当前位置:文档之家› 红外传感器的原理

红外传感器的原理

红外传感器的原理
红外传感器的原理

龙源期刊网 https://www.doczj.com/doc/ed8001741.html,

红外传感器的原理

作者:袁明昱秦慧娴郭晨晨

来源:《大经贸》2018年第06期

【摘要】红外传感器是将红外辐射能量转换为电量的一种传感器,由于任何温度高于热力学零度(-273.15℃)的物体都会辐射红外线,因此红外技术在现代科技、国防和工农业等多个领域获得了广泛的应用。本文重点介绍红外传感器的性能参数及工作原理。

【关键词】红外传感器工作原理性能参数

红外辐射(红外线)是一种人眼看不见的光线,波长范围大致在0.76~100之间。自然界一切温度高于绝对零度的物体都在以电磁波的形式向外辐射能量,其中就包括红外光波。同可见光一样,红外辐射能够进行折射、反射和散射,这样便产生了红外技术。与其他探测技术相比,红外探测技术因其环境适应性好,在夜间和恶劣气象条件下的工作能力高于可见光,可以采用被动式工作,隐蔽性好以及红外系统体积小、质量轻、功耗低等优点,在军事和民用领域都得到了广泛的应用。在军事上,红外技术广泛用于搜索和预警、探测和跟踪、夜视、武器瞄准、红外制导导弹等领域。在民用工程领域,红外技术在气象预报、环境检测、遥感资源调查以及电力、消防、石化等部门发挥着重要作用。

1.红外传感器的综述

1.1红外辐射基本知识

任何物体,只要它的温度高于热力学零度(-273.15℃)时,就会向外辐射能量,故称为热辐射,又称为红外辐射或俗称红外线。红外线是一种人眼看不见的光线,但与其他光线一样具有反射、折射、散射、干涉、吸收等性质,在真空中的传播速度为光速。在电磁辐射波谱中,红外线是位于可见光中红外光以外的光线,波长范围大致在0.76~100μm。

1.2红外传感器的分类

红外传感器是红外探测系统的核心,它的性能好坏,将直接影响系统性能的优劣。因此,选择合适的、性能良好的红外传感器,对于红外探测系统是十分重要的。按照探测机理的不同,红外传感器分为热传感器和光子传感器两大类。红外光子传感器又包括光电导传感器,光生伏特传感器,光电子发射传感器以及光磁电传感器,红外热传感器还包括热电偶型,热敏电阻型以及热释电型。

1.3红外传感器的主要性能参数

1.响应率

红外线传感器工作原理和技术参数

红外线传感器工作原理和技术参数 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为~μm;紫光的波长范围为~μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线 最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个实例,简单介绍一下红外线传感器的应用。 人体热释电红外传感器和应用介绍 被动式热释电红外探头的工作原理及特性: 一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。 1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。 2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。 3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。 5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。 在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。 红外线遥控鼠标器中的传感器 在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚轴转动,X轴方向和Y轴方向滚轴又各带动一个转轴(称为译码轮)转动。译码轮(见图1)的两侧分别装有红外发光二极管和光敏传感器,组成光电耦合器。光敏传感器内部沿垂直方向排列有两个光敏晶体管A和B,如图2所示。由于译码轮有间隙,故当译码轮转动时,红外发光二极管发出的红外线时而照在光敏传感器上,时而被阻断,从而使光敏传感器输出脉冲信号。光敏晶体管A和B被安放的位置使得其光照和阻断的时间有差异,从而产生的脉冲A和脉冲B有一定的相位差,利用这种方法,就能测出鼠标器的拖动方向 照相机中的红外线传感器――夜视功能 红外夜视,就是在夜视状态下,数码摄像机会发出人们肉眼看不到的红外光线去照亮被拍摄的物体,关掉红外滤光镜,不再阻挡红外线进入CCD,红外线经物体反射后进入镜头进行成像,这时我们所看到的是由红外线反射所成的影像,而不是可见光反射所成的影像,即此时可拍摄到黑暗环境下肉眼看不到的影像。索尼数码摄像机首创了红外线夜视摄影功能,能够在全黑环境下进行拍摄,甚至连肉眼也不能分辨清楚的物体,现在也可以清晰地拍摄下来。这种夜视的特点是可以在完全没有光线的条件下进行拍摄,但由于采用的是红外摄影,无法进行彩色的还原,所以拍摄出来的画面是单色的,影像会变绿。不久之后,索尼又推出了拥有超级红外线夜视摄功能的数码摄像机,红外线功能的慢速快门为2段选择,超级红外线夜摄功能的慢速快门为自动调节,可以获得更好的影像效果。举一个大家都见过的例子,在美国空袭伊拉克时,

