当前位置:文档之家› 直流电流检测电路

直流电流检测电路

直流电流检测电路
直流电流检测电路

直流电流检测电路

https://www.doczj.com/doc/ee5092603.html,/blog/wang1jin/

1. 工作原理…

在负载的某一端串一个小阻值的电阻… 串联电路中流过负载和取样电阻的电流是相等的… 根据这个就可以计算出负载和取样电阻上的电压…当负载电流过大.相应取样电阻上的电压也会升高.根据这个原理…只要取出取样电阻二端电压就可以判断流过负载电流的大小.

2. 电路原理图…

电路中RL 代表负载… R1代替取样电阻…由于R1值比较小…所以取得的电压也比较低. 所以要经过一级同向放大.放大倍数约为10倍…放大的信号直接输入到U2A 电压比较器的同向输入端…只要改变U2A 的反向输入端电压,就可以实现对负载过流时候的保护…

R1上取样电压和放大后的电压波形图:

绿色线为取样电阻二端电压…黄色线为经过运放放大后的电压…放大量为10倍.

按图中参数… 当负载变化从.1-10欧的时候…电压比较器的输出电压图… U n R e g i s t e r e

d

可以看出当电阻为2欧的时候…运放就停止保护…输出电压为124MV…

适合改变取样电阻…以及U2A 的反向端输入电压.就能改变保护电流值…

U n R e g i s t e r e d

电流检测电路设计

课程设计报告题目:电流检测电路设计 课程名称:电子信息工程课程设计 学生姓名:焦道楠 学生学号:1314020114 年级:2013级 专业:电子信息工程 班级:(1)班 指导教师:王留留 电子工程学院制 2016年3月

目录 1 绪论 (1) 2 设计的任务与要求 (1) 2.1 课程设计的任务 (1) 2.2 课程设计的要求 (1) 3 设计方案制定 (1) 3.1 设计的原理 (1) 3.2 设计的技术方案 (2) 4 设计方案实施 (3) 4.1 单片机模块 (3) 4.2 传感器模块 (4) 4.3 A/D转换模块 (5) 4.4 LCD12864点阵液晶显示模块 (6) 5 各模块PCB图 (7) 5.1 单片机模块 (7) 5.2 传感器模块 (7) 6 系统的程序设计 (9) 7 心得体会 (10) 参考文献 (10)

电流检测电路设计 学生:焦道楠 指导教师:王留留 电子工程学院电子信息工程专业 1 绪论 在电学中的测量技术涉及的范围非常广,广泛应用于学校、工业、工厂、科研等各种领域,供实验室和工业现场测量使用。随着电子技术的不断发展,在数字化和智能化不断成为主体的今天,电压、电流测量系统中占有非常重要的位置。我们在分析和总结了单片机技术的发展历史及发展趋势的基础上,以实用、可靠、经济的设计原则为目标,设计出全数字化测量电压电流装置。系统主要以AT89C51单片机为控制核心,整个系统由中央控制模块、A/D转换模块、LED显示模块组成。可实现对待测电压、电流的测量,在数码管上显示。本次课程设计我所做的项目是基于单片机的电流检测系统,主要用到A/D转换和数码管显示。近几年来,单片机已逐步深入应用到工农业生产各部门以及人们生活的各个方面。各种类型的单片机也根据社会的需求而相继开发出来。单片机是一个器件级的计算机系统,实际上它是一个微控制器或微处理器。由于它功能齐全,体积小,成本低,因此它可以应用到所有的电子系统中。AT89C51是一种带4K字节闪存的可编程可插除只读存储器的单片机。单片机的可擦除只读存储器可以反复的擦除多次,该器件采用ATMEL高密度非易失性存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能的8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器。 2设计的任务与要求 2.1 课程设计的任务 利用单片机及其相关知识,设计一个电流检测电路。 2.2 课程设计的要求 (1)画出相应电流检测电路的原理图,并进行检测,生成PCB板; (2)编写程序,实现电流检测功能; (3)情况允许的情况下,做出实物,并估算其成本。 3设计方案制定 3.1 设计的原理

相位差检测电路

课程设计报告 课程电子测量与虚拟仪器 题目相位差检测电路 系别物理与电子工程学院 年级08级专业电子科学与技术 班级08电科(3)班学号0502083(02 14 23 24)学生姓名崔雪飞陈祥刘刚李从辉 指导教师徐健职称讲师 设计时间2011-4-25~2011-4-29

