当前位置:文档之家› 一维搜索 黄金分割法 二次插值法

一维搜索 黄金分割法 二次插值法

一维搜索 黄金分割法 二次插值法
一维搜索 黄金分割法 二次插值法

一维搜索黄金分割法二次插值法

#include

#include

#include

double f(double);

double golden_split(double(*)(),double,double);/*黄金分割法*/ double rcczf(double(*)(),double[],double[],double); /*二次插值法*/ void jtf(double(*)(),double,double *,double *,double *);/*进退法*/ void jtf(double(*objf)(),double a0,double *h0,double *a,double *y) {

double h;

a[0]=a0;

h=*h0;

a[1]=a[0]+h,y[1]=objf(a[1]);

if(y[1]>y[0])

{

h=-h;

a[2]=a[0],y[2]=y[0];

a[0]=a[1],y[0]=y[1];

a[1]=a[2],y[1]=y[2];

}

a[2]=a[1]+h;

y[2]=objf(a[2]);

while(y[2]

{

h=2*h;

a[0]=a[1],y[0]=y[1];

a[1]=a[2],y[1]=y[2];

a[2]=a[1]+h;

y[2]=objf(a[2]);

}

if(a[2]

{

double temp;

temp=a[2],a[2]=a[0],a[0]=temp;

temp=y[2],y[2]=y[0],y[0]=temp;

}

*h0=h; /*返回最后步长*/

}

double golden_split(double(*f)(),double a,double b)

{

#define lamda 0.6180339

#define eps 1.0e-8

double a1,a2,y1,y2;

a1=b-lamda*(b-a),y1=f(a1);

a2=a+lamda*(b-a),y2=f(a2);

while(fabs(b-a)>eps&&fabs(y1-y2)>eps)

{

if(y1>=y2)

{

a=a1;

a1=a2,y1=y2;

a2=a+lamda*(b-a);

y2=f(a2);

}

else

{

b=a2;

a2=a1,y2=y1;

a1=b-lamda*(b-a);

y1=f(a1);

}

}

return 0.5*(a+b);

}

double rcczf(double (*f)(),double a[3],double y[3],double h) {

double c1,c2,ap,yp;

double accu=1.0e-6 ;

a[1]=0.4*(a[0]+a[2]);

while(1)

{

c1=(y[2]-y[0])/(a[2]-a[0]);

c2=((y[1]-y[0])/(a[1]-a[0])-c1)/(a[1]-a[2]);

ap=0.5*(a[0]+a[2]-c1/c2);

yp=f(ap);

if(fabs(y[1]-yp)

{

if(y[1]

else return ap;

}

else

{

if((ap-a[1])*h>0)

{

if(y[1]>=ap){a[0]=a[1],y[0]=y[1],a[1]=ap,y[1]=yp;}

else {a[2]=ap,y[2]=yp;}

}

else

{

if(y[1]>=yp){a[2]=a[1],y[2]=y[1],a[1]=ap,y[1]=yp;}

else {a[0]=ap,y[0]=yp;}

}

}

}

}

double fun(double x)

{

double y;

y=x*x-2*x+5;

return(y);

}

void main()

{

double X,Y;

double X1,Y1;

double a0,h0,a[3],y[3];

int i;

a0=0,h0=1;

for(i=1;i<3;i++) a[i]=0,y[i]=0;

jtf(fun,a0,&h0,a,y);

X=golden_split(fun,a[0],a[2]);

Y=fun(X);

printf("\nthe otimial value is X=%10.4f,\tY=%10.4f\n\n",X,Y);

a0=0.1,h0=1;

for(i=1;i<3;i++) a[i]=0,y[i]=0;

jtf(fun,a0,&h0,a,y);

X1=rcczf(fun,a,y,h0);

Y1=fun(X1);

printf("\n\nthe otimial value is X1=%10.4f,\tY1=%10.4f\n",X1,Y1);

printf("Press any key to end up!\n");

getch();

}

最优化方法(黄金分割与进退法)实验报告

一维搜索方法的MATLAB 实现 姓名: 班级:信息与计算科学 学号: 实验时间: 2014/6/21 一、实验目的: 通过上机利用Matlab 数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab 软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: 黄金分割法 它是一种基于区间收缩的极小点搜索算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断 的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当 ()()k k f f λμ≤转步骤(4)。 (3) 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