红外温度传感器(BM43系列)应用指南

红外温度传感器(BM43系列)应用指南 Application Note for BM43 series 编号BM-SOP-T023 版本V1.0 发布日期2016.8.20 生效日期2016.8.20 1 目的 为更好的解答客户在BM43系列产品在设计和应用中遇到的问题,将之前客户反馈的问题整理解答,以便参照。 2 范围 适用于本公司红外温度传感器系列产品(BM43THA/BM43THD/BM43TNA/BM43TND)以及以BM43系列产品为主要测温单元生产的各种可穿戴式/手持式测温仪器的应用。 3 主要问题及应用指南 3.1. 基本使用 3.1.1 如何使用BM43系列产品测量人体温度 正常人体体温不是一个具体的温度点,而是一个温度范围。机体深部的体温较为恒定和均匀,称深部体温;而体表的温度受多种因素影响,变化和差异较大,称表层温度。临床上所指的体温是指平均深部温度。一般以口腔、直肠和腋窝的体温为代表,其中直肠体温最接近深部体温。正常值:口腔舌下温度为37℃(范围36.3-37.2℃),直肠温度37.5℃(比口腔温度高(0.3-0.5℃),腋下温度为36.5℃(范围 36.0℃-37.0℃)。 使用BM43系列产品测量人体体温时,额温枪建议测量位置为人体额头太阳穴动脉附近,这里的动脉血所辐射出的温度接近人体核心温度;耳温枪建议测量位置为耳道内部,枪头越深入越好,但不要造成不舒服,测儿童时最好将耳朵轻往后上方拉(将耳道拉直)。 3.1.2 穿戴设备戴在手腕上监测手腕皮肤温度的作用 穿戴设备戴在手腕上监测手腕皮肤温度不能代表人体核心温度,原因一:手腕皮肤表面的温度在医学上不能代表人体核心温度,四肢不是医学上认可的测温点;二,通过大数据分析,手腕的温度变化受外界环境影响较大,长时间监测显示温度为非线性变化。 但该测量温度可以作为一项生命体征数据,长时间监控体表温度的变化,超出设定温度的阈值则发出提醒信号。 3.1.3 如果靠近皮肤,每5s检测一次,连续24小时,会不会有问题?时间长了会不会因信号累计出现不准?如果放在腋下长时间使用有没问题?需要注意什么问题? 如果突然从低温发热源(冰)靠近高温发热源(火),会对传感器增加一个突发热源(骤热) ,会短时间内造成传感器热休克。这种情况与耳温枪类似,耳温枪的解决办法是在传感器外加上金属热阻,以缓冲热休克现象对测温造成不准的影响;另外一种方法是软件上指令ASIC忽略最开始的50-100个数据(大概

红外感应原理知识

红外感应原理知识 所谓的红外感应开关,只是利用了人眼看不到的红外线来感应物体的,感应开关的核心元器件就是红外反射传感器了。红外反射传感器包括一个红外线发光二极管和一个红外线光敏二极管,它们两个都朝着一个方向,被封装在一个塑料外壳里。使用的时候,红外线发光二极管点亮,发出一道人眼看不见的红外光。如果传感器的前方没有物体,那么这道红外光就以每秒299792458 米的速度(光速)消散在宇宙空间。但如果传感器前方有不透明的物体时,红外光就会被反射回来,照在自己也照在旁边的红外线光敏二极管身上。红外线光敏二极管收到红外光时,其输出引脚的电阻值就会产生变化。判断红外线光敏二极管的阻值变化,就可以感应前方物体,控制电器开关了。红外线供应网 下图主要原理把红外线发光二极管以某一频率进行调制,即让它以一定的频率闪烁。在红外线光敏二极管一端则设计一个电路,让接收端可以筛选出这一频率的红外光源。因为环境里的红外光要么是没有频率的,要么就是有着自己固定的频率。像收音机一样,传感器只要以自己的频率发射,再以自己的频率接收就可以过滤其他频率光源的干扰了,而且由于接收管胶体也对可见光的波段光源进行过滤,所以在室内使用的情况下是没有问题的。 不过,当强光照进室内,感应开关受强光的影响而处在不稳定的状态,自行的开关,或是对反射物体没有反应。家里常用的电视机红外线遥控器也会让感应开关失灵。即使把它放在阴暗的角落也会出现一个讨厌的问题,当反射物体处在某一个临界距离时,感应开关就会不断的开关,继电器的吸合很快,好像一台电报机。这是因为反射物体正好处在了感应区的临界点上,也就是“感应到”和“感应不到”的分界线上,物体微微靠近或离开就会产生开关状态的改变。所以一般现都会通过单片机对光干扰进行软件上的处理,而且电路比用硬件来做简单得多。具体电路如下所示:

传感器及其工作原理 说课稿 教案

传感器及其工作原理 【三维目标】 1.知识与技能: (1)、了解什么是传感器,知道非电学量转化为电学量的技术意义; (2)、知道传感器中常见的三种敏感元件光敏电阻、热敏电阻和霍尔元件及其它们的工作原理。 (3)、了解传感器的应用。 2.过程与方法: 通过对实验的观察、思考和探究,让学生在了解传感器、熟悉传感器工作原理的同时,经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践 能力和创新思维能力。 3.情感、态度与价值观 (1)、体会传感器在生活、生产、科技领域的种种益处,激发学生的学习兴趣,拓展学生的知识视野,并加强物理与STS的联系。 (2)、通过动手实验,培养学生实事求是的科学态度、团队合作精神和创新意识。【教学重点】:理解并掌握传感器的三种常见敏感元件的工作原理。 【教学难点】:分析并设计传感器的应用电路。 【教学方法】:实验、探究、讨论 【教学用具】:干簧管,磁铁,光敏电阻、热敏电阻演示仪、传感器简单应用实验盒、万用表。 【教学过程】 一、引入新课 准备知识:从上世纪八十年代起,国际上出现了“传感器热”,传感器在当今科技发展中有着十分重要的地位。本课的设计思路是通过对实验的观察、思考和探究,了解什么是传感器,传感器是如何将非电学量转换成电学量的,传感器在生产、生活中有哪些具体应用,为学生利用传感器制作简单的自控装置作一铺垫。教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。 今天我们生活中常用的电视、空调的遥控器是如何实现远距离操纵的?楼梯上的电灯如何能人来就开,人走就熄的?工业生产中所用的自动报警器、恒温烘箱是如何工作的?“非典”病毒肆虐华夏大地时,机场、车站、港口又是如何实现快速而准确的体温检测的?所有这些,都离不开一个核心,那就是本堂课将要学习的传感器。 二、新课教学 1.什么是传感器 演示实验1:如图1所示,小盒子的侧面露出一个小灯泡,盒外没有开关,当把磁铁放到盒子上面,灯泡就会发光,把磁铁移开,灯泡熄灭。

红外感应灯电路设计及原理

红外感应灯电路设计及原理 1、电路主要光学元件 (1)光敏电阻的应用 光敏电阻又称光导管, 它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性, 是一个电阻器件。制作光敏电阻的材料一般是金属硫化物和金属硒化物,通常采用涂敷、喷涂等方法,在陶瓷基片上涂上半导体薄膜,经烧结而成。 光敏电阻的结构:在底板上均匀地涂上一层薄薄的半导体物质,称为光导层。半导体的两端装有金属电极与引出线端相连接,通过引出线端接入电路。为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最大。为了提高灵敏度,光敏电阻的电极一般采用梳状图案,光敏电阻结构,光敏电阻电极,光敏电阻接线图光敏电阻工作原理--内光电效应。光照射到本征半导体上,材料中的价带电子吸收了光子能量跃迁到导带,激发出电子、空穴对,增强了导电性能,使阻值降低。光照停止,电子空穴对又复合,阻值恢复。亮电阻很小,暗电阻很大。要使价带电电子跃迁到导带,入射光子的能量满足刚好发生内光电效应的临界波长。 常用的光敏电阻器是硫化镉光敏电阻器,它是由半导体材料制成的。光敏电阻器的阻值随入射光线(可见光)的强弱变化而变化,在黑暗条件下,它的阻值(暗阻)可达1-10MΩ;在强光条件(100LX)下,它阻值(亮阻)仅有几百至数千欧姆。光敏电阻器对光的敏感性(即光谱特性)与人眼对可见光(0.4-0.76um)的响应很接近,只要人眼可感受的光,都会引起它的阻值变化。 本电路采用MG42型CdS光敏电阻,CdS光敏电阻属半导体光敏器件,产品经受强化老练实验,除具有灵敏度高,反应速度快,光谱特性好等特点外,在高温、多湿的恶劣环境下,仍能保持其高度的稳定性和可靠性,适合于将其用于各种环境,MG42型光敏电阻与其它型号相比具有:工作电压和额定功率比较低的特点,其亮、暗电阻也适合于本照明电路的需要,所以在设计时选择了这个型号。 (2)可控硅元件的工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示

