当前位置:文档之家› 手性和手性药物的研究进展8800字

手性和手性药物的研究进展8800字

手性和手性药物的研究进展8800字
手性和手性药物的研究进展8800字

手性和手性药物的研究进展8800字

[摘要]近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。[正文]要阐明这一主题,首先我们要认识什么是手性和手性药物以及了解他们的性质。1、手性手性是自然界的普遍特征。构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的,等等。因此,分子手性在自然界生命活动中起着极为重要的作用。人类的生命本身就依赖于手性识别。如人们对L一氨基酸和D一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者Jhvan[2]。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。1956年Pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构

体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50年代中期,反应停(沙利度胺,Thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。结果在欧洲导致1.2万例胎儿致残,即海豹婴。于是1961年该药从市场上撤消。后来发现沙利度胺R型具有镇静作用,而S型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是S型还是R型,作为药物都有致畸作用。1984年荷兰药理学家Ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。他的一系列论述的发表,引起药物部门广泛的重视。2021年诺贝尔化学奖授予了3位美日科学家,表彰他们在手性催化氢化反应和手性催化氧化反应领域所做出的重大贡献。目前,研究和发展新的手性技术,借此获得光学纯的手性药物,已成为许多实验室和医药公司追求的目标。如何检验物质具有手性?手性物质具有一特殊性质——旋光性,将纯净的手性物质的晶体,或是将纯净的手性物质配成一定浓度的溶液,用平面偏振光1照射,通过手性物质的偏振光平面会发生一定角度的旋转,这称为旋光性。这种偏振光的平面旋转可左可右,以顺时针方向旋转的对映体,称为右旋分子,用“+”或“d”表示;以逆时针方向旋转的对映体,称为左旋分子,用“-”或“l”;如果将互为对映体的手性物质等物质的量混合后,以偏振光照射,而偏振光不发生旋转,称为外消旋体或外消旋混合

物,外消旋体是由于左旋分子和右旋分子发生的偏振光旋转相互抵消,而使通过的偏振光的旋转不能被检出。因此,利用旋光性可以检验物质的手性,但要注意物质的纯度。另外,许多物质分子中并不是只有一个决定手性的碳原子,在分子内也会存在互为对映体的碳原子,这样的分子如果用偏振光照射,偏振光也不会发生旋转,称之为内消旋体,因为是分子内部的互为对映镜像原子对偏振光的旋转相互抵消,而使偏振光的旋转不被检出。2、药物的手性据统计,1800个药物,具有手性中心的就有1026种,占57%。现在市场上只有61种药物是以单对映体形式存在,其余均为外消旋体(左、右旋各半)混合形式。研究表明,不同的对映体在人体内的药理,代谢过程,毒性和疗效存在着显著差异[2-5],大致有以下几个类别:2.1对映体之间有相同或相近的某一活性如丙氧芬右旋具有镇痛作用,左旋具有镇咳的作用,二者作用相似。而普萘洛尔左旋体和右旋体具有杀灭精子的作用,其对映体均可作为避孕药,作用相同。抗凝血药华法林(Warfarin)以外消旋体供药,研究发现其S-(-)异构体的抗凝血作用比R-(+)体强26倍,但S-(-)异构体在体内消除率亦比R-(+)体大2—5倍,所以,实际抗凝血效力相似。2.2一个对映体具有显著的活性但其对映体活性很低或无活性一般认为若某一对映体只有外消旋体的1%的药理活性,则可以认为其无活性。因为这微小的活性可能来源于掺杂于该单一对映体中微量的活性单一对映体。例如氯苯吡胺(扑尔敏,Ehlorpheniramine)右旋体的抗组胺作用比左旋体强100