目录 第一章绪论 (2) 第二章题目及设计要求 (3) 2.1题目要求 (3) 2.2设计要求 (3) 第三章方案设计与论证 (4) 3.1移相电路设计 (4) 3.2检测电路设计 (4) 3.3显示电路设计 (5) 第四章结构框图等设计步骤 (6) 4.1设计流程图 (6) 4.2模块分析 (7) 4.2.1 移相电路 (7) 4.2.2 检测电路 (7) 4.2.3 显示电路 (8) 4.3结果显示 (9) 4.4总电路图 (11) 第五章误差分析 (12) 第六章总结体会 (13) 第七章参考文献 (14) 附录 (15)

第一章绪论 随着电子技术和计算机技术的发展,电子设计自动化(E-DA) 技术使得电子电路设计人员在计算机上能完成各种电路的设计,性能分析和有关参数的测试等大量的工作。Multi-sim2001是加拿大InteractiveImageTechnologies公司2001年推出的Multisim最新版本,是一个专门用于仿真与设计的工具软件,它丰富的元件库中提供数千种电路元件,随时可以调用;它提供了多种测试仪器仪表,可方便的对电路参数进行测试和分析。移相器在新一代移动通信、电子战、有源相控阵和智能天线等系统中获得广泛的应用。移相器在电子系统中的主要作用是调整系统接收 /发射时电路中的信号相位。本文将介绍用Multisim软件的部分集成电路和控制部件等各种元件来完成移相电路的设计和仿真。 使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 相位差的测量是研究网络相频特性中必不可少的重要方面,如何使相位差的测量快速、精确已成为生产科研中重要的研究课题。 测量相位差的方法很多,主要有:用示波器测量;把相位差转换为时间间隔,先测量出时间间隔,再换算为相位差;把相位差转换为电压,先测量出电压,再换算为相位差;与标准移相器进行比较的比较法(零示法)等。在测量相位差中主要有四种方法,即用示波器测量相位差、相位差转换为时间间隔进行测量、相位差转换为电压进行测量、零示法测量相位差。在此课程设计中主要用到的是相位差转换成计数脉冲数进行测量。

微电流检测资料

目录 1、设计背景 (1) 2、设计方案选择 (1) 2.1典型的微电流测量方法 (1) 2.1.1开关电容积分法[1] (1) 2.1.2运算放大器法 (2) 2.1.3场效应管+运算放大器法 (2) 2.2总体设计方案 (3) 3、具体设计方案及元器件的选择 (4) 3.1稳流信号源问题 (4) 3.2I/V转换及信号滤波放大 (5) 3.2.1前级放大 (5) 3.2.2滤波及后级放大电路 (6) 3.2.3运算放大器的选取 (6) 3.3量程自动转换 (6) 3.4信号采集处理 (7) 4、软件仿真结果 (8) 5、参考资料 (9)

微电流测试电路设计 1、设计背景 微电流是指其值小于-6 10A的电流,微电流检测属于微弱信号检测的一个分支,是一门针对噪声的技术,它注重的是如何抑制噪声和提高信噪比。该技术在军事侦察、物理学、化学、电化学、生物医学、天文学、地学、磁学等许多领域具有广泛的应用。我们所研究的微电流检测主要针对电力系统中的绝缘材料,因为现代国民经济对电力供应的依赖性日益增大,电力系统的规模、容量也在不断扩大。而电气设备的绝缘材料往往是电力系统中的重要组成部分,绝缘材料的漏电流情况严重会造成电力系统的重大损失。微电流检测是通过对泄漏电流的测量来评估绝缘材料状况的有效方法。近年来,针对微弱电流的信噪改善比SNIR已能达到1了,目前国内做得比较好的单位是南京大学,其独家生产的ND-501型微弱信号检测实验综合装置己被国内至少76家高等院校使用。但其产品价格昂贵,少则几千元,多则几万元,例如HB-831型pA级电流放大器、HB-834型四通道pA级电流放大器、HB-838型八通道pA级电流放大器的售价分别为4100元/台、13000元/台、22000元/台。所以,研制高精度、寿命长、成本低、电路简单的微电流检测仪具有重要的现实意义及理论参考价值。为了达成目标,我们需要重点考虑以下几个问题: 10 A(本设计要求)的稳流信号源的实现(1)如何获得实验信号,即电流为12 问题; (2)如何将微弱电流信号转换成易于操作的信号; (3)怎样将微弱信号提取放大; (4)如何实现量程的自动转换问题; (5)将实际中的模拟信号转换成数字信号; (6)实现对数字信号的处理和显示。 2、设计方案选择 2.1典型的微电流测量方法 2.1.1开关电容积分法[1] 开关电容式微电流测量方法的前级是在利用开关电容实现电流向电压转换的同时对电压信号进行调制和放大,达到微伏级;后级电路通过选频放大电路实