红外测距传感器的工作原理及使用

光电检测技术与应用 论文 题目:红外测距传感器的工作原理及使用 院系:机电工程学院 班级:测控xxxx 完成日期:2017/5/6 小组:第x组 小组成员:xxxxxxxxxx 红外测距传感器的工作原理及使用 摘要: 利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 关键字:光电检测技术、智能车、测距、红外测距传感器、单片机 一、引言 光电检测作为光学与电子学相结合而产生的一门新兴检测技术,主要包括光信息获取、光电变换、光信息测量以及测量信息的智能化处理等,具有精度高、速度快、距离远、容量大、非接触、寿命长、易于自动化和智能化等优点,在国民经济各行业中得到了迅猛的发展和广泛的应用,如光扫描、光跟踪测量,光纤测量,激光测量,红外测量,图像测量,微光、弱光测量等,是当前最主要和最具有潜力的光电信息技术。

二、光电检测技术的概念 光电检测技术是光学与电子学相结合而产生的一门新兴检测技术。它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高测系统输出信号的信噪比。 光电检测技术的系统机构比较简单,分为信号的处理器,受光器,光源。在实际检测过程中,受光器在获得感知信号后,就会被反映为不同形状、颜色的信号,同时根据这些器件所处在的不同位置,就能够将他分为反射型与透过型的两种比较的模式。光电检测的媒介光应当是自然的光,例如白炽灯或者萤光灯。特别是随着这些技术的发展,光电技术也取得的非常好发展。由于投光器在发出光后,会以不一样的方式触摸这些被检测物中,直到照射到检测系统中的受光器中,同时受光器在此刺激下,会产生一定量的电流,这就是我们常说的光敏性的原件,实际生活中应用比较广泛的有三极管、二极管。 三、光电检测技术的应用 智能车方面的应用、家庭扫地机器人方面的应用:利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 四、常用光电检测器件:红外测距传感器 原理:其输出为电压数值,通过公式L?=?(6762/(9-X))-4可计算出小车与障碍物之间的距离。

红外温度传感器OTP-668D2

深圳永盟电子邬先生 152.2017.9727 The OTP-668D2 is a thermopile sensor in classic TO-46 housing. The sensor is composed of 116 elements of thermocouple in series on a floating micro-membrane having an active area of diameter 700 μm. The thermopile sensor provides nearly Johnson-noise-limited performance, which can be calculated by its ohmic series resistance. A thermistor with a lead connected to ground is also provided inside the TO package for ambient temperature reference. TO-46 metal housing with IR absorber coating inside Thermistor reference included Low temperature coefficient of sensitivity Ideally suited for ear thermometers, miniature pyrometer. Thermopile Sensor OTP-668D2 Revision Date: 2010/10/14

传感器及其工作原理教案

江苏省淮阴中学06-07年度优秀教学案例 《传感器及其工作原理》的创新教学设计 王刚 教学依据 ①物理(新人教版)选修3-2第六章第1节《传感器及其工作原理》(P56-P60); ②新物理课程标准(实验). 教学流程图

教学目标1.知识与技能:①知道非电学量转换成电学量的技术意义;②通过实验,知道常见传感器的工作原理;③初步探究利用和设计简单的传感器. 2.过程与方法:①通过对实验的观察、思考和探究,让学生了解传感器、熟悉传感器工作原理;②让学生自己设计简单的传感器,经历科学探究过程,学习科学研究方法,培养学生的实践能力和创新思维能力. 3.情感态度与价值观:在理解传感器工作原理的基础上,通过自己设计简单的传感器,体验科技创新的乐趣,激发学习物理的兴趣. 重、难点 1.几种常见传感器的工作原理(演示实验);2.学生自己设计简单的传感器. 教学策略 用几个有趣的传感器实验引入课题,激发学生探究传感器原理的兴趣.给出“传感器就是把非电学量转换为电学量”的概念之后,重点介绍光敏电阻、金属热电阻、热敏电阻.安排音乐茶杯和火警装置两个设计性问题让学生体会传感器的简单应用.结合电容、霍尔效应、电阻定律等知识让学生设计传感器,进一步深化传感器的工作原理.最后在对本节课总结的基础上,结合《思考与讨论》进行教学反馈. 教学程序 教学环节教学内容及师生互动设计情感与方法 一.课题的引入 二.什么是传感器?【演示实验1】干簧管控制电路的通断 如图,小盒子A的侧面露出一个小灯泡,盒外没有开 关,但是把磁铁B放到盒子上面,灯泡就会发光,把磁铁移 走,灯泡熄灭. 师问:盒子里有怎样的装置,才能实现这样的控制? 生猜:(可以自由讨论,也可以请学生回答) 师生探究:打开盒子,用实物投影仪展示盒内的电路 图,了解元件“干簧管”的结构。探明原因:玻璃管内封入 两个软磁性材料制成的簧片。当磁铁靠近干簧管时,两个簧 片被磁化而接通,电路导通。所以,干簧管能起到开关的作 用。 师点拨:这个装置反过来还可以让我们通过灯泡的发 光情况,感知干簧管周围是否存在着磁场。 【演示实验2】声光控开关控制电路的通断 ①先在普通光照条件下, ②在把开关置于黑暗环境中。 师生总结:声光控开关 师:刚才的两个实验,都用了一种元件,这些元件能够 感受某些信息,通过它能实现电路的自动控制,这种元件有 一个专门的名称:传感器。什么是传感器呢?它能够感受诸 如力、温度、光、声、化学成分等非电学量,并能把它们按 照一定的规律转换为电压、电流等电学量,或转换为电路的 通断。我们把这种元件叫做传感器。它的优点是:把非电学 量转换为电学量以后,就可以很方便地进行测量、传输、处 理和控制了。 其实,传感器并不神秘。你家里可能就有很多的传感 器。请大家相互说说看,你家里,或者在你的生活当中,都 (演示实验1: 干簧管传感器) (干簧管的实 物及原理图) 学生对干簧 管并不熟悉,因 此才有了好奇。 声光控开关在 生活中很普及, 所以又有亲切 感