倍。抗菌药氧氟沙星的s-(-)-异构体是抗菌活性体,而R-(+)-异构体则无活性。属于这一类的药物还有是氯霉素、芬氟拉明、吲哚美辛等。2.3对映体有相同、但强弱程度有差异某一活性抗癌药环磷酰胺(Ey-elophosphamide),其手性中心不是在通常的碳原子,而在磷原子。其(S)-异构体活性是(R)-异构体的2倍,然而,对映体毒性几乎相同。有时一个异构体具有较强的副作用,也应予考虑。如氯胺酮(Ketamine)是以消旋体上市的麻醉镇痛剂,但具有致幻等副作用,进一步的药理研究证实(S)-异构体活性是(R)-异构体的三分之一,却伴随着较强的副作用。2.4对映体具有不同性质的药理活性,可以分几种情况来讨论2.4.1对映体的不同活性,可起到“取长补短、相辅相成”的作用一个突出的例子是利尿药茚达立酮(Indaerinone)。其(R)-异构体具有利尿作用,但有增加血中尿酸的副作用;而(S)-异构体有促进尿酸排泄的作用。进一步的研究表明对映体达到一定比例能取得最佳疗效。

2.4.2对映体存在不同性质的活性,可开发成2个药物丙氧芬(Pmpoxyphene)的右旋体(2S、3R)为镇痛药,但左旋体(2R、3S)具有镇咳作用,现在两者已分别作为镇痛药和镇咳药应用于临床。柳氨苄(Labetalol)是一种心管药,其RR异构体是α1阻滞活性的β阻滞剂,产生β阻滞作用,而阻滞活性则归因于SR体,用于治疗高血压的是RR体。2.4.3一个对映体具有疗效,而其对映体产生副作用或毒性青霉胺(Penieillamine)的D一型体是代谢性疾病和铅、汞等重金属中毒的良好治疗剂,但它的L-型体会导致

骨髓损伤,嗅觉和视觉衰退以及过敏反应等临床上只能用D-青霉胺。又如,酞胺哌啶酮(反应停)的S-(+)异构体具有镇静的作用而R-(-)异构体可引起致畸反应。2.4.4对映体具有相反的活性巴比妥类药物的对映体对中枢神经系统发生相反的作用,如1-甲基-5-苯基-5-丙基巴比土酸,其(R)-异构体有镇静、催眠活性,而(S)-异构体引起惊厥。由此可见,当手性药物、农药等化合物作用于这个不对称的生物界时,两个异构体表现出来的生物活性往往是不同的,甚至是截然相反的:即一个异构体对疾病起作用,而另一个异构体却疗效甚微,或不起作用,甚至可能有毒副作用。为此,1992年美国FDA[6]开始要求,手性药物以单一对映体(对映体纯)形式上市。这样不仅疗效确切、副作用小,且临床用量少。

3、手性药物首先让我和大家一起来回忆一下药物给人类带来空前灾难的反应停事件。1953年,联邦德国Chemie制药公司研究了一种名为“沙利度胺”的新药,该药对孕妇的妊娠呕吐疗效极佳,Chemie公司在1957年将该药以商品名“反应停”正式推向市场。两年以后,欧洲的医生开始发现,本地区畸形婴儿的出生率明显上升,此后又陆续发现12000多名因母亲服用反应停而导致的海豹婴儿!这一事件成为医学史上的一大悲剧。后来研究发现,反应停是一种手性药物,手性药物(chiraldrug)是指其分子立体结构和它的镜像彼此不能够重合,将互为镜像关系而又不能重合的一对药物结构称为对映体(enantiomer),对映体各有不同的旋光方向:左旋、右旋、外消旋,分别用(-)、(+)、(±)符号表示。药