各种电压电流采样电路的设计

常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 信号调 理TMS320 LF2407A DSP 键盘显示 电路电压电流信号驱动电路保护电路 控制电路检测与驱动 电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 1.1常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R5=1K ,C4=15pF,则时间常数错误!未找到引用源。<

三相交流电路电压及电流的测量

三相交流电路电压及电流的测量 一、实验目的 1、掌握三相负载作星形联接、三角形联接的方法,验证这两种接法下线、相电压,线、相电流之间的关系。 2、充分理解三相四线供电系统中中线的作用。 二、原理说明 1、三相负载可接成星形(又称“Y”接)三角形(又称“?”接)当三相对称负载做Y 形联接时,线电压U 1是相电压U P 的3倍,线电流I 1 ,等于相电流I P ,即U 1 =3U P, I 1=I P 当采用三相四线制接法时,流过中线的电流I O =0,所以可以省去中线。 当对称三相负载作?形联接时,有 I 1 =3I P,U1=U P 2、不对称三相负载做U联接时,必须采用三相四线制接法,即Y O 接法。而且中线必须 牢固联接,以保证三相不对称负载的每相电压维持对称不变。 倘若中线开断,会导致三相负载电压的不对称,致使负载的那一相的相电压过高,使负载遭受损坏:负载重的一相相电压又过低,使负载不能正常工作。尤其是对于三相照明负载, 无条件地一律采用Y O 接法。 3、对于不对称负载作?接时,I1≠3I P,但只要电源的线电压U1对称,加在三相负 序号名称型号与规格数量备注 1 三相交流电源3?0~220V 1 主控屏 2 三相自耦调压器 1 主控屏 3 交流电压表 1 DG07 4 交流电流表 1 DG08 5 三相灯组负载15W/220V 白炽灯9 DG02 6 专用测试导线若干 1、三相负载星形联接(三相四线制供电)即三相灯组负载经三相自耦调压器接通三相对称电源,并将三相调压器的旋柄置于三相电压输出为OV的位置,经知道教师检查后,方可合上三相电源开关,然后调节调压器的输出,使输出的三相线嗲那为220V,按数据表格所列各项要求分别测量三相负载的线电压、相电压、线电流(相电流)、中线电流、电流与负载中点间的电压,记录之,并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。

三相交流电路电压电流测量数据

实验七三相交流电路的测量数据 一、实验目的 1. 掌握三相负载作星形联接、三角形联接的方法,验证这两种接法下线、相电压及线、相电流之间的关系。 2. 充分理解三相四线供电系统中中线的作用。 二、原理说明 1. 三相负载可接成星形(又称“Y”接)或三角形(又称"△"接)。当三相对称负载作Y 形联接时,线电压U L是相电压U p的倍。线电流I L等于相电流I p,即 U L=U p,I L=I p 在这种情况下,流过中线的电流I0=0,所以可以省去中线。 当对称三相负载作△形联接时,有I L=I p, U L=U p。 2. 不对称三相负载作Y 联接时,必须采用三相四线制接法,即Y0接法。而且中线必须 牢固联接,以保证三相不对称负载的每相电压维持对称不变。 若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过高,使负载遭受损坏;负载重的一相相电压又过低,使负载不能正常工作。尤其是对于三相照明负载,无条件地一律采用Y0接法。 3. 当不对称负载作△接时,I L≠ Ip,但只要电源的线电压U L对称,加在三相负载上 的电压仍是对称的,对各相负载工作没有影响。 三、实验设备 序号名称型号与规格数量备注 1交流电压表0~500V1无 2交流电流表0~5A1无 3万用表无1自备 4三相自耦调压器无1无 5三相灯组负载220V,15W白炽灯9DGJ-04 6电门插座33DGJ-04 四、实验内容 1. 三相负载星形联接(三相四线制供电) 按图 7-1 线路组接实验电路。即三相灯组负载经三相自耦调压器接通三相对称电源。将三相调压器的旋柄置于输出为0V 的位置(即逆时针旋到底)。经指导教师检查合格后,方可开启实验台电源,然后调节调压器的输出,使输出的三相线电压为220V,并按下述内容完成各项实验,分别测量三相负载的线电压、相电压、线电流、相电流、中线电流、电源与负载中点间的电压。将所测得的数据记入表7-1 中,并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。

