PVC产量猛增的进今天,热稳定剂(硫醇锡、硫醇锑)的用量也随之增加,所以异辛酯作为制备聚氯乙烯热稳定剂的主要原料,市场非常走俏。 20世纪90年代之前,巯基乙酸异辛酯的生产技术和市场一直被发达国家控制,如法国Arkema(原阿托化学)产量约18000吨/年,德国Bruno Bock 产量约14000吨/年,美国Crompton约8000吨/年。全球主要用户为欧洲和北美的PVC稳定剂生产商,例如美国Rohm & Haas、意大利Reagens;亚洲较大的用户为台湾台塑。至2004年全球巯基乙酸异辛酯的市场需求量在6万-6.5万吨/年,随着PVC行业和农药、医药及相关行业的飞速发展,本项目的市场前景很好。目前甲基硫醇锡项目已被发达国家选作PVC稳定剂的主导产品,其国际市场需求很大,2004年仅国内市场需求约20000吨,据业内专家统计近几年增长率为15%左右,今后还将持续增长,具有良好的市场前景。 二、原料及市场供应

生产异辛酯所用的原料有以下几种: 三、利润率 1、每生产1吨产品的原料成本如下, 即每生产1吨产品所需的原料费用为10187元。 2、每生产1吨产品的人工成本如下 按每天生产30吨计算 合计人工成本:214元/吨

甲基异噻唑啉酮杀菌剂存在的危害[仅供参考]

目录 一、什么是甲基异噻唑啉酮------------------------------2 二、甲基异噻唑啉酮一般用在哪些产品--------------2 三、用在产品当中规定多少量---------------------------3 四、甲基异噻唑啉酮有什么危害------------------------3 五、甲基异噻唑啉酮对孕妇婴儿有什么影响--------5 六、怎么查看产品是否有甲基异噻唑啉酮-----------5 七、能不能不添加甲基异噻唑啉酮---------------------5 八、总结---------------------------------------------------------6

一、什么是甲基异噻唑啉酮 1.1定义: 甲基异噻唑啉酮,英文简称是MIT,是一种广普的杀菌防腐剂,耐热之水性防腐剂,对于抑制微生物的生长有很好的作用,可以抑制细菌、真菌、霉菌及霉菌的生长,简单来说,它就是一款杀菌剂。 1.2化学式 化学名称:2-甲基-4-异噻唑啉-3-酮 二、甲基异噻唑啉酮一般用在什么产品 甲基异噻唑啉酮可以直接加入个人护理用品、化妆品、涂料、纸浆等领域。 该活性单剂可广泛用于工业冷却水、油田回罐水、造纸行业、管道、涂料、油漆、橡胶以及化妆品、感光胶片及洗涤用品等工业。有效用量少,无毒无污染,极易混合在各类配方中,PH 使用范围广,稀释使用浓度后,很容易被生物降解为无毒无污染物质。毒性低,

排放无残留,与各种乳化剂、表面活性剂及蛋白质成份配伍性好。MIT 在低浓度下能有效杀灭多种细菌,特别适用于化妆品和个人护理品制剂的保存。适用的pH 范围pH2.0-12.0 ,与水混溶,可以在任何工序加入,容易操作。 三、用在产品当中多少规定量 中国卫生部规定,Methylisothiazolinone在化妆品中最大允许浓度为0.01%。 日前据国家质检总局报道,2017年7月6日,欧盟委员会发布(EU)2017/1224号条例,修订(EC)1223/2009条例附件V,将冲洗化妆品中甲基异噻唑啉酮(化学名2-甲基-2H-异噻唑啉-3-酮)的最大使用量由0.01%修订为0.0015%(重量比),且自2018年1月27日起只有符合本条例规定的化妆品才能投放欧盟市场,自2018年4月27日起供应欧盟市场销售的化妆品必须符合本条例规定。本条例于欧盟官方公报发布后20天生效。

分光光度法测定水中铁离子含量.

专业项目课程课例 项目十二分光光度法测定水中铁离子含量 一、项目名称:分光光度法测定水中铁离子含量 二、项目背景分析 课程目标:本课程是培养分析化学操作技能和操作方法的一门专业实践课,以定量分析的基本理论为基础,以实验强化理论,以期提高化工工作者的分析操作能力。 功能定位:在定量分析中我们常常用到分光光度分析法,它具有操作简便、快速、准确等优点,在工农业生产和科学研究中具有很大的实用价值。是仪器分析的基础实验,也是一种重要的定量分析方法。分光光度法测定水中铁离子含量的测定项目综合训练了学生分光光度计使用、系列标准溶液配制、标准曲线绘制等多个技能。 学生能力:学生通过相关基础学科的学习已经具备了相应的化学知识和定量分析知识,也具备一定的独立操作和思维能力。 项目实施条件:该项目是仪器分析的基础实验,一般中职学校具备相关的实训实习条件,学生有条件完成相应的实习任务。 三、教学目标 1、了解721可见分光光度计的构造 2、了解分光光度法测定原理 3、掌握721可见分光光度计的操作方法 4、掌握分光光度法测定分析原始记录的设计 5、掌握分光光度法测定分析报告的设计 6、掌握分光光度法测定水中铁离子含量的测定方法 7、掌握分光光度法测定水中铁离子含量的分析原始记录和分析报告的填写 四、工作任务 1