物分子的手性标记通常采用R/S序列标记法。对于氨基酸、肽类、糖类、环多元醇及其衍生物的立体命名,也用D、L或俗名表示。过去多数化学药品是由等量的左旋(S型)和右旋(R型)两种对映体组成的外消旋体,只含有单一对映体即光学纯度较高的药物,与外消旋药物相比,具有疗效好、副作用小等特点[7]。其中右旋体是很好的镇静剂,而左旋体则有强烈的致畸作用。左旋体和右旋体在生物体内的作用为什么有这么大的差别呢?由于生物体内的酶和受体都是手性的,它们对药物具有精确的手性识别能力,只有匹配时才能发挥药效,误配就不能产生预期药效。正如“一把钥匙开一把锁!”因此,1992年美国FDA规定,新的手性药物上市之前必须分别对左旋体和右旋体进行药效和毒性试验,否则不允许上市。2021年1月,我国SFDA也出台了相应的政策法规。怎样才能将非手性原料转变成手性单旋体呢?从化学角度而言,有手性拆分和手性合成两种方法。经典化学反应只能得到等量左旋体和右旋体的混合物,手性拆分是用手性拆分试剂将混旋体拆分成左旋体和右旋体,其中只有一半是目标产物,另一半是副产物,而且需要消耗大量昂贵的手性拆分试剂。尽管如此手性化合物的拆分在手性药物的开发中占据重要地位,尤其是开发的早期,一般是两种对映异构体都需要进行研究。高效液相层析(HPLC)是手性化合物拆分的重要方法,而近年模拟移动床技术(simulatedmovingbed,SMB)的应用使手性化合物大规模的商业化制备成为可能。SMB是一种利用吸附原理进行液体分离的设备。它

以逆流连续操作方式,通过变换固定床吸附设备的物料进出口位置,产生相当于吸附剂连续向下移动,而物料连续向上移动的效果。这种设备的分离效率和生产能力高于固定床吸附设备,又避免了移动床吸附剂磨损、粉尘堵塞和涡流现象。SMB用于大规模分离已有数十年的历史,该技术最初由美国伊利诺依州的DesPlaines公司用于从混合二甲苯中分离对-二甲苯,技术由UOP 公司提供。直到90年代,UOP公司和法国的Novasep公司才开始开发SMB分离光学异构体的可能性。SMB和化学合成或生物合成相比各有优势,越来越多的手性化合物公司选择SMB作为获得手性产品的手段。而手性合成则指:1.化学合成①手性源法。即原料为手性化合物A*,经不对称反应,得到另一手性化合物B*。②手性助剂法。利用手性助剂R*与原料A结合成AR*进行不对称诱导反应,产生B*R*,回收R*,得到新的手性化合物B*。③手性试剂法。利用手性试剂,直接参与不对称诱导反应,而产生新的手性化合物B*。④不对称催化法。用手性催化剂C*参与不对称催化反应,得到新的手性化合物。不对称催化法近年来研究发现,因其具有手性增值效应,引起广泛关注。它可以用好的手性催化剂使手性增值效应高至10万倍,即用1个手性催化剂分子可产生10万个手性产物,因而带来极其可观的效益。2.生物合成也是现今颇受重视的研究热点。它包括发酵法和生物酶法。如后者可将有潜手性的化合物和前体通过酶促反应转化为单一对映体。可利用的酶有氧化还原酶、合成酶、裂解酶和水解酶、羟化酶、环氧化

酶等,直接由前体化合物不对称合成各种复杂的手性醇、酮、酸、酯,胺衍生物,以及含磷、硫、氮及金属的手性化合物。这种方法的特点是具有较高的对映体选择性,产物光学纯度高、收率高和副反应少,反应条件温和,无环境污染等,有利于工业化生产等。上世纪60年代初,科学家们开始研究在极少量的手性催化剂作用下获得大量的单旋体,这就是手性合成技术。最初只获得了3%的收率,经过近三十年的努力终于获得了成功。目前最高的产率已经接近100%,特别需要指出的是这种技术可以使人们随心所欲地合成自然界中不存在的左旋体或右旋体。手性药物的研究近20年来发展很快,各大制药公司正在研发的药物中,单旋体所占比例逐年上升。在已上市的药物中,1986年混旋体药物占到32%,单旋体药物只有25%,可是到了2021年,混旋体药物就只占8%,而单旋体药物则上升到58%。近两年来,手性药物已成为世界各国制药公司追求利润的新目标,它的市场份额逐年扩大,1990年手性药物的市场销售额只有180亿,到2021年已经到达了1720亿美元。在2021年全球十大畅销药物排行榜中,前四名均为单旋体手性药物。仅利普妥一种药物的年销售额就高达136亿美元。