(4) 转步骤(5) (5)令1k k =+,转步骤(2)。 算法的MATLAB 实现 function xmin=golden(f,a,b,e) k=0; x1=a+0.382*(b-a); x2=a+0.618*(b-a); while b-a>e f1=subs(f,x1); f2=subs(f,x2); if f1>f2 a=x1; x1=x2; f1=f2; x2=a+0.618*(b-a); else b=x2; x2=x1; f2=f1; x1=a+0.382*(b-a); end k=k+1; end xmin=(a+b)/2; fmin=subs(f,xmin)

斐波那契法 一维搜索方法

短后的区间不大于区间[0,10]的5% 。 解:由题意=δ5%,由斐波那契数列δ1 ≥n F ,则n=7, 00=a ,100=b 1t =0b )(0076a b F F --=2180 , 21 130)(00760'1=-+=a b F F a t , 将1t 和'1t 代入函数,比较大小有)()('11t f t f < 则有001==a a ,21801'2==t t ,21130'11==t b ,21 50)(116512=--=a b F F b t , 将2t 和'2t 代入函数,比较大小有)()('22t f t f < , 则有012==a a ,21502'3==t t ,2180'22==t b ,21 30)(225423=--=a b F F b t , 将3t 和'3t 代入函数,比较大小有)()('33t f t f >, 则有213033==t a ,2150'34==t t ,218023==b b ,21 60)(33433'4=-+=a b F F a t , 将4t 和'4t 代入函数,比较大小有)()('44t f t f >, 则有215044==t a ,2160'45==t t ,218034==b b ,21 70)(44324'5=-+=a b F F a t , 将5t 和'5t 代入函数,比较大小有)()('55t f t f >, 则有216055= =t a ,2170'56==t t ,218045==b b , 则令105 351)21602180()01.05.0(2160))((55215'6=-?++=-++=a b F F a t ε, 将6t 和'6t 代入函数,比较大小有)()('66t f t f <, 则216056==a a ,105351'66==t b ,区间为:?? ????105351,2160 所以选择6t 为极小点,=)(6t f 89.6)2170( -=f 。

最优化方法一维搜索法C++程序

加步探索法 #include #include using namespace std; double fun(double t) { return (t*t*t-2*t+1); } double max(double a,double b) { if(a>b)return a; else return b; } double min(double a,double b) { if(a>b)return b; else return a; } double Addstep(double(*pfun)(double t)) { int k=0; double t0=0,h=1,r=2,t,a=0,b=0; t=t0+h; do{ if(fun(t)

对分法 #include #include using namespace std; double fun(double t) { return (t*t-3*t); } double dfun(double t) { return (2*t-3); } void Dichotomous(double(*pfun)(double t),double (*pdfun)(double t)) { int maxflag=1000,k=1; double a=-3,b=5,c,err=0.1,t; do { c=(a+b)/2; if(dfun(c)<0){a=c;} else {if(dfun(c)>0){b=c;} else{a=c;b=c;}} k++; }while(fabs(a-b)>err&&k=maxflag) cout<

黄金分割法及其代码

线性搜索之黄金分割法及其应用 摘要 最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通讯和政府机关等领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB 软件已经成为最优化领域应用最广的软件之一。有了MATLAB这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。 在最优化计算中一维最优化方法是优化设计中最简单、最基本的方法。一维搜索,又称为线性搜索,一维问题是多维问题的基础,在数值方法迭代计算过程中,都要进行一维搜索,也可以把多维问题化为一些一维问题来处理。一维问题的算法好坏,直接影响到最优化问题的求解速度。而黄金分割法是一维搜索方法中重要的方法之一,它适用于任何单峰函数求最小值的问题,甚至于对函数可以不要求连续,是一种基于区间收缩的极小点搜索算法。 关键词:最优化、黄金分割法、MATLAB软件、一维搜索 引言 数学科学不仅是自然科学的基础,也是一切重要技术发展的基础。最优化方法更是数学科学里面的一个巨大的篇幅,在这个信息化的时代,最优化方法广泛应用于工业、农业、国防、建筑、通信与政府机关、管理等各领域;它主要解决最优计划、最优分配、最优决策、最佳设计、最佳管理等最优化问题。而最优解问题是这些所有问题的中心,是最优化方法的重中之重,在求最优解问题中,有多种方法解决,我们在这里着重讨论无约束一维极值问题,即非线性规划的一维搜索方法之黄金分割法。黄金分割法也叫0.618法,属于区间收缩法,首先找出包含极小点的初始搜索区间,然后按黄金分割点通过对函数值的比较不断缩小搜索区间。当然要保证极小点始终在搜索区间内,当区间长度小到精度范围之内时,可以粗略地认为区间端点的平均值即为极小值的近似值。所以用0.618法得出的