2 五、参考方案 参考方案一 1、邻二氮杂菲-Fe 2+ 吸收曲线的绘制 用吸量管吸取铁标准溶液(20μg/mL )0.00、2.00、4.00mL ,分别放入三个50mL 容量瓶中,加入1mL 10%盐酸羟胺溶液,2mL 0.1%邻二氮杂菲溶液和5mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用3cm 比色皿,以试剂空白(即在0.0mL 铁标准溶液中加入相同试剂)为参比溶液,在440~560nm 波长范围内,每隔20~40nm 测一次吸光度,在最大吸收波长附近,每隔5~10nm 测一次吸光度。在坐标纸上,以波长λ为横坐标,吸光度A 为纵坐标,绘制A 和λ关系的吸收曲线。从吸收曲线上选择测定Fe 的适宜波长,一般选用最大吸收波长λmax 。 2、标准曲线的制作 用吸量管分别移取铁标准溶液(20μg/mL )0.00、2.00、4.00、6.00、8.00、10.00mL ,分别放入6个50mL 容量瓶中,分别依次加入1.00mL 10%盐酸羟胺溶液,稍摇动;加入2.00mL 0.1%邻二氮杂菲溶液及5.00mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用1cm 比色皿,以试剂空白(即在0.00mL 铁标准溶液中加入相同试剂)为参比溶液,选择λmax 为测定波长,测量各溶液的吸光度。在坐标纸上,以含铁量为横坐标,吸光度A 为纵坐标,绘制标准曲线。 3、水样中铁含量的测定 取三个50mL 容量瓶,分别加入5.00mL (或10.00mL 铁含量以在标准曲线范围内为合适)未知试样溶液,按实验步骤2的方法显色后,在λmax 波长处,用1cm 比色皿,以试剂空白为参比溶液,平行

2019邻菲罗啉分光光度法测定水样中的铁实验指导

精心整理实验二邻菲罗啉分光光度法测定水样中的铁——标准曲线法 一、实验目的: 1.掌握邻菲罗啉分光光度法测定微量铁的原理和方法; 2.学会标准曲线的绘制方法及其使用。 二、原理: 1. 2. 4Fe3+ 橙红色配合物 3. 4. λ 三 可见分光光度计,1cm比色皿、100mL 容量瓶 1个,20mL 移液管 1 支,50mL 容量瓶 10 个, 10mL 吸量管 1 支,1mL 吸量管(或移液管) 1 支,5mL 移液管 1 支,2mL 移液管1 支。 四、试剂: ①铁贮备液(100μg/mL):准确称取0.7020克分析纯硫酸亚铁铵[(NH4)2Fe(SO4) O]于100毫升烧怀中(或0.8640g分析纯的NH4Fe(SO4)2·12H2O,其摩尔质量为 2·6H2

. 482.18g/mol),加50毫升1+1 H2SO4,完全溶解后,移入1000ml的容量瓶中,并用水稀释到刻度,摇匀,此溶液中Fe的质量浓度为 100.0μg/mL。(实验室准备好)②铁标准溶液(20.00 μg·mL-1)移取100.0μg·mL-1铁标准溶液20.00mL 于100mL容量瓶中,并用蒸馏水稀释至标线,摇匀。(学生自行配制) ③ 10%盐酸羟胺水溶液:(用时配制)。 ④ 0.5%邻菲罗啉水溶液:配制时加数滴盐酸能助溶液或先用少许酒精溶解,再用水稀释至所需体积。(临用时配制)或(避光保存,两周内有效)。 ⑤ HAc-NaAc缓冲溶液(pH≈5.0):称取40克纯醋酸铵加到50毫升冰醋酸中,加水溶解后稀释至100毫升。 五、测定步骤: 1、标准曲线的绘制: (1)分别吸取铁的标准溶液0.00、1.00、2.00、4.00、6.00、8.00、10.00ml于7支50ml容量瓶中,加水至刻度; (2)依次分别加入10%盐酸羟胺溶液1ml,混匀,加入5ml pH≈5.0缓冲溶液,摇匀,加入0.5%邻菲罗啉溶液2ml,摇匀, (3)放置15分钟后,在510nm波长处,用1cm比色皿,以试剂空白作为参比,测定各溶液的吸光度。 附721型分光光度计操作过程: 1.检查仪器各调节钮的起始位置是否正确,选择波长,并将灵敏度档置第1档 2.接通电源,打开开关 3盖上比色皿暗盒盖,用调“100%”调节器使电表指针处于透过率“100%”位,打开比色皿暗盒盖,用调“0”调节器使电表指针处于透过率“0”位;预热 20min 4.放入参比溶液及试样溶液 5.校准:拉动吸收池拉杆,使参比溶液置于光路中,打开比色皿暗盒盖,用调 “0”调节器使电表指针处于透过率“0”位;盖上比色皿暗盒盖,用调 “100%”调节器使电表指针处于透过率“100%”位。重复校正至稳定 .