3.1手性药物的作用机制手性药物的药理作用是通过与体内大分子之间的严格手性匹配与分子识别而实现的[8],也就是在人体内药物通过与具有特定物理形态的受体反应起作用。药物的两种立体异构体中,只有一种更适合与受体或活性部位结合。如果两种立体异构体都能适合受体,结合将是不太紧密的,因而药物将会不

太活泼。通常,一种同分异构体有选择地结合,而另一种具有较小的或无活性。3.2手性药物的制备合成手性药物的方法主要有化学合成法和生物合成法两种[9-11]。化学合成法是指采用化学控制等手段来获得手性化合物,主要有:①不对称合成法就是将不对称因素如手性试剂、催化剂等作用于某种底物进行反应,使之只形成一个对映体的手性产品;②化学拆分法将外消旋体转化为非对映体,由于非对映体的物理性质不相同,人们可以将它们分开,最后再把分离得到的两种衍生物分别变为原来的旋光化合物,即可达到拆分的目的。③选择吸附法利用某种旋光性物质作为吸附剂,使之选择性的吸附外消旋体中的一个异物体,从而达到拆分的目的。另外,还有动力学拆分法、色普拆分法、物理拆分法、手性源合成法等。生物合成法是指利用生物催化剂进行手性化合物拆分核不对称合成的方法。主要有①天然产物提取法从生物体内分离提取手性化合物是最直接、最原始的获得手性物的方法。由于受生物资源和手性物含量的限制,此法难以满足人类对某些有价值的手性物日益增长的需要;②酶法拆分外消旋体利用生物酶将外消旋体进行拆分,得到光学纯的化合物;③酶法不对称合成利用酶的高度立体选择性,潜手性的底物可选择性地转化为光活化合物。另外,还有微生物法、催化抗体法、现代生物技术等方法获得手性药物。与手性化合物的合成有很多共同点。3.3手性药物的研究现状自从1992年美国FDA开始要求手性药物以来,手性药物在研发的新药中所占比例逐年增加[18],据市场统计1993

年单一对映体药物的销售额为350亿美元,而至1997年年销售额约增加到400~600亿美元,1999年世界药品市场有1/3为手性药物,2000年增加到40%,全球销售额达到1330亿美元,2021年全球500种畅销药物中手性药物有289种,占59%,专家预计2021年达到2000亿美元,2021年可望超过2500亿美元。由于手性药物市场前景看好,巴斯夫、陶氏化学、罗地亚等国际知名企业均成立了各自的手性中间体开发机构。如美国陶氏化学与澳大利亚Alchemia公司合作,专门从事手性碳水化合物类药品与营养品寡聚糖类的开发;罗地亚与Aldrich公司合作,共同投资300万美元生产手性医药中间体;Cambrex公司与Syn-thon公司也在着手开发一系列手性药物中间体[12-14]。我国手性药物的工业生产多采用传统的拆分方法,对外消旋最终产物或对消旋中间体进行拆分。早在上世纪6O年代我国就开展了甾体化合物的微生物转化研究,并用于工业生产。从上世纪70年代后期开始,我国进行手性化合物的生物合成研究,实现了L天冬氨酸和L-苹果酸的工业化。最近几年,多种化学合成手性药物及其中间体实现了工业化。我国手性药物工业虽有一定基础,但在化学合成和生物合成的工业化应用并不多,与世界手性工业的发展有较大差距。我国“十五”期间已投入200亿元进行手性关键技术的研发,在该领域取得了重要的科研成果。四川大学在设计和制备手性固定相方面已获得发明专利,并完成产业化技术的开发。此外,们还开发了生物催化拆分与获得发明专利的特殊分离技术联用,制备手性药物中间

体光学活性戊醇等的生产技术。中科院成都有机所将手性技术推向市场,将包结拆分技术应用于手性药物的生产,取得了较好的经济效益。成都生物所在手性生物技术开发和应用方面,也取得了显著成就[15-17]。国家自然科学基金委员会于2021年4月