三点一维搜索法报告

三点一维搜索法报告 姓名:张攀班级:2009211102 学号:09210048 算法的基本思想: 三点一维算法是从0.618法衍生而来的,0.618算法使用从两点a,b间选择两个点c,d将原来区域分为三个,抛弃不符合所求数值趋势的两个区域,不断逼近所求值,当|b-a|

实例分析: 选择函数:f[x] := Sin[x^4] + Cos[x] 该函数在[0,1]范围内有极小值,令a=0,b=1,p=0.1,e选取1*10^(-9),运算后结果在x=0.4904089750976563时有最小值0.939949。运算次数为22次, P值选取效率的影响: 在该函数中,[0,1]内函数波动较为平缓,从中间缓慢向两边扩展显然速度较快,因为所求点接近终点,当p增大的时能很快覆盖到所求点效率将变高,如果区域远超过所求点则效率将变低。 P取值以及逼近次数i的关系: P=0.1,i=22 P=0.2,i=26 P=0.25,i=19 P=0.3,i=19 P=0.35,i=21 P=0.4,i=23 P=0.5,i=26 P=0.6,i=30 P=0.7,i=36 P=0.8,i=57 可见最好的取值应为0.25到0.3之间。 总结: 三点一维算法实际通过多次比较,减少了0.618法对点的移动,和对区域的选择,比0.618法稳定。在比较区域大时三点一维算法比起0.618法更加优秀。

matlab 黄金分割法

黄金分割法 东南大学机械学院** 一黄金分割法基本思路 黄金分割法适用于[a,b]区间上的任何单谷函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。 黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 二黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点xmin的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数,即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。 ①如果f(a1)>f(a2),令a=a1,a1=a2,a2=a+0.618*(b-a); ②如果f(a1)

实验1 一维搜索算法的程序设计

实验一 一维搜索算法的程序设计 一、实验目的 1、熟悉一维无约束优化问题的二分法、0.618算法和牛顿法。 2、培养matlab 编程与上机调试能力。 二、实验课时:2个课时 三、实验准备 1、预习一维无约束优化问题的二分法、0.618算法和牛顿法的计算步骤。 2、熟悉matlab 软件的基本操作。 四、实验内容 课堂实验演示 1、根据二分法算法编写程序,求函数 2 ()22f x x x =++ 在区间[2,1]-上的极小值。 二分法如下: (1)给定区间[,]a b (要求满足0)(',0)('>δ; (2)若δ≤-a b ,则停,输出*()/2x a b =+; (3)计算()/2c a b =+; (4)若0)('c f ,令b c =;否则若0)('=c f ,则停输出*()/2x a b =+; function [val,x,iter] = bisection_method(a,b,delta) iter = 0; while abs(b-a)>delta iter = iter+1; [y,dy] = fun((a+b)/2); if abs(dy)<= delta x = (a+b)/2; val = y; return; elseif dy<0 a = (a+b)/2; else b = (a+b)/2;