姜黄素与烟酸的合成

姜黄素烟酸酯的合成 何黎琴, 王效山, 罗丹 (安徽中医学院药学院,安徽省现代中药重点实验室,安徽合肥230031)摘要:以烟酸和姜黄素为原料,采用酰氯法经过二步反应合成了姜黄素烟酸酯,经红外光谱、核磁共振氢谱及质谱确证了该目标化合物的化学结构。考察了原料配比、反应温度、反应液pH值三个因素对反应产率的影响,优选出最佳合成工艺。最佳合成工艺为:n(姜黄素)Bn(烟酰氯盐酸盐)=1B4(摩尔比)、反应温度25~30e、反应液pH值为7~8。姜黄素烟酸酯收率达62%。关键词:姜黄素;烟酸;姜黄素烟酸酯; 合成中图分类号:R 284 文献标志码:A 文章编号:0367-6358(2011)03-0175-03Synthesis of Curcumin NicotinateHE L-i qin, WANG Xiao-shan, LUO Dan(Anhui Traditional Chinese Medicine College, Anhui Key Laboratory of Modernized Chinese MaterialMedical, Anhui Hefei 230031 , China)Abstract:Curcumin dinicotinate wassynthesized from nicotinic acid and curcumin by employing theacylchloride method. Its chemical structure was confirmed by MS, IR, and1H NMR spectroscopy. Theresults showed that the optimal synthetic conditions were as follows: curcuminBnicotinyl chloride=1B4 (nBn), reaction temperature 25~30eand pH=7~8. The yield of curcumin dinicotinate was 62 %.

实验分光光度法测定铁

实验分光光度法测定铁 The following text is amended on 12 November 2020.

实验十四邻二氮菲分光光度法测定铁的含量 一、实验目的 1.学习吸光光度法测量波长的选择方法; 2.掌握邻二氮菲分光光度法测定铁的原理及方法; 3. 掌握分光光度计的使用方法。 二、实验原理 分光光度法是根据物质对光选择性吸收而进行分析的方法,分光光度法用于定量分析的理论基础是朗伯比尔定律,其数学表达式为:A=εb C 邻二氮菲(又称邻菲罗啉)是测定微量铁的较好试剂,在pH=2~9的条件下,二价铁离子与试剂生成极稳定的橙红色配合物。摩尔吸光系数ε=11000 L·mol-1·cm-1。在显色前,用盐酸羟胺把Fe3+还原为Fe2+。 2Fe3++2NH 2OHHCl→2Fe2++N 2 +4H++2H 2 O+2Cl- Fe2+ + Phen = Fe2+ - Phen (橘红色) 用邻二氮菲测定时,有很多元素干扰测定,须预先进行掩蔽或分离,如钴、镍、铜、铅与试剂形成有色配合物;钨、铂、镉、汞与试剂生成沉淀,还有些金属离子如锡、铅、铋则在邻二氮菲铁配合物形成的pH范围内发生水解;因此当这些离子共存时,应注意消除它们的干扰作用。 三、仪器与试剂 1.醋酸钠:l mol·L-1; 2.盐酸:6 mol·L-1; 3.盐酸羟胺:10%(用时配制); 4.邻二氮菲(%):邻二氮菲溶解在100mL1:1乙醇溶液中; 5.铁标准溶液。 (1)100μg·mL-1铁标准溶液:准确称取(NH 4) 2 Fe(SO 4 ) 2 ·12H 2 0于烧杯中, 加入20 mL 6 mol·L-1盐酸及少量水,移至1L容量瓶中,以水稀释至刻度,摇匀. 6.仪器:7200型分光光度计及l cm比色皿。 四、实验步骤 1.系列标准溶液配制 (1)用移液管吸取10mL100μg·mL-1铁标准溶液于100mL容量瓶中,加入2mL 6 mol·L-1盐酸溶液, 以水稀释至刻度,摇匀. 此溶液Fe3+浓度为10μg·mL-1. (2) 标准曲线的绘制: 取50 mL比色管6个,用吸量管分别加入0 mL,2 mL,4 mL, 6 mL, 8 mL和10 mL10μg·mL-l铁标准溶液,各加l mL盐酸羟胺,摇匀; 经再加2mL邻二氮菲溶液, 5 mL醋酸钠溶液,摇匀, 以水稀释至刻度,摇匀后放置 10min。 2.吸收曲线的绘制 取上述标准溶液中的一个, 在分光光度计上,用l cm比色皿,以水为参比溶液,用不同的波长,从440~560 nm,每隔10 nm测定一次吸光度,在最大吸收波长