13~15日对“手性与手性药物研究中的若干科学问题研究”重大交叉项目进行了中期检查评估。专家组在认真听取了项目负责人和各课题组负责人汇报的基础上,经认真讨论评议,专家组对项目取得的成果给予充分的肯定和高度评价并认为:由中国科学院上海有机研究所林国强院士负责的“手性与手性药物研究中的若干科学问题研究”项目全面完成预定计划,川大冯小明教授负责了其中的一个课题,研究工作取得突出进展。两年来,项目组紧密围绕重大项目的4个主要研究内容,取得了以下几个方面的重要进展:1.对羟腈化酶和睛水合酶分离、纯化和酶结构进行了研究。建立里羟腈化酶微水相反应体系;研究了发展了构筑手性季碳中心及合成砌块的新方法并用于合成了一系列具有药用价值的天然物及类似物,如Crinane、Mesembrine、Lycoramine、Lycorane、Conessine、CP-99、9994、L-733、060及其对映体、常山碱与异常山碱、Haliclorensin、Sefacviptine及其类似物Deoxocassine和一种HIV蛋白酶抑制剂等。2.设计合成了硫代瞵酰胺类手性配体和含有酚羟基的手性瞵化合物,在Michael加成反应和Aze-Baylis-Hillman反应中取得了很好的结果,并对反应机理进行了详细的研究,为前列腺素和头孢类药物基本骨架的合

成提供了新方法。3.在含有重氮基因负离子对亚胺加成反应中实现了高立体选择性,发展了合成光学活泼的a-羟基-b-氨基酸的新方法。4.发展了双功能手性催化剂,这些催化剂在硅腈化反应中有良好的催化活性和对映选择性。在有机小分子催化中发现L-脯氨酰胺能够催化不对称直接Aldol反应,实现了非对称酮的不对称直接的区域选择性和对映选择控制,结合反应机制研究,工作系统深入。5.抗艾滋病的手性药物合成方法学的研究取得了重要进展,完成了具有自主知识产权的抗HIV新药的临床前研究。6.寻找了羟腈化酶、糖苷化酶、腈水合酶和酰胺水解酶的新酶源,酯酶催化的去对称反应;消旋环氧的水介酶促拆分反应,红球菌中腈水合酶和酰胺水解酶催化合成季碳丝氨酸和异丝氨酸反应,将生物催化剂方法应用到一些重要药物分子及重要生理活性分子的组成部分的合成。7.建立了几种手性配体及金属催化剂的负载化新方法以及“均相催化-液/液两相分离”催化剂分离回收新方法,发展了以水和聚乙醇为反应介质的环境友好的不对称反应,将负载手性催化剂应用于羰基还原反应及抗抑郁症的手性药物的合成。8.对苯环壬酯和戊乙奎醚光学异构体的合成进行了较系统的研究,建立了M受体各亚型特意性评价和筛选模型,研究了各个光学异构体的药理活性和毒性。发现了两个目标药物的活性异构体,为进一步开发这类药物打下了基础。4、展望手性药物不仅具有技术含量高、疗效好、副作用小的优点,而且与创制新药相比,开发手性药物相对要风险小,周期短,耗资少,成果大,不

仅具有重大的科学价值,同时也蕴藏着巨大的经济效益。目前,我国面临入世后的激烈竞争,如何发展有自主知识产权的手性药物及合成方法,已成为化学、生物学、医学和药学等学科急待攻克的热点问题。作为生命活动重要基础的生物大分子,如蛋白质、多糖、核酸和酶等,几乎全是手性的。这些大分子在体内往往具有重要的生理功能。光学纯手性药物的药理作用是通过与体内大分子之间的严格手性匹配与分子识别而实现的。含手性因素的化学药物的对映体在人体内的药理活性、代谢过程及毒性存在着显著差异。在此之前手性药物也并不陌生,例如:氧氟沙星和左氧氟沙星,还有很多药物具有手性,象胃安、丙氧吩、巴比妥、兰索拉唑等。那么手性药物的发展趋势又如何呢?专家[18]对我国手性药物的研发提出了4点建议:一是加强单一异构体的合成技术开发;二是开发具有自主知识产权的新药;三是重视手性分析设备特别是手性柱的开发应用;四是加强与制剂、生物学等学科的合作交流。研究人员在选择手性药物产品开发课题前,应加强交流,优势互补联合攻关,避免重复投入。最后,在科学技术高速发展的今天,人类面临各种机遇和挑战。SARS和艾滋病病毒向我们挑战,许多医学难题向我们挑战。我们药学和化学工作者怎么办?只有勇敢地迎接挑战,快马加鞭。我们正在党的正确领导下,与所有科研工作者广泛开展科研合作,联合进行科技攻关,愿所有科研工作者能够多加交流,以手性技术为研究平台,以手性药物为研究目标,携手获得更丰硕的研究成果。鲲鹏展翅九万