正弦变频器的电流检测电路

正弦SINE300型7.5kW变频器的电流检测电路 电源/驱动板与主板MCU由J2、J5排线端子连接,J2端子排之前的位于电源/驱动板的部分为电流检测的前级电路,J5端子以后的位于MCU主板的部分为后级电路。但考虑电路的衔接及电路分类、信号流程分析的方便,将正弦SINE300型7.5kW变频器电流检测与保护电路,分为前置电流检测电路、电流检测模拟信号处理电路一、电流检测模拟信号处理电路二、电流检测开关量信号形成电路等四个部分,旨在分析和说明本例机型对前置电路所输出的电流检测信号,在后续电路不同的处理方法,以生成模拟或开关量的多路电流检测信号,提供MCU内部运算控制、显示、故障报警、停机保护所需的各种信号。 UI WI VI 图1 前置电流检测电路 1、前置电流检测电路(见上图1) 前置电流检测电路,即J2/J5端子排之前、位于电源/驱动板的电流检测电路,由电流采样电阻、线性光耦合器、运放电路等组成。 本例机型的前置电路,只在U、V输出电流回路串接了R7、R60两只电流采样电阻,未采集W相电流检测信号。或者说,省去了W相的直接电流采样电路,而由采集到的U、V相电流信号,“间接合成”出W相信号。由电工-正弦交流理论可知,三相交流电具有固定的空间/电气相位关系,并相互构成电流回路,任意两意交流电中必定包含了第三相交流电的信息,在已知U、V相交流值的情况下,可由计算得出W相的交流值。 U、V相输出电流信号,在电流信号采样电阻R7、R60上转化为数十毫伏级的微弱电压信号,送入由

线性光耦合器U5、U7的输入侧,经光、电隔离和放大处理后,输出差分信号再送入后级U6内部两级运算放大器构成的差分放大器,形成UI、VI电流检测信号;UI、VI电流检测信号,先送入加法器电路U6(由U6的12、13、14脚内部电路和外围元件组成),经过矢量加减,得到“合成”W相电流检测信号WI,然后UI、VI、WI等3相输出电流检测信号,经J2/J5排线端子的25、26、28脚,输入MCU主板电路。 2、电流检测模拟信号处理电路一(见图2) UI 126 ADCINA0 引脚: 125 ADCINA1 WI VI 图2 电流检测模拟信号处理电路一 由前置电路来的UI、VI、WI电流检测信号,分作第一路电流检测信号,输入运放电路U40内部3组放大器和外围元件组成的电压跟随器电路,缓冲后由1、7、8脚输出,经D25、D26、D27保护二极管双向钳位(3只二极管为贴片3端器件,每只内含两只二极管),RC滤除高频干扰信号后,形成0~3V以内的电压信号,输入MCU的模拟信号输入端124、125、126脚。供内部程序运算,用于在操作显示面板显示运行电流值,起动过程中检测电流变化,进行VVV/F控制等。 图1、图2都用于对检测电流信号——表现为交流电压信号——模拟信号的处理和放大,可称为模拟信号放大电路。 3、电流检测模拟信号处理电路二(见图3) 由U6输出的UI、VI、WI电流检测信号,分作第二路电流检测信号,输入由运放电路U9内部4组放大器和外围元件组成的精密全波整流器电路,整流为六波头的脉冲动直流信号电压后,经U6反相器8、9、10脚内部放大器和外围元件构成的反相器,对信号进行倒相处理,形成IUVW综合电流信号,送入后级电路。 U9的1/2/3、8/9/10、12/13/14脚内部3组放大部与外接D4、D5、D6二极管及其它元件,组成精密半波整流器电路,UI、VI、WI电流检测信号同时送入反相求各电路(U9 5、6、7内部放大器和外围元件构成),U9内部4组放大器及外围元件组成了3相全波整流器电路,若运行频率为50Hz,则U9的7脚输出整流电压为六波头的频率值为300Hz的三相电流检测信号。