城市污泥-氰化物的测定--蒸馏后异烟酸--吡唑啉酮分光光度法修改后

城市污泥氰化物的测定蒸馏后异烟酸-吡唑啉酮分光光度法 1.适用范围 本方法规定了蒸馏后用异烟酸-吡唑啉酮分光光度法测定城市污泥中的氰化物本方法适用于城市污水处理厂和城市其他污泥中氰化物的测定 本方法的氰化物馏出液最低检出限为0.004mg/L(以CN-计) 2.采样 测定氰化物的样品应剔除各类大型纤维杂质和大小碎石块等无机杂质,特别注意样品的代表性,样品采集后应将样品放入聚乙烯瓶或硬质玻璃瓶中,在低温条件下保存,在24h内进行分析。 取适量污泥样品置于研钵中,研磨均匀,准确称取5g至10g污泥,加人200mL去离子水,再加入0.125g固体氢氧化钠,使样品水溶液pH>12,在24h内进行分析,如不能及时测定,置于冰箱中保存。 3.易释放氰化物 易释放氰化物是指在pH=4的介质中,在硝酸锌存在下加热蒸馏,能形成氰化氢的化合物。包括全部简单氰化物(碱金属的氰化物),和在此条件下能生成氰化氢而被蒸出的部分络合氰化物(锌氰络合物等)。3.1 原理 用酒石酸溶液将样品控制在pH约为4的条件下,加入硝酸锌加热蒸馏,简单氰化物及部分络合氰化物以氰化氢的形式蒸出,用碱液吸收。 3.2 试剂 测定过程中,应使用分析纯试剂和不含氰化物和活性氯的蒸馏水或具有同等纯度的水。 3.2.1 硫酸溶液(1+5):将100mL浓硫酸缓缓加入到500mL蒸馏水中,边加边搅拌。

3.2.2 氢氧化钠溶液ρ=40g/L:称取 4.0g氢氧化钠(NaOH)溶于100mL蒸馏水中。3.2.3 氢氧化钠溶液ρ=10g/L:称取1.0g氢氧化钠,用蒸馏水稀释至100ml。 3.2.4 硝酸锌[Zn(NO3)2·6H2O]溶液ρ=100g/L:称取10.0g六水合硝酸锌,用蒸馏 水稀释至100mL。 3.2.5 甲基橙溶液ρ=0.5g/L:称取0.05g甲基橙,用蒸馏水稀释至100mL。 3.2.6 酒石酸溶液ρ=150g/L:称取15.0g酒石酸溶于水,稀释至100mL。 3.2.7 乙酸铅试纸:称取5g乙酸铅溶于水中,稀释至100mL。将滤纸条浸入上述溶 液中,1h后,取出晾干,盛于广口瓶中,密塞保存。 3.2.8 淀粉-碘化钾试纸:称取1.5g可溶性淀粉,用少量水搅成糊状,加入200mL沸水,混匀。放冷,加0.5g碘化钾和0.5g碳酸钠,用水稀释至250mL,将滤纸条浸渍后,取出晾干,盛于棕色瓶中密塞保存。 3.2.9 亚硫酸钠溶液ρ=12.6g/L:称取1.26g亚硫酸钠溶于100mL蒸馏水中。 3.2.10 氨基磺酸(NH2SO3OH)。 3.3 仪器 3.3.1 全玻璃蒸馏器:500mL 3.3.2 可调电炉:600W或800W。 3.3.3 接收瓶:100mL量筒或容量瓶。 3.3.4 天平:感量0.0001g。 3.4 步骤 3.4.1 氰化氢释放和吸收:按图2装置,将处理后的样品全部移入500mL蒸馏瓶中(若氰化物含量较高,可酌量少取,并加水至200mL,同时加入固体氢氧化钠至pH>12),加数粒玻璃珠。向接收瓶内加入10mL氢氧化钠溶液作为吸收液。当样品在酸性蒸馏时,若有较多挥发性酸蒸出则应增加氢氧化钠浓度,(制作校准曲线时,应使用相同的氢氧化钠浓度)。馏出液导管下端插入接收瓶的吸收液中,检查连接部位,使其严密。