(完整版)红外测温传感器

红外光电传感器测温仪 1红外测温传感器结构 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内的算法和目标发射率校正后转变为被测目标的温度值。 2红外测温传感器工作原理 在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射量。根

据基尔霍夫定律、普朗克定律、维恩公式这三大辐射定律,物体的红外辐射能量的大小及其按波长的分布与其表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 三大辐射定律均是以“黑体”作为研究对象分析得出的。但是,自然界中存在的实际物体都不是黑体,所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法以及表面状态和环境条件等因素有关。因此,为了使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在0-1之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。物体表面发射率主要决定于材料性质和表面状态( 如表面氧化情况,涂层材料,粗糙程度及污秽状态等)。 当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中的红外线在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质成为黑体,其他的波段的最大值成为灰体。事实上,自然界中并不存在黑体,只是为了获得红外线的分布规律才提出的,从而导出了普朗克黑体辐射定律。 普朗克黑体辐射定律是用于描述在任意温度下从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础用公式可表达为: E=δε(T-To ) E 是辐射出射度.单位是W /m3; δ是斯蒂芬一波尔兹曼常数,5.67x10-8W /(m2·K4); ε是物体的辐射率: T 是物体的温度(K ); To 是物体周围的环境温度(K )。 红外测温仪电路比较复杂, 包括前置放大, 选频放大, 温度补偿, 线性化, 发射率ε (比辐射率 )调节等。目前已有一种带单片机的智能红外测温仪, 利用单片机与软件的功能, 大大简化了硬件电路, 提高了仪表的稳定性、可靠性和准确性。 红外测温仪的光学系统可以是透射式, 也可以是反射式。 反射式光学系统多采用凹面玻璃反射镜, 并在镜的表面镀金、 铝、镍或铬等对红外辐射反射率很高的金属材料。 3红外测温理论基础 3.1红外辐射(红外线、红外光) 红外线是电磁波谱中,波长0.76μm -1000μm 范围的电磁辐射,位于红外光与无线电波之间。与可见光的反射、折射、干涉、衍射和偏振等特性相同。同时具有粒子性。对人的眼睛不敏感,要用对红外敏感的探测器才能接收到。红外辐射的本质是热辐射,热辐射包括紫外光、可见光辐射,但是在0.76μm -40μm 红外辐射热效应最大。 自然界中一切温度高于绝对零度的有生命和无生命的物体,时时刻刻都在不停地辐射红外线。辐射的量主要由物体的温度和材料本身的性质决定;特别热辐射的强度及光谱成份取决于辐射体的温度。 3.2黑体辐射规律 黑体红外辐射的基本规律揭示的是黑体发射的红外热辐射随温度及波长的定量关系。黑体一种理想物体,它们在相同的温度下都发出同样的电磁波谱,而与黑体的具体成分和形状特性无关。斯特藩和玻耳兹曼通过实验和计算得出黑体辐射定律: 4 0)(T T M σ=

红外传感器原理

利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。 红外线传感器包括光学系统、检测元件和转换电路。光学系统按结构不同可分为透射式和反射式两类。检测元件按工作原理可分为热敏检测元件和光电检测元件。热敏元件应用最多的是热敏电阻。热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。 红外线传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。例如采用红外线传感器远距离测量人体表面温度的热像图,可以发现温度异常的部位,及时对疾病进行诊断治疗(见热像仪);利用人造卫星上的红外线传感器对地球云层进行监视,可实现大范围的天气预报;采用红外线传感器可检测飞机上正在运行的发动机的过热情况等。 https://www.doczj.com/doc/ed8001741.html,/view/495838.html 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个实例,简单介绍一下红外线传感器的应用。人体热释电红外传感器和应用介绍被动式热释电红外探头的工作原理及特性:一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。 1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。 2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。 3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。 5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。红外线遥控鼠标器中的传感器在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚

外文翻译---智能红外温度传感器

毕业设计外文文献翻译 毕业设计题目温室大棚测控系统设计翻译题目智能红外温度传感器专业测控技术与仪器 姓名 班级 学号 指导教师 机械与材料工程学院 二〇一一年十月

智能红外温度传感器 跟上不断发展的工艺技术对工艺工程师来说是一向重大挑战。再加上为了保持目前迅速变化的监测和控制方法的过程的要求,所以这项任务已变得相当迫切。然而,红外温度传感器制造商正在为用户提供所需的工具来应付这些挑战:最新的计算机相关的硬件、软件和通信设备,以及最先进的数字电路。其中最主要的工具,不过是新一代的红外温度计---智能传感器。 今天新的智能红外传感器代表了两个迅速发展的结合了红外测温和通常与计算机联系在一起的高速数字技术的科学联盟。这些文书被称为智能传感器,因为他们把微处理器作为编程的双向收发器。传感器之间的串行通信的生产车间和计算机控制室。而且因为电路体积小,传感器因此更小,简化了在紧张或尴尬地区的安装。智能传感器集成到新的或现有的过程控制系统,从一个新的先进水平,在温度监测和控制方面为过程控制方面的工程师提供了一个直接的好处。 1.集成智能传感器到过程线 同时广泛推行的智能红外传感器是新的,红外测温已成功地应用于过程监测和控制几十年了。在过去,如果工艺工程师需要改变传感器的设置,它们将不得不关闭或者删除线传感器或尝试手动重置到位。当然也可能导致路线的延误,在某些情况下,是十分危险的。升级传感器通常需要购买一个新单位,校准它的进程,并且在生产线停滞的时候安装它。例如,某些传感器的镀锌铁丝厂用了安装了大桶的熔融铅、锌、和/或盐酸并且可以毫不费力的从狭窄小道流出来。从安全利益考虑,生产线将不得不关闭,并且至少在降温24小时之前改变和升级传感器。 今天,工艺工程师可以远程配置、监测、处理、升级和维护其红外温度传感器。带有双向RS - 485接口或RS - 232通信功能的智能模型简化了融入过程控制系统的过程。一旦传感器被安装在生产线,工程师就可以根据其所有参数来适应不断变化的条件,一切都只是从控制室中的个人电脑。举例来说,如果环境温度的波动,或程序本身经历类型、厚度、或温度的改变,所有过程工程师需要做的是定制或恢复保存在计算机终端的设置。如果智能传感器由于高温度环境、电缆断裂或者未能组成部分而失败了,其故障进行自动修复。该传感器激活触发报警停机,防止损坏产品和机械。如果烤炉或冷却器失败了,音响和LO警报信号还可以指出哪里有问题并且关闭生产线。 1.1 延长传感器的使用寿命 为了使智能传感器符合数千种不同类型的进程,就必须完全自己定义。由于智能传感器包含只读(可擦除可编程只读存储器),用户可以重新编程以满足他们各自的具体程序要求

三角法红外测距原理介绍

三角法红外测距原理介绍 工作原理: Sharp的红外传感器都是基于一个原理,三角测量原理。红外发射器按照一定的角度发射红外光束,当遇到物体以后,光束会反射回来,如图1所示。反射回来的红外光线被CCD检测器检测到以后,会获得一个偏移值L,利用三角关系,在知道了发射角度a,偏移距L,中心矩X,以及滤镜的焦距f以后,传感器到物体的距离D就可以通过几何关系计算出来了。 图1:三角测量原理

可以看到,当D的距离足够近的时候,L值会相当大,超过CCD的探测范围,这时,虽然物体很近,但是传感器反而看不到了。当物体距离D很大时,L值就会很小。这时CCD检测器能否分辨得出这个很小的L 值成为关键,也就是说CCD的分辨率决定能不能获得足够精确的L值。要检测越是远的物体,CCD的分辨率要求就越高。 非线性输出: Sharp GS2XX系列的传感器的输出是非线性的。没个型号的输出曲线都不同。所以,在实际使用前,最好能对所使用的传感器进行一下校正。对每个型号的传感器创建一张曲线图,以便在实际使用中获得真实有效的测量数据。下图是典型的Sharp GP2D12的输出曲线图。 图2:Sharp GP2D12输出曲线 从上图中,可以看到,当被探测物体的距离小于10cm的时候,输出电压急剧下降,也就是说从电压读数来看,物体的距离应该是越来越远了。但是实际上并不是这样的,想象一下,你的机器人本来正在慢慢的靠近障碍物,突然发现障碍物消失了,一般来说,你的控制程序会让你的机器人以全速移动,结果就是,"砰"的一声。当然了,解决这个方法也不是没有,这里有个小技巧。只需要改变一下传感器的安装位置,使它到机器人的外围的距离大于最小探测距离就可以了。如图3所示:

热释电红外传感器工作原理讲解学习

1 概述 随着时代的不断进步,人们对自己所处环境的安全性提出了更高的要求,尤其是在家居安全方面,不得不时刻留意那些不速之客?现在很多小区都安装了智能报警系统,因而大大提高了小区的安全程度,有效保证了居民的人身财产安全?由于红外线是不可见光,有很强的隐蔽性和保密性,因此在防盗?警戒等安保装置中得到了广泛的应用?此外,在电子防盗?人体探测等领域中,被动式热释电红外探测器也以其价格低廉?技术性能稳定等特点而受到广大用户和专业人士的欢迎? 目前国内使用的各类防盗?保安报警器基本都是以超声波?主动式红外发射/接收以及微波等技术为基础?而这里所设计的被动式红外报警器则采用了美国的传感元件——热释电红外传感器?这种热释电红外传感器能以非接触形式检测出人体辐射的红外线,并将其转变为电压信号,同时,它还能鉴别出运动的生物与其它非生物?热释电红外传感器既可用于防盗报警装置,也可以用于自动控制?接近开关?遥测等领域?用它制作的防盗报警器与目前市场上销售的许多防盗报警器材相比,具有如下特点: ●不需要用红外线或电磁波等发射源? ●灵敏度高?控制范围大? ●隐蔽性好,可流动安装?

2 热释电红外传感器的原理特性 热释电红外传感器和热电偶都是基于热电效应原理的热电型红外传感器?不同的是热释电红外传感器的热电系数远远高于热电偶,其内部的热电元由高热电系数的铁钛酸铅汞陶瓷以及钽酸锂?硫酸三甘铁等配合滤光镜片窗口组成,其极化随温度的变化而变化?为了抑制因自身温度变化而产生的干扰该传感器在工艺上将两个特征一致的热电元反向串联或接成差动平衡电路方式,因而能以非接触式检测出物体放出的红外线能量变化并将其转换为电信号输出?热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换?由于热电元输出的是电荷信号,并不能直接使用因而需要用电阻将其转换为电压形式该电阻阻抗高达104MΩ,故引入的N沟道结型场效应管应接成共漏形式即源极跟随器来完成阻抗变换?热释电红外传感器由传感探测元?干涉滤光片和场效应管匹配器三部分组成?设计时应将高热电材料制成一定厚度的薄片,并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元?由于加电极化的电压是有极性的,因此极化后的探测元也是有正?负极性的? 图1是一个双探测元热释电红外传感器的结构示意图?使用时D端接电源正极,G 端接电源负极,S端为信号输出?该传感器将两个极性相反?特性一致的探测元串接在一起,目的是消除因环境和自身变化引起的干扰?它利用两个极性相反?大小相等的干扰信号在内部相互抵消的原理来使传感器得到补偿?对于辐射至传感器的红外辐射,热释电传感器通过安装在传感器前面的菲涅尔透镜将其聚焦后加至两个探测元上,从而使传感器输出电压信号? 制造热释电红外探测元的高热电材料是一种广谱材料,它的探测波长范围为0.2~2 0μm?为了对某一波长范围的红外辐射有较高的敏感度,该传感器在窗口上加装了一块

传感器及其工作原理 说课稿 教案 教学设计

传感器 【教材分析】: 《6.1 传感器及其工作》是新人教版高中物理选修3-2第六章第一节的教学内容,主要学习一些简单传感器,以介绍为主,课程内容比较简单。 【教学目标】 一、知识与技能: (1)、了解什么是传感器,知道非电学量转化为电学量的技术意义; (2)、知道传感器中常见的三种敏感元件光敏电阻、热敏电阻和霍尔元件及其它们的工作原理。 (3)、了解传感器的应用。 二、过程与方法: 通过对实验的观察、思考和探究,让学生在了解传感器、熟悉传感器工作原理的同时,经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践能力和创新思维能力。 三、情感、态度与价值观: (1)、体会传感器在生活、生产、科技领域的种种益处,激发学生的学习兴趣,拓展学生的知识视野,并加强物理与STS的联系。 (2)、通过动手实验,培养学生实事求是的科学态度、团队合作精神和创新意识。 【教学重点】:理解并掌握传感器的三种常见敏感元件的工作原理。 【教学难点】:分析并设计传感器的应用电路。 学情分析: 从上世纪八十年代起,国际上出现了“传感器热”,传感器在当今科技发展中有着十分重要的地位。本课的设计思路是通过对实验的观察、思考和探究,了解什么是传感器,传感器是如何将非电学量转换成电学量的,传感器在生产、生活中有哪些具体应用,为学生利用传感器制作简单的自控装置作一铺垫。学生对传感器了解较少,教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。 【教学方法】:实验、探究、讨论 【教学用具】:干簧管,磁铁,光敏电阻、热敏电阻演示仪、传感器简单应用实验盒、万用表。 【课时安排】1课时 【教学过程】 预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性 一、引入新课: 今天我们生活中常用的电视、空调的遥控器是如何实现远距离操纵的?楼梯上的电灯如何能人来就开,人走就熄的?工业生产中所用的自动报警器、恒温烘箱是如何工作的?“非典”病毒肆虐华夏大地时,机场、车站、港口又是如何实现快速而准确的体温检测的?所有这些,都离不开一个核心,那就是本堂课将要学习的传感器。 二、新课教学 1.什么是传感器 演示实验1:如图1所示,小盒子的侧面露出一个小灯泡,盒外没有开关,当把磁铁放