DC-DC转换器中的电流检测电路设计方案

DC/DC转换器中的电流检测电路设计方案 设计了一个高精度的电流检测电路,基于华润上华CSMC 0. 5 um B iCMOS工艺库,利用Cadence Spectre软件进行电路仿真,经仿真得知所设计的电路电流取样精度达到1 000:1, 具有很高的采样精度。该电流检测电路性能良好,已经成功应用于一款电流模式控制DC /DC转换器芯片的设计之中。 电流检测电路是电流模式控制所必需的,通过检测功率开关管上的电流,然后输出一个电流感应信号与斜坡补偿信号进行叠加并转换成一个电压信号,再与误差放大器的输出进行比较,从而实现电流模式开关转换器电流内环的控制。其实现方法有很多种,常见的有两种,一种是与功率管串联一个电阻Rsen,另一种是与功率管并联一个并联检测管复制比例电流,并联检测管复制比例电流的检测方法,又有两种主要的实现结构,一种是采用运放的结构,另一种是利用反馈的方式。如果采用运放,显然会增加电路的复杂性,而且也会增加功耗。本文根据具有反馈控制电流源的原理来设计电流检测电路中的反馈网络。 1 反馈控制电流源的原理 电路原理图及电流源动态特性曲线。根据电流源的特性曲线,偏置电路中各相关元件的电流特性只有线性与非线性电流源相结合才可能有唯一的交点(原点除外),这样才能保证偏置电路有唯一稳定的工作点。 图1 具有反馈控制的电流源的原理图 设电阻上的压降为VR, M3 管的过驱动电压为△,由M3、M4 电流相等的条件,得到: 由此解出: 其中, VR = VGS3 - V GS4, 因此VGS的压差决定了电阻上所形成的微电流,即输出电流I0 满足的非线性关系为: 由此解出的输出电流已与电源电压无关。2 电流检测电路的具体电路设计实现 根据前面的分析,可以看出, R 固定时,当图1所示的电路可以提供唯一的偏置偏流。但是在电流检测电路中,由于电感电流一直在变,很显然,固定的电阻不再适用,将图1 的改进电路运用到电流检测电路中,,图中电阻用工作在线性区的MOS管MR 代替。 图2 改进型具有反馈控制电流源的电流检测电路 工作在线性区的MOS 管,其导通电阻rON可由下式得出: 可以看出, rON与V GS - VTH成反比,因此电阻值会随着VGS的变化而变化,这样不同的电阻值形成的非线性电流源与电流镜结合,就会有不同的稳定工作点。因此,在整个工作中,对于一直变化的电感电流,偏置电路是通过改变电阻值而达到不同的动态稳定状态。

三相交流电路电压、电流的测量word精品

一、 头验目的 1. 熟悉三相负载的两种接法,并验证电压和电流的线值和相值的关系。 2. 充分理解三相四线供电系统中中线的作用。 二、 实验仪器 1. 三相自耦调压器 2. 三相灯组负载(三组) 三、 实验原理 1. 三相负载可接成星形(又称接)或三角形(又称"△"接),当三相对称负载 作丫形联接时,线电压U i 是相电压U p 的3倍。线电流I i 等于相电流I p ,即 U L = Q 3 U p I L = I p 当采用三相四线制接法时,,流过中线的电流I o = 0,所以可以省去中线。 当对称三 相负载作△形联接时,有 I L 二J3lp, U L =U P 2. 不对称三相负载作丫联接时,必须采用三相四线制接法,即 丫。接法。而且 中线必须牢固联接,以保证三相不对称负载的每相电压维持对称不变。 倘若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过 高,使负载遭受损坏;负载重的一相相电压又过低,使负载不能正常工作。尤其 是对于三相照明负载,无条件地一律采用 丫0接法。 3. 当不对称负载作△接时,I L 工3 Ip ,但只要电源的线电压 U L 对称,加在三 相负载上的电压仍是对称的,对各相负载工作没有影响。 四、 实验内容 1. 三相负载星形联接 按图7-1线路组接实验电路。即三相灯组负载经三相自耦调压器接通三相对 称电源,将三相调压器的旋柄置于三相电压输出为 0V 的位置,经指导教师检查 后。方可合上三相电源开关,然后调节调压器的输出,使输出的三相线电压为 220V ,按表1数据表格所列各项要求分别测量三相负载的线电压、相电压、线 电流(相电流)、中线电流、电源与负载中点的电压,记录之。并观察各相灯组 亮暗的变化程度,特别要注意观察中线的作用。 1) 三相负载星形连接且采用三相四线制供电 按图7-1线路组接实验电路,是输出的三相线电压为 220V 。 2) 按数据表格所列各项要求分别测量三相负载的线电压、相电压、相电流、中 线电流、电源与负载中点间的电压,记录之。 u( V 20 2 v( w( V 20V 2

电流检测电路设计

电流检测电路设计 Document number:PBGCG-0857-BTDO-0089-PTT1998

课程设计报告题目:电流检测电路设计课程名称:电子信息工程课程设计 学生姓名:焦道楠 学生学号: 14 年级: 2013级 专业:电子信息工程 班级:(1)班 指导教师:王留留 电子工程学院制 2016年3月