新型液体锌皂热稳定剂的合成及其在PVC中的应用

新型液体锌皂热稳定剂的合成及其在PVC中的应用 摘要:本文合成了一种液体硫醇锌盐,二(巯基乙酸异辛酯)锌,可作为透明PVC(聚氯乙烯)制品热稳定剂使用,具有合成过程简单、价廉、性能优异等特性。利用刚果红测试法研究了其对聚氯乙烯树脂的热稳定性能,其稳定效率明显优于传统锌皂。同时利用紫外-可见分析法和荧光分析法,检测出合成的硫醇锌盐对PVC的稳定机理应以取代PVC链上不稳定氯原子为主。 关键词:聚氯乙烯热稳定剂硫醇锌盐液体光谱分析 PVC材料热稳定性较差,通常在加工使用过程中需要加入热稳定剂。传统的铅盐热稳定剂,由于含有对人体有害的重金属,已经在很多国家和地区被限制使用。硫醇锌皂作为一种新型热稳定剂,性能卓越,但是部分为固体[1],部分合成方法复杂且价格昂贵[2] [3]。本文涉及的硫醇锌盐,为透明液体,且合成工艺简单、原料易得,能从根本上抑制PVC的降解,稳定性能大大由于传统锌皂硬脂酸锌(ZnSt2),具有良好的应用前景。 一、实验 1.1实验原料 PVC,S-1000;邻苯二甲酸二辛酯(DOP),均为金陵化工厂生产。山梨醇,硬脂酸锌,醋酸锌,甲苯,国药集团化学试剂有限公司提供。硬脂酸钙,汕头市西陇化工厂生产。巯基乙酸异辛酯,湖州天顺化工厂生产。 1.2 二(巯基乙酸异辛酯)锌的合成 将10 mmol醋酸锌先分散在20 ml甲苯中,然后在不断搅拌的情况下滴入20 mmol巯基乙酸异辛酯/甲苯溶液(其中甲苯10 ml),原本混浊的溶液快速变得澄清透明,持续搅拌3-4小时。在旋转蒸发仪中减压蒸馏除去溶剂甲苯,以及反应副产物醋酸。最终所得产品为无色透明粘稠液体。 1.3 PVC试样制备 准确称取各组分,配方见表1。用万能粉碎机混合均匀,得到干混料。将干混料放入试管中180 oC油浴中老化,将不同降解时间下的样品溶于四氢呋喃(THF)中用于光谱分析,溶度为1 g/50 ml。 1.4 仪器 紫外-可见分光光度计:lambda 900型;采用Cary Eclipse型荧光分光光度计进行样品的荧光光谱表征,激发波长为360 nm。

水质 铁的测定 邻菲啰啉分光光度法

水质铁的测定邻菲啰啉分光光度法 (量程:0.12~5mg/L) 1 适用范围 本标准适用于地表水、地下水及废水中铁的测定。方法最低检出浓度为0.03mg/L,测定下限为0.12mg/L,测定上限为 5.00mg/L。对铁离子大于 5.00mg/L 的水样,可适当稀释后再按本方法进行测定。 2 原理 亚铁离子在pH3~9 之间的溶液中与邻菲啰啉生成稳定的橙红色络合物,其反应式为: 此络合物在避光时可稳定保存半年。测量波长为510nm,其摩尔吸光系数为 1.1×10 4 L·mol-1·cm-1。若用还原剂(如盐酸羟胺)将高铁离子还原,则本法可测高铁离子及总铁含量。 3 试剂 本标准所用试剂除另有注明外,均为符合国家标准的分析纯化学试剂;实验用水为新制备的去离子水。 3.1 盐酸(HCl):ρ20=1.18g/mL,优级纯。 3.2 (1+3)盐酸。 3.3 10%(m/V)盐酸羟胺溶液。 3.4 缓冲溶液:40g 乙酸铵加50mL 冰乙酸用水稀释至100mL。 3.5 0.5%(m/V)邻菲啰啉(1,10-phenanthroline)水溶液,加数滴盐酸帮助溶解。 3.6 铁标准贮备液: 准确称取0.7020g 硫酸亚铁铵((NH 4 ) 2 Fe(SO 4 ) 2 ·6H 2 O),溶于(1+1)硫酸50mL 中,转移至1000mL容量瓶(A 级)中,加水至标线,摇匀。此溶液每毫升含100μg 铁。 3.7 铁标准使用液: 准确移取铁标准贮备液(3.6)25.00mL 置100mL 容量瓶(A 级)中,加水至标线,摇匀。此溶液每毫升含25.0μg 铁。

4 仪器 分光光度计,10mm 比色皿。2 5 干扰的消除 强氧化剂、氰化物、亚硝酸盐、焦磷酸盐、偏聚磷酸盐及某些重金属离子会干扰测定。经过加酸煮沸可将氰化物及亚硝酸盐除去,并使焦磷酸、偏聚磷酸盐转化为正磷酸盐以减轻干扰。加入盐酸羟胺则可消除强氧化剂的影响。 邻菲啰啉能与某些金属离子形成有色络合物而干扰测定。但在乙酸-乙酸铵的缓冲溶液中,不大于铁浓度10 倍的铜、锌、钴、铬及小于2mg/L 的镍,不干扰测定,当浓度再高时,可加入过量显色剂予以消除。汞、镉、银等能与邻菲啰啉形成沉淀,若浓度低时,可加过量邻菲啰啉来消除;浓度高时,可将沉淀过滤除去。水样有底色,可用不加邻菲啰啉的试液作参比,对水样的底色进行校正。 6 步骤 6.1 校准曲线的绘制 依次移取铁标准使用液(3.7)0、2.00、4.00、6.00、8.00、10.0mL 置150mL 锥形瓶中,加入蒸馏水至50.0mL,再加(1+3)盐酸(3.2)1mL,10%盐酸羟胺1mL,玻璃珠1~2 粒。加热煮沸至溶液剩15mL 左右,冷却至室温,定量转移至50mL 具塞比色管中。加一小片刚果红试纸,滴加饱和乙酸钠溶液至试纸刚刚变红,加入5mL 缓冲溶液(3.4)、0.5%邻菲啰啉溶液(3.5)2mL,加水至标线,摇匀。显色15min 后,用10mm 比色皿(若水样含铁量较高,可适当稀释;浓度低时可换用30mm 或50mm 的比色皿),以水为参比,在510nm 处测量吸光度,由经过空白校正的吸光度对铁的微克数作图。各批试剂的铁含量如不同,每新配一次试液,都需重新绘制校准曲线。 6.2 总铁的测定 采样后立即将样品用盐酸(3.1)酸化至pH<1(含CN -或S 2 -离子的水样酸化时,必须小心进行,因为会产生有毒气体),分析时取50.0mL 混匀水样于150mL 锥形瓶中,加(1+3)盐酸(3.2)1mL,盐酸羟胺溶液(3.3)1mL,加热煮沸至体积减少到15mL 左右,以保证全部铁的溶解和还原。若仍有沉淀应过滤除去。以下按绘制校准曲线同样操作,测量吸光度并作空白校正。 6.3 亚铁的测定 采样时将2mL 盐酸(3.1)放在一个100mL 具塞的水样瓶内,直接将水样注满样品瓶,塞好瓶塞以防氧化,一直保存到进行显色和测量(最好现场测定或现场显色)。分析时只需取适量水样,直接加入缓冲溶液(3.4)与邻菲啰啉溶液(3.5),显色5~10min,在510nm 处以水为参比测量吸光度,并作空白校正。 6.4 可过滤铁的测定 在采样现场,用0.45μm 滤膜过滤水样,并立即用盐酸酸化过滤水至pH<1,准确吸取样品50mL置于150mL 锥形瓶中,以下操作与步骤6.1 相同。 7 结果的计算 铁的含量按下式计算:

异噻唑啉酮杀菌防腐剂

异噻唑啉酮 CAS:55965-84-9 96118-96 一、产品性能: 异噻唑啉酮杀菌防腐剂主要成份为异噻唑啉酮类化合物,是国际上公认的高效、低毒、广谱性的新型杀菌剂。 1、高效、广谱,可杀灭及抑制各种微生物、霉菌及藻类; 2、适用范围广,PH值在3~9.5对杀菌效果均无影响; 3、配伍性好,可与各种阴离子型、阳离子型、非离子型助剂相容,也可与其它杀菌剂配伍用。 4、使用浓度低,药效持续时间长,不产生泡沫; 5、能有效阻止粘泥的形成; 6、使用方便、安全,可直接加入; 7、对环境环保,可自行降解为无毒物质,长期使用不会造成环境危害。 二、产品质量指标: 三、产品的用途: 异噻唑啉酮广泛应用于钢铁冶炼、油田注水、火力发电、造纸、炼油、化工、轻纺、工业清洗、切削油水性涂料、日化等领域。对细菌如硫酸盐还原菌、淤泥成型菌、铁氧化菌、霉菌、酵母菌及藻类等各种微生物都有很强的杀灭和抑制效果 四、使用方法: 本品作粘泥剥离剂使用时,投加剂量为150~300mg/L,作杀生剂时视菌藻衍生情况,每隔3~7 天投加一次,投加剂量为80~100mg/L,不能与氯气等氧化性杀生剂并用。五、

注意事项浓溶液有一定腐蚀性,使用中应特别注意防护。浓溶液与其它药剂复配或稀释时,应根据不同用途、不同行业要求应添加不同性质的稳定剂,以获得最佳使用效果。 五、安全防护: 1、为Ⅱ类腐蚀性化学品,为安全起见,使用本产品者,应穿戴以下装备以策安全:使用护目镜、橡胶手套、橡胶围裙或不渗透的雨衣、橡胶鞋。 2、使用完后,用肥皂和清水洗手后再进食或吸烟,沾污之衣服请立即脱下清洗。接触皮肤:立即用肥皂和清水冲洗15分钟,之后若有刺激的感觉。采取外涂乐肤液。接触眼睛:立即用大量流动清水拉起眼皮来至少15分钟之后并马上就医治疗。 3、本品贮存过程中不可与还原性金属接触,如金属铁、铝等,不可与氧化、还原性物质接触,使用时纸浆中的残氯和亚硫酸钠都会破坏本品,使之降低效能或完全失效。 六、产品包装与贮存 25KG/塑料桶或250KG塑料桶包装。(按照客户要求包装)