红外温度传感器OTP-538U

Introduction The OTP-538U is a thermopile sensor in classic TO-46 housing. The sensor is composed of 116 elements of thermocouple in series on a floating micro-membrane having an active diameter of 545 μm and with blacken surface to absorb the incident thermal infrared radiation, which induces a voltage response at output terminals. The sensor chip is fabricated by a unique front-surface bulk micromachining technology, which result in smaller size and faster to response ambient temperature change.The IR window is a bandpass filter having its 50% cut-on wavelength at 5 μm, and cut -down at 14μm. The sensor responses proportionally to the incident IR radiation and has a constant signal response up to its cut-off frequency, which is limited by the sensor thermal time constant of tens millisecond range.The OTP-538U thermopile sensor provides nearly Johnson-noise-limited performance, which can be calculated by its ohmic series resistance. A thermistor element, with a lead connected to ground, is also provided inside the TO package for ambient temperature reference . Features Non-contact temperature detection Voltage output, easy to take signal Zero power consumption Wide detection temperature range Applications Medical Application: Ear thermometers Home Facility: Microwave oven, Hair dryer, Safety system, Home security, Refrigerator & Air conditioner Industry Application: Process monitor and controller, Infrared non-contact thermometers Automobile Application: Thermal sensing system Table of Contents 1 General Characteristics 1.1 Absolute Maximum Ratings 1.2 Handling Guidelines 2 Device Characteristics 2.1 Device Descriptions 2.2 Sensor Characteristics 2.3 Signal Output Characteristics 2.4 Frequency Response 2.5 Thermistor Characteristics 2.6 Optical Characteristics 2.7 Filter Characteristics 2.8 Mechanic Drawing and Pin Assignment 3 Liability Statement Thermopile Sensor OTP-538U Revision Date: 2009/04/16

光电传感器工作原理(红外线光电传感器原理)

光电传感器工作原理(红外线光电传感器原理) 光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的。光电传感器在一般情况下,有三部分构成,它们分为:发送器、接收器和检测电路。 发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。光束不间断地发射,或者改变脉冲宽度。接收器有光电二极管、光电三极管、光电池组成。在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效信号和应用该信号。 此外,光电开关的结构元件中还有发射板和光导纤维。 三角反射板是结构牢固的发射装置。它由很小的三角锥体反射材料组成,能够使光束准确地从反射板中返回,具有实用意义。它可以在与光轴0到25的范围改变发射角,使光束几乎是从一根发射线,经过反射后,还是从这根反射线返回。 分类和工作方式 ⑴槽型光电传感器把一个光发射器和一个接收器面对面地装在一个槽的两侧的是槽形光电。发光器能发出红外光或可见光,在无阻情况下光接收器能收到光。但当被检测物体从槽中通过时,光被遮挡,光电开关便动作。输出一个开关控制信号,切断或接通负载电流,从而完成一次控制动作。槽形开关的检测距离因为受整体结构的限制一般只有几厘米。 ⑵对射型光电传感器若把发光器和收光器分离开,就可使检测距离加大。由一个发光器和一个收光器组成的光电开关就称为对射分离式光电开关,简称对射式光电开关。它的检测距离可达几米乃至几十米。使用时把发光器和收光器分别装在检测物通过路径的两侧,检测物通过时阻挡光路,收光器就动作输出一个开关控制信号。 ⑶反光板型光电开关把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式(或反射镜反射式)光电开关。正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号。 ⑷扩散反射型光电开关它的检测头里也装有一个发光器和一个收光器,但前方没有反光板。正常情况下发光器发出的光收光器是找不到的。当检测物通过时挡住了光,并把光部分反射回来,收光器就收到光信号,输出一个开关信号。

相关主题
文本预览
相关文档 最新文档