目录

电流检测电路设计 学生:焦道楠 指导教师:王留留 电子工程学院电子信息工程专业 1 绪论 在电学中的测量技术涉及的范围非常广,广泛应用于学校、工业、工厂、科研等各种领域,供实验室和工业现场测量使用。随着电子技术的不断发展,在数字化和智能化不断成为主体的今天,电压、电流测量系统中占有非常重要的位置。我们在分析和总结了单片机技术的发展历史及发展趋势的基础上,以实用、可靠、经济的设计原则为目标,设计出全数字化测量电压电流装置。系统主要以AT89C51单片机为控制核心,整个系统由中央控制模块、A/D转换模块、LED显示模块组成。可实现对待测电压、电流的测量,在数码管上显示。本次课程设计我所做的项目是基于单片机的电流检测系统,主要用到A/D转换和数码管显示。近几年来,单片机已逐步深入应用到工农业生产各部门以及人们生活的各个方面。各种类型的单片机也根据社会的需求而相继开发出来。单片机是一个器件级的计算机系统,实际上它是一个微控制器或微处理器。由于它功能齐全,体积小,成本低,因此它可以应用到所有的电子系统中。 AT89C51是一种带4K字节闪存的可编程可插除只读存储器的单片机。单片机的可擦除只读存储器可以反复的擦除多次,该器件采用ATMEL高密度非易失性存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能的8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器。 2 设计的任务与要求 课程设计的任务

电流检测电路设计

单片机课程设计 题目 英文题目 院系 专业 姓名 同组人员 年级 指导教师

摘要 在单片机检测电流的过程中,因为电流量是模拟量,并且对于电流量不能直接进行读取,所以需要将电流量转化为电压量,再通过A/ D转换器进行读取和处理。 单片机对模拟信号的读取是通过A/D转换器来实现的,使用了ADC0809芯片,关于芯片的介绍参考后面的内容,从电流量到电压量的转换时通过电流传感器来实现的,这是检测电流的关键。 下面先介绍电流传感器的基础知识,接着介绍实现单片机电流传感器所必须的器件和软件,然后逐步分析程序的各个只要模块以及程序的全貌。 【关键词】:ADC0809,电流检测,8051单片机

Abstract In the course of the current SCM test, Because the electric current is the analog, And the electric current can not be read directly Therefore needs to transform the amperage as the voltage quantity, Switch carries on the read and processing again through A/the D. Microcontroller reads the analog signal through A / D converter to achieve, Use the ADC0809 chip, Reference on the chip behind the introduction content, From the amount of electric current to voltage conversion is achieved through the current sensor, This is examines the electric current the key. The following will introduce the basics of current sensor, Then the introduction realizes the monolithic integrated circuit electric current sensor to component and software , Then gradually the various analytical procedures, and procedures of the picture as long as the module. 【关键词】:ADC0809,electric current examination, Microcontroller8051

富士变频器中常见的检测与保护电路

富士变频器中常见的检测与保护电路 标签:杂谈 1 引言 控制系统反馈量检测的精确程度,从某种意义上说,很大程度上决定了控制系统所能达到的控制品质。检测电路是变频调速系统的重要组成部分,它相当于系统的“眼睛和触觉”。检测与保护电路设计的合理与否,直接关系到系统运行的可靠性和控制精度。 2 变频器常用检测方法和器件 2.1 电流检测方法 图1 电流互感示意图 电流信号检测的结果可以用于变频器转矩和电流控制以及过流保护信号。电流信号的检测主要有以下几种方法。 (1) 直接串联取样电阻法 这种方法简单、可靠、不失真、速度快,但是有损耗,不隔离,只适用于小电流并不需要隔离的情况,多用于只有几个kva的小容量变频器中。 (2) 电流互感器法 这种方法损耗小,与主电路隔离,使用方便、灵活、便宜,但线性度较低,工作频带窄(主要用来测工频),且有一定滞后,多用于高压大电流的场合。如图1所示。 图1中,r为取样电阻,取样信号为: us=i2r=i1r/m (1) 式中,m为互感器绕组匝数。 电流互感器测量同相的脉冲电流ip时,副边也要用恢复二极管整流,以消除原边复位电流对取样信号的影响,如图2(a)所示。在这种电路中,互感器磁芯单向磁化,剩磁大,限制了电流测量范围,可以在副边加上一个退磁回路,以扩展其测量范围,如图2(b)所示。 电流互感器检测后一般要通过整流后再用电阻取样,如图2(a)。由于主回路电流会有尖峰,如图3(a),这种信号用于峰值电流控制和保护都会有问题。

图2 电流互感器及范围扩展 随着脉宽的减小,前沿后斜坡峰值可能比前沿尖峰还低,就会造成保护电路误动作,所以要对电流尖峰进行处理。处理的方法见图3(b),和rs并联一个不大的电容cs,再加一个合适的rc参数,就能有效地抑制电流尖峰。如图3(c)所示。 图3 电流取样信号的处理 (3) 霍尔传感器法 它具有精度高、线性好、频带宽、响应快、过载能力强和不损失测量电路能量等优点。其原理如图4所示。 图4中,ip为被测电流,这是一种磁场平衡测量方式,精度比较高,若lem的变流比为1:m,则取得电压us也符合式(1)。在通用变频器中霍尔传感器已成为电流检测的主力。 2.2 电压检测方法 电压信号检测的结果可以用于变频器输出转矩和电压控制以及过压、欠压保护信号。电压信号的检测可用电阻分压、线性光耦、电压互感器或霍尔传感器等方法。 3) 霍尔电压传感器法:原理与霍尔电流传感器类似,如图5所示。 (4) 线性光耦法: 霍尔电压传感器具有反应速度快和精度高的特点,但是在小功率的变频器