异烟酸—吡唑啉酮显色液的改进

异烟酸—吡唑啉酮显色液的改进 摘要:本文对异烟酸—吡唑啉酮光度法测定水和废水中氰化物的方法进行了改进,在不改变其它步骤的前提下,以去离子水代替二甲基甲酰胺所配得的吡唑啉酮溶液及异烟酸溶液作为显色剂。试验结果表明:改进后新方法的精密度RSD<5%,加标率回收率为92.0~105.0%,通过电镀废水和标准样品的比对试验表明,改进后的方法与标准方法对同一样品的测定结果无显著性差异,满足监测分析要求。 关键词:氰化物异烟酸—吡唑啉酮改进 Abstract: It improve that determination of cyanide in water and wastewater by isonicotinic acid - pyrazolonespectrophotometric methods in this paper. Under the premise of without changing the other steps, With deionized water instead of dimethylformamide as worthy ofthe pyrazolone solution and iso-nicotinic acid solution as a chromogenic agent. The results showed that:The new method improved the precision RSD <5%, plus standard rate of recovery was 92.0 ~ 105.0%.Electroplating wastewater and standard sample by comparison of the tests showed. The improved methods and standard methods for the determination of the same sample was no significant difference. To meet the monitoring and analysis requirements. Keyword:CyanideIsonicotinic acid – pyrazoloneImprove 前言 二甲基甲酰胺(Dimethylfommmide,DMF) 为一种无色、有淡胺味的液体,是工业上经常使用的有机溶剂,它和水及大部分的有机溶剂具有良好的混溶性,广泛应用于纤维、皮革、染料、有机合成及制药等工业生产中。[1]DMF可经呼吸道吸收,液体也可经完整的皮肤及消化道进入人体引起中毒。在低浓度下可出现消化系统症状,表现为恶心、呕吐、食欲不振、腹痛、便秘等[2]。 目前,水和废水中的氰化物测定普遍使用异烟酸—吡唑啉酮光度法,而吡唑啉酮溶液需二甲基甲酰胺溶解,为避免使用有毒试剂DMF,笔者采用去离子水代替二甲基甲酰胺溶解吡唑啉酮得新的吡唑啉酮溶液,以此新的吡唑啉酮溶液和异烟酸溶液作显色液(简称改进显色液),测定水和废水中的氰化物。改进法避免了实验室分析人员使用有毒试剂二甲基甲酰胺,不仅有益操作者身体健康,也节约了成本,值得推广。 1 实验 1.1 仪器:722S型分光光度计,恒温水浴锅;25亳升具塞比色管[3]。 1.2 试剂:

巯基乙酸异辛酯项目可行性研究报告

巯基乙酸异辛酯项目可行性研 究报告 分子式:C10H20O2S 分子量:204.3276 结构式: 性质描述: 无色透明液体。沸点125℃,相对密度(20/4℃)0.970。色度(Pc-Co)8。 生产方法: 氯乙酸与异辛醇在溶剂甲苯及催化剂硫酸存在下酯化,生成氯乙酸异辛酯,经中和后加入硫代硫酸钠,在乙醇溶剂中反应生成硫代硫酸钠代乙酸异辛酯,再以盐酸进行酸解反应,生成巯基乙酸异辛酯。原料消耗(kg/t)氯乙酸800异辛醇740硫代硫酸钠2075 用途: 广泛用于生产农药、医药和卤化聚烯烃的稳定剂、增塑剂。 安全措施: 严格密封、防止破损。 本品严禁入口,若不慎溅到皮肤上,及时用肥皂水清洗。 远离火种、热源,储存于阴凉通风处。 轻装轻卸,避免雨淋、受潮和在阳光下曝晒。 另:提供国家发改委甲、乙、丙级资质 北京智博睿信息咨询有限公司https://www.doczj.com/doc/ec5962879.html,

https://www.doczj.com/doc/ec5962879.html, 可行性研究报告大纲(具体可根据客户要求进行调整)第一章研究概述 第一节研究背景与目标 第二节研究的内容 第三节研究方法 第四节数据来源 第五节研究结论 一、市场规模 二、竞争态势 三、行业投资的热点 四、行业项目投资的经济性 第二章巯基乙酸异辛酯项目总论 第一节巯基乙酸异辛酯项目背景 一、巯基乙酸异辛酯项目名称 二、巯基乙酸异辛酯项目承办单位 三、巯基乙酸异辛酯项目主管部门 四、巯基乙酸异辛酯项目拟建地区、地点 五、承担可行性研究工作的单位和法人代表 六、研究工作依据

七、研究工作概况 第二节可行性研究结论 一、市场预测和项目规模 二、原材料、燃料和动力供应 三、选址 四、巯基乙酸异辛酯项目工程技术方案 五、环境保护 六、工厂组织及劳动定员 七、巯基乙酸异辛酯项目建设进度 八、投资估算和资金筹措 九、巯基乙酸异辛酯项目财务和经济评论 十、巯基乙酸异辛酯项目综合评价结论 第三节主要技术经济指标表 第四节存在问题及建议 第三章巯基乙酸异辛酯项目投资环境分析第一节社会宏观环境分析 第二节巯基乙酸异辛酯项目相关政策分析 一、国家政策 二、巯基乙酸异辛酯项目行业准入政策 三、巯基乙酸异辛酯项目行业技术政策