里,扶摇直上啸天穹。让我们一起努力,为人类更美好的明天再创辉煌!

手性药物拆分的研究进展

手性药物拆分的研究进展 许多药物具有光学活性(opitical activeity)。一般显示光学活性的药物分子,其立体结构必定是手性(chirality)的,即具有不对称性。手性是指其分子立体结构和它的镜像彼此不能重合。互为镜像关系而又不能重合的一对分子结构称为对映体(enantiomer)。虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。 目前,利用酶法、超临界流体色谱(SFC)法、化学法、高效液相色谱(HPLC)法、气相色谱(GC)法、毛细管电泳(capillary electrophoreisis,CE)法和分子烙印法拆分对映体,已成为新药研究和分析化学领域的重要课题。笔者在本文综述了近年来利用上述方法拆分手性药物的研究进展。 1酶法 酶的活性中心是一个不对称结构,这种结构有利于识别消旋体。在一定条件下,酶只能催化消旋体中的一个对映体发生反应而成为不同的化合物,从而使两个对映体分开。该法拆分手性药物已有较久的历史,反应产物的对映过剩百分率可达100%。酶催化的反应大多在温和的条件下进行,温度通常在0~50℃,pH 值接近7.0。由于酶无毒、易降解、不会造成环境污染,适于大规模生产。酶固定化技术、多相反应器等新技术的日趋成熟,大大促进了酶拆分技术的发展。脂肪酶、酯酶、蛋白酶、转氨酶等多种酶已用于外消旋体的拆分。脂肪酶是最早用于手性药物拆分的一类酶,是一类特殊的酯键水解酶,具有高度的选择性和立体专一性,反应条件温和,副反应少,适用于催化非水相递质中的化学反应,在B 一受体阻滞药、非甾体类抗炎药和其他多种药物的手性拆分中都有广泛的应用。意大利的Batlistel等用固定于载体Amberlite AD-7上的脂肪酶对萘普生的乙氧基乙酯进行酶法水解拆分,对温度、底物浓度和产物抑制等进行了研究,最后使用500 mL的柱式反应器,在连续进行了1200h的反应后,得到了l8kg的光学纯S-萘普生,且酶活性几乎无损失。另外,酯酶具有很高的工业价值,其应用前景也极为广阔。Jiaxin等利用pseudomaonas cepacia脂肪酶拆分了一类酰基取代的1.环己烯衍生物,通过酶催化酯交换反应,得到产率较高的光学纯化合物,且提供了反应过程监测方法。这种方法可推广到该类化合物系列衍生物的合成与拆分。 2 SFC法 根据手性选择剂种类不同,该分离方式主要包括氨基酸和酰氨类手性固定相、Prikle型手性固定相、环糊精型键合固定相如聚甲基异丁烯酯等。由于SFC 法尚处于发展阶段,各种参(如温度、压力、流动相的组成和密度等) 对分离度的影响机制还未完全清楚。SFC法具有简单、高效、易于变换操作条件等优点,已成为与HPLC法和GC法互补的拆分方法,因其具有独特的优越性,应用前景极为广阔。Nozal等用Chiralpak AD柱和Chiralcel OD柱在SFC条件下拆分了驱肠蠕虫药阿苯唑亚砜化合物,并研究了甲醇、乙醇、乙丙醇及乙腈等有机溶剂对立体构型的影响。结果表明,在以Chiralpak AD柱为固定相时,用2丙醇可以获得最好的拆分效果;而在Chiralcel OD柱上用甲醇效果最好。