高压系统电流检测新技术的研究及电路设计

大连交通大学本科毕业论文论文题目:高压系统电流检测新技术的研究及电路设计 作者: 指导教师: 单位:大连交通大学 论文提交日期:

摘要 电流互感器是电力系统中用于继电保护和电测量的重要设备,其精确度和可靠性对电力系统的安全、稳定和经济运行有着重要影响。光电式电流互感器和传统的电磁式电流互感器相比有很多突出的优点,必将得到广泛的应用。电子式电流互感器分为有源、无源两种类型,有源式电子电流互感器采用了先进的光电子技术和现代集成电子技术,发挥了高可靠、高精度、高稳定等特点,是目前最具实用前景的研究方向之一。 在研究和分析了各种电流互感器的工作原理及优缺点的基础上,本文采用了有源型结构中ADC式光电电流互感器设计方案。完成从高压侧数据采集、数据处理、高低压间光纤数据通讯直至低压侧数据恢复的研究和设计。鉴于CPLD/FPGA具有高集成度、高速度和高可靠性的特点,提出了高压侧以CPLD 为控制核心、低压侧以FPGA为控制核心的整体设计方案,简化了相应硬件电路的设计过程,且有效率低了系统在强电磁干扰下测量产生错误的风险。本文详细介绍了高压侧硬件系统的电路设计,高压侧数据异步通讯电路在CPLD/FPGA 中的实现,芯片的选择以及各部分电路的设计实现与调试。最后对整个系统进行了软件的仿真测试与硬件调试,验证系统的功能实现。 经验证该系统设计可以实现光电混合式电流互感器高压侧单元和数据通讯的预定功能。可较好的满足电力系统中数据处理的高速度、高数据量、复杂运算等要求,并具有结构简单、方便修改的优点,具有一定的研究价值。 关键词:电流互感器,CPLD/FPGA,数据异步通讯

Abstract Electronic current transformer is very important equipment for system protection and electrical measurement in electrical power system. Its accuracy and reliability have significant impact on safety, stability, and efficiency in power system. A photoelectric hybrid current transformer has a lot of obvious advantages over a traditional electromagnetic current transformer. It will definitely find more and more applications. There are active and passive about electronic current transformer. The active electronic current transformer adopts the sophisticated integrated optoelectronic technology and modern electronic technology. It has played a high-reliability, high-precision and stabilization. It is one of the most practical in future research directions. On the basis of research and analysis principles of various current transformers, this paper eventually adopted the ADC active-type Optical Current Transformer. It mainly completed data collection and processing of high voltage side, data communication between high and low voltage side and analog waveform restoration at low voltage side. CPLD/FPGA has character of high integration density, high speed, and high reliability. According superiorities of these devices, this paper use CPLD as the CPU of the high voltage side and FPGA as the CPU of the low voltage side,which simplified the design process of hardware circuit and effectively reduced risk of measured errors in the strong electromagnetic interference environment this paper describes the design of hardware circuit system of the high voltage part, high and low voltage side data asynchronous communication circuit realization in CPLD/FPGA, chip selection and the circuit implementation and debugging of the various parts. Finally it gives the overall system simulation, testing and hardware debugging; verify the function of the system implementation. The test results have proven that the proposed system designed can perform the expected functionality of photoelectric current transformer at high voltage side and data communication between high and low voltage side. It can better meet the power system’s requirements in the high-speed data processing, large data quantity and complex operation. It also has merit of being simple in structure and easier for modification. It is worth for further investigation.

电流检测电路设计

电流检测电路设计 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

课程设计报告题目:电流检测电路设计课程名称:电子信息工程课程设计学生姓名:焦道楠 学生学号: 年级: 2013级 专业:电子信息工程 班级:(1)班 指导教师:王留留 电子工程学院制 2016年3月

目录 1 绪论..................................................................... 2 设计的任务与要求......................................................... 课程设计的任务........................................................ 课程设计的要求........................................................ 3 设计方案制定............................................................. 设计的原理............................................................ 设计的技术方案........................................................ 4 设计方案实施............................................................. 单片机模块............................................................ 传感器模块............................................................ A/D转换模块.......................................................... LCD12864点阵液晶显示模块............................................. 5 各模块PCB图............................................................. 单片机模块............................................................ 传感器模块............................................................ 6 系统的程序设计........................................................... 7 心得体会................................................................. 参考文献...................................................................