邻菲罗啉分光光度法测定铁

邻菲罗啉分光光度法测定铁 实验目的 1.1 进一步了解朗伯-比尔定律的应用。 1.2 学会邻菲罗啉分光光度法测定铁的方法和正确绘制邻菲罗啉-铁的标准曲线。 1.3 了解分光光度计的构造及使用。 2 实验原理 邻菲罗啉(又称邻二氮杂菲)是测定微量铁的一种较好试剂,其结构如下: 在pH=1.5~9.5的条件下,Fe2+与邻菲罗啉生成很稳定的橙红色的络合物,反应式如下: 此络合物的logK稳=21.3,ε=11000。 在显色前,首先用盐酸羟胺把Fe3+还原为Fe2+: 4 Fe3++2NH2OH═4 Fe2++N2O+H2O+4H+ 测定时,控制溶液酸度在pH=2~9较适宜,酸度过高,反应速度慢,酸度太低,则Fe2+水解,影响显色。 Bi3+、Ca2+、Hg2+、Ag+、Zn2+离子与显色剂生成沉淀,Cu2+、Co2+、Ni2+离子则形成有色络合物,因此当这些离子共存时应注意它们的干扰作用。

3 仪器和试剂 3.1 可见分光光度计。 3.2 铁盐标准溶液的配制: A液(母液→0.1g·L-1):准确称取1.4060g分析纯硫酸亚铁铵[(NH4)2Fe(SO4)2·6H2O]于200mL烧杯中,加入50.0mL 1mol·L-1HCl,完全溶解后,移入250mL容量瓶中,加去离子水稀释至刻度,摇匀。 B液(0.01g·L-1):用25mL移液管,准确移取A液25.00mL,置于250mL的容量瓶中,加去离子水稀释至刻度,摇匀,备用。 3.3 乙酸-乙酸钠(HAc-NaAc)缓冲溶液(pH= 4.6):称取135g分析纯乙酸钠,加入120mL冰乙酸,加水溶解后,稀释至500mL。 3.4 ω=1%的盐酸羟胺水溶液,因不稳定,需临用时配制。 3.5 ω=0.1%的邻菲罗啉水溶液:先用少许乙醇溶解后,用水稀释,新近配制。 3.6 50mL容量瓶7个(先编好1、2、3、4、5、6、7号),10mL移液管(有刻度)1支,5mL移液管(有刻度)4支,5mL量筒1个,500mL烧杯1个,洗瓶1个,洗耳球1个,小滤纸,镜头纸。 4 实验步骤 4.1 吸收曲线的绘制和测量波长的选择 用吸管吸取铁盐标准溶液(B液)5.00mL于50mL容量瓶中,依次加入5.0mL HAc~NaAc缓冲液、2.5mL盐酸羟胺、5.0mL 邻菲罗啉溶液,用蒸馏水稀释至刻度,摇匀。用1cm比色皿以试剂空白为参比,在450~550nm范围内,每隔10nm测量1次吸光值。在峰值附近每间隔5nm测量1次。以波长为横坐标、吸光度为纵坐标绘制吸收曲线,确定最大吸收波长。 4.2 标准曲线绘制 4.2.1 分别移取铁的标准溶液(0.01g·L-1)0.0、1.0、2.0、3.0、4.0、 5.0mL于6只50mL容量瓶中,依次分别加入5.0mL HAc~NaAc 缓冲液、2.5mL盐酸羟胺、5.0mL邻菲罗啉溶液,用蒸馏水稀释至刻度,摇匀,放置10min。 4.2.2 按仪器说明书要求,将分光光度计各部分线路接好,光源接10V电压。

年异噻唑啉酮发展现状及市场前景分析

中国异噻唑啉酮市场调查研究与发展前景预测报告(2016-2022年) 报告编号:1331381

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网https://www.doczj.com/doc/ec5962879.html,基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称:中国异噻唑啉酮市场调查研究与发展前景预测报告(2016-2022年) 报告编号:1331381←咨询时,请说明此编号。 优惠价:¥6750 元可开具增值税专用发票 网上阅读:https://www.doczj.com/doc/ec5962879.html,/2013-09/YiZuoZuoZuoTongYanJiu/ 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 《中国异噻唑啉酮市场调查研究与发展前景预测报告(2016-2022年)》在大量周密的市场调研基础上,主要依据国家统计局、海关总署、发改委、工商局、相关行业协会等权威部门的基础信息以及专业研究团队长期以来对异噻唑啉酮行业监测到的一手资料,对异噻唑啉酮行业的发展现状、规模、市场需求、进出口、上下游、重点区域、竞争格局、重点企业、行业风险及投资机会进行了详尽的分析,深入阐述了异噻唑啉酮行业的发展趋势,并对异噻唑啉酮行业的市场前景进行了审慎的预测。 中国产业调研网发布的《中国异噻唑啉酮市场调查研究与发展前景预测报告(2016 -2022年)》为战略投资者选择正确的投资时机和企业决策人员进行战略规划提供了准确的市场情报信息及科学的决策依据。 《中国异噻唑啉酮市场调查研究与发展前景预测报告(2016-2022年)》在调研过程中得到了异噻唑啉酮产业链各环节管理人员和营销人员的大力支持,在此再次表示感谢。 正文目录 第一章异噻唑啉酮行业界定 第一节异噻唑啉酮行业定义 第二节异噻唑啉酮行业特点分析 第三节异噻唑啉酮行业发展历程 第四节异噻唑啉酮产业链分析 第二章国际异噻唑啉酮行业发展态势分析

相关主题
文本预览
相关文档 最新文档