end end x = (a+b)/2; [val,dval] = fun(x); %%%%%%%%%%%%%%%%%%%%%%% obj function %%%%%%%%%%%%%%%%%%%%%%%%% function [y,dy] = fun(x) y = x^2+2*x+2; dy = 2*x+2; >> delta = 1.0e-6; [val,x,iter] = bisection_method(-2,1,delta) val = 1 x = -1 iter = 21 2、根据0.618算法编写程序,求函数 ()()()630sin tan 1x f x x x e =- 在区间[0,1]上的极大值。 令()()()()630sin tan 1x g x f x x x e =-=--,则原问题转化为求[] ()0,1m in x g x ∈ 0.618算法如下: (1)给定区间[,]a b ,及精度0eps >; (2)计算试探点0.382(),0.618()r a b a u a b a =+-=+-. 令1=k ; (3)若eps a b <-,则停止计算,输出)(,2/)(* **x f f a b x =+=;否则, 若()()f r f u >,转(4);若)()(u f r f <,转(5); (4)令a r =,r u =,计算0.618()u a b a =+-,转(6); (5)令b u =,u r =,计算0.382()r a b a =+-,转(6); (6)令1+=k k ,回 (3). 运行结果,如下: >> a=0,b=1,eps=10^(-5); [optx,opty,iter]=gold_section_method(a,b,eps) iter = 26 optx = 0.9707

互联网搜索教学案例生活中的数学美——黄金分割

全国中小学“教学中的互联网搜索”优秀教学案例评选 教案设计 《生活中的数学美——黄金分割》 -----北师大版初中义务教育八年级数学

【百度图片】各国国旗图片 问题⒉ 度量点C 到A 、B 的距离,计算 AC BC AB AC 与的值,AC BC AB AC 与相等吗? 教师操作课件,提出问题与同学共同交流、观察 展示课件,导入新知 在线段AB 上,点C 把线段分成两条线段AC 和BC ,如果 AC BC AB AC =,那么称线段AB 被点C 分割,点C 叫做线段AB 的 黄金分割点,AC 与AB 的比叫黄金比。 其中618.01:215:≈-= AC AB 即618.0≈AB AC 【百度百科】黄金分割 注意事项:因为学生尚未学习一元二次方程,所以无法理解比值为 2 15-的理由,只需让学生了解这一事实即可。 板书课题:黄金分割 问题3.每小组交换检验课前自制的五角星是不是“黄金五角星”。 【百度视频】折剪五角星 第二环节 图片欣赏 活动内容: 第一幅:舞蹈演员。他们的腿和身材的比例也近似于0.618的比值,凡是具有这种比例的固样,看上去会感到和谐、平衡、舒适,有一种美的感觉. 【百度图片】舞蹈演员 A B C

第二幅:上海东方明珠塔,是亚洲第一,世界第三,它的上球体选在295米之间的位置,这个位置恰好在塔身5:8的地方,这是0.618的比值,使塔身显得非常协调、美观. 【百度图片】上海东方明珠塔 第三幅:文明古国埃及的金字塔,它的每面的边长与高之比接近于0.618. 【百度图片】文明古国埃及的金字塔 注意事项:教师提供三幅图片,在教师的引导下,学生认真观察、思考、交流,从图中找出黄金分割点。 第三环节 操作感知 活动内容: 展示课件:做一做 如果已知线段AB ,按照如下方法画图: (1)经过点B 作BD ⊥AB ,使AB BD 2 1 (2)连接AD ,在DA 上截取DE=DB (3)在AB 上截取AC=AE ,则点C 为线段AB 的黄金分割点 根据上述作图回答下列问题 (1) 如果设AB=2,那么BD 、AD 、AC 、BC 分别等于多少? (2) 点C 是线段AB 的黄金分割点吗? 教师操作课件,提出问题,学生独立思考与同伴交流 【百度文库】黄金分割构图法 【百度百科】黄金分割构图法 注意事项:教师操作,学生动手、独立思考,再与同伴交流完成。由于学生所学过的尺规作图方法有限,作图工具可以用三角尺和刻度尺。 第四环节 联系实际,丰富想象

一维搜索算法(二)

项目二 一维搜索算法(二) [实验目的] 编写抛物线插值法的程序。 [实验学时] 2学时 [实验准备] 1、掌握二分法的思想及迭代步骤 2、掌握抛物线插值法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题: 1、用二分法求解 )2()(min +=t t t ?, 已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算. 2、用抛物线插值法求解 3728)(m in 23+--=x x x x f , 已知初始单谷区间001.0]20[][==ε,,, b a .取初始插值点为x=1