相电流检测电路

相电流检测电路 电流检测是直流无刷电机控制系统电流环控制的重要环节,对于电流检测一般常用以下两种方法: CI)采用电流检测模块。现在电流检测模块种类很多,以霍尔器件为主,反应很灵敏;但是,对于直流无刷电机的控制特点,至少需要检测两相电流,需要两组传感器。检测输出信号可以直接由DSP芯片接受,但是造价很贵。 C2)采用一个分流电阻间接测流。在直流侧接相应阻值和功率的分流电阻,通过测量电阻上的电压,来获取直流回路的电流;然后检测三相绕组的相电压,通过相电压的相互关系确定采样的直流侧电流是哪一相的电流值。这种方法对于A/D转换的精度和软件数据处理有难度,但是造价很低。因为控制系统的核心控制芯片TMS320LF2407A的A/D单元具有相当高的精度和转换速度,所以可以采用第2种方法,图5.18为电流信号采样电路。 其中IN是来自采样电阻的压降信号。本实验电路中,设计最大允许输入电流上限值为5A,旁路电阻采用0.1Ω,8W的绕线电阻,由于TMS320LF2407A的A/D输入信号范围为0~3.3V,故电流信号必须放大,电路采用了运算放大器LM324,先将电压信号放大到0~-3.3V,再经过反向得到0~3.3V的电压信号输入到DSP 。

本文采用分流电阻进行电流检测,见图3.8。分流电阻接在驱动桥下桥臂与地线之间。因为MC33035管脚9内部连接一个比较器的正相输入端,该比较器的反相输入端为芯片内部提供的1 OOmv标准电压.Rz的阻值比较小,为水泥电阻.相对于大功率绕线电阻,由于水泥电阻为无感电阻,可以反映真实的相电流波形.从电阻上可得到电流反馈环节所需的真实反映 电机内部工作情况的反馈量.

三相交流电路电压、电流的分析与测量(含数据处理)

三相交流电路电压、电流的分析与测量 一、实验目的 1.掌握三相负载作星形联接、三角形联接的方法,验证这两种接法时线、相电压及线、相电流之间的关系。 2.充分理解三相四线供电系统中中线的作用。 二、原理说明 1.三相负载可接成星形(又称“Y”接)或三角形(又称"△"接),当三相对称负载作Y 形联接时,线电压U l是相电压U p 的倍。线电流I l等于相电流I p,即 U l=p I l=I p 当采用三相四线制接法时,,流过中线的电流I0=0,所以可以省去中线。 当对称三相负载作△形联接时,有 I1U1=Up 2.不对称三相负载作Y联接时,必须采用三相四线制接法,即Y0接法。而且中线必须牢固联接,以保证三相不对称负载的每相电压维持对称不变。 倘若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过高,使负载遭受损坏;负载重的一相相电压又过低,使负载不能正常工作。尤其是对于三相照明负载,无条件地一律采用Y0接法。 3.当不对称负载作△接时,Il≠,但只要电源的线电压Ul 对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。 四、实验内容 1.三相负载星形联接(三相四线制供电) 按图6-3-3-1 线路组接实验电路。即三相灯组负载经三相自耦调压器接通三相对称电源,将三相调压器的旋柄置于三相电压输出为0V的位置,经指导教师检查后。方可合上三相电源开关,然后调节调压器的输出,使输出的三相线电压为220V,按表6-3-3-1数据表格所列各项要求分别测量三相负载的线电压、相电压、线电流(相电流)、中线电流、电源与负载

中点的电压,记录之。并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。 图6-3-3-1 三相负载星形联接的实验线路 2.负载三角形联接(三相三线制供电) 按图6-3-3-2改接线路,经指导教师检查合格后接通三相电源,调节调压器,使其输出线电压为220V,并按表6-3-3-2数据表格要求进行测试 5.用实验数据和观察到的现象,总结三相四线供电系统中中线的作用。 答:当三相负载不对称时,中线提供各相电流的回路。 6.不对称三角形联接的负载,能否正常工作?实验是否能证明这一点? 答:对于不对称负载作△接时,Il≠Ip,但只要电源的线电压Vl对称,加三相负载上的电压仍是对称的,对各相负载工作没有影响 7.根据不对称负载三角形联接时的相电流值作相量图,并求出线电流值,然后与实验测得的线电流作比较,分析之。

相关主题
文本预览
相关文档 最新文档