[实验教案] 例1 用二分法求f(x)=8x^3-2*x^2-7*x+3 的局部最优解.允许误差ε=0.0001 ,初始点设区间为[0,1]. #include using namespace std; float f(float x) { return (8*x*x*x-2*x*x-7*x+3); } float f1(float x) { return (24*x*x-4*x-7); } void main() { float a=0,b=1,c,delta=0.0001; do { c=(a+b)/2; if(f1(c)>=0) { b=c; } else { a=c; } }while((b-a)/2>delta); cout<<"该问题的最优解为"<<(a+b)/2<<",最优值为"<

[例题2] 用抛物线插值法求解 30min ()32t t t t ?≥=-+, 已知初始单谷区间[0,3].0.05ε=,取初始插值点为t=1 #include #include using namespace std; double Alpha(double x1,double x2,double x3); double faiPhi(double t); double faiPhi(double t) //求3()32x t t ?=-+ { return (t*t*t-3*t+2); } double Alpha(double x1,double x2,double x3) //求α { double x,y; x=(x2*x2-x3*x3)*faiPhi(x1)+(x3*x3-x1*x1)*faiPhi(x2)+(x1*x1-x2*x2)*faiPhi(x3); y=(x2-x3)*faiPhi(x1)+(x3-x1)*faiPhi(x2)+(x1-x2)*faiPhi(x3); return (0.5*x/y); } void main() { double a=0,b=3,t=2,Epsilon=0.05,t1; do { t1=Alpha(a,t,b); if(fabs(t-t1)t) { if(faiPhi(t1)<=faiPhi(t)) { a=t;t=t1; } else { b=t1; } } else { if(faiPhi(t1)<=faiPhi(t)) { b=t;t=t1; } else { a=t1; } } } }while(1); }

第四章一维搜索法

第四章 一维搜索法 由第一章关于求解最优化问题概述中我们知道,从已知迭代点n k R X ∈出发按照基本迭代公式k k k k P t X X +=+1来求解最优化问题,其关键在于如何构造一个搜索方向n k R P ∈和确定一个步长1R t k ∈,使下一迭代点1+k X 处的目标函数值下降,即)()(1k k X f X f <+.现在我们来讨论,当搜索方向k P 已经确定的情况下,如何来确定步长k t ?步长因子的选取有多种方法,如取步长为常数,但这样选取的步长并不最好,如何选取最好步长呢?实际计算通常采用一维搜索来确定最优步长. 对无约束最优化问题 )(min X f n R X ∈, 当已知迭代点k X 和下降方向k P 时,要确定适当的步长k t 使=+)(1k X f )(k k k P t X f +比)(k X f 有所下降,即相当于对于参变量t 的函数 )()(k k tP X f t +=? 要在区间],0[∞+上选取k t t =使)()(1k k X f X f <+,即 )0()()()(??=<+=k k k k k X f P t X f t . 由于这种从已知点k X 出发,沿某一下降的探索方向k P 来确定步长k t 的问题,实质上是单变量函数()t ?关于变量t 的一维搜索选取问题,故通常叫做一维搜索.按这种方法确定的步长k t 又称为最优步长,这种方法的优点是,它使目标函数值在搜索方向上下降得最多. 今后为了简便起见,我们用记号 )(1k k k P X ls X ,=+ (4.1) 表示从点k X 出发沿k P 方向对目标函数)(X f 作直线搜索所得到的极小点是1+k X .其中l 和s 分别是Linear search (直线搜索)两词的词首.在目标函数)(X f 已确定的条件下(4.1) 等价于如下两式: ???? ?+==+=++k k k k t k k t k k k P t X X t tP X f P t X f 1)(min )(min )(,? 下面进一步解释迭代点k k k k P t X X +=+1的空间位置.容易证明,若从k X 出发,沿k P 方 向进行一维搜索得极小点k k k k P t X X +=+1,则该点1+=k X X 处的梯度方向)(1+?k X f 与搜索方向k P 之间应满足 0)(1=?+k T k P X f . (4.2) 事实上,设)()(k k tP X f t +=?,对t 求导有

相关主题
文本预览