基于L-氨基酸合成阴离子手性离子液体的研究[设计、开题、综述]

BI YE SHE JI (20 届) 基于L-氨基酸合成阴离子手性离子液体的研究 所在学院 专业班级化学工程与工艺 学生姓名学号 指导教师职称 完成日期年月

摘要:手性离子液体是一类功能化的离子液体,兼具离子液体及手性物质的特性,可广泛应用于手性合成、手性分离、手性催化等领域。虽然合成困难和费用昂贵限制了手性离子液体的广泛应用,但其在不对称合成中可作为手性诱导物的应用前景促使研究者不断地去开发新型的手性离子液体。本论文的研究工作主要包括:新型手性阴离子液体的合成及表征;离子液体与常规有机溶剂在反应过程中的差异性。 关键词:阴手性离子液体;合成;表征

目录 1 前言 (3) 1.1 手性离子液体合成研究进展 (3) 1.1.1 含手性碳离子液体 (3) 1.1.2 含手性轴离子液体 (2) 1.1.3 含手性面离子液体 (2) 1.1.4 其它手性离子液体 (3) 2 离子液体的应用 (4) 2.1 亲电取代反应 (4) 2.1.1 Friedel-Crafts烷基化和酰化反应 (4) 2.1.2 Blanc氯甲基化反应 (4) 2.2 缩合反应 (5) 2.2.1 Biginelli缩合 (5) 2.2.2 Mannich反应 (5) 2.3 氧化还原反应 (5) 2.3.1 氧化反应 (5) 2.3.2 还原反应 (6) 2.4 环化反应 (6) 2.4.1 Diel-Alder反应 (6) 2.4.2 1,3-环加成 (6) 2.4.3 Michael加成反应 (7) 2.5 小结 (7) 3实验部分 (8) 3.1 试剂与仪器 (8) 3.2 实验部分 (8) 3.2.1 手性(R)-2-羟基-4-苯丁酸钠、钾盐的合成 (8) 3.2.2 Na[RHPA]与K[RHPA]在不同有机溶剂中溶解度的测定 (9) 3.2.3 [BnMIM+]Cl-的合成 (9) 3.2.4 [BnMIM+]Br-的合成 (9) 3.2.5 阴离子手性离子液体[BnMIM][RHPA]的合成 (10) 4 结果与讨论 (10) 4.1 组装阴离子手性离子液体的离子交换可行性分析 (10) 5结论 (15) 参考文献 (15) 附录一、部分化合物谱图 (18)

手性药物

我报告的题目是手性技术与手性药物。 首先让我和大家一起来回忆一下药物给人类带来空前灾难的反应停事件。1953年,联邦德国Chemie制药公司研究了一种名为“沙利度胺”的新药,该药对孕妇的妊娠呕吐疗效极佳,Chemie公司在1957年将该药以商品名“反应停”正式推向市场。两年以后,欧洲的医生开始发现,本地区畸形婴儿的出生率明显上升,此后又陆续发现12000多名因母亲服用反应停而导致的海豹婴儿!这一事件成为医学史上的一大悲剧。 后来研究发现,反应停是一种手性药物,是由分子组成完全相同仅立体结构不同的左旋体和右旋体混合组成的,其中右旋体是很好的镇静剂,而左旋体则有强烈的致畸作用。 到底什么是手性药物?用什么技术或方法能够分别获得左旋体和右旋体来进行研究和安全有效地使用呢? 这就是今天我要报告的主题——手性技术和手性药物。 要阐明这一主题,首先我们要认识什么是手性药物。手性药物分子有一个共同的特点就是存在着互为实物和镜像关系两个立体异构体,一个叫左旋体,另一个叫右旋体。就好比人的左手和右手,相似而不相同,不能叠合。 目前临床上常用的1850多种药物中有1045多种是手性药物,高达62%。像大家所熟知的紫杉醇、青蒿素、沙丁胺醇和萘普生都是手性药物。 手性是宇宙的普遍特征。早在一百多年前,著名的微生物学家和化学家巴斯德就英明地预见“宇宙是非对称的……,所有生物体在其结构和外部形态上,究其本源都是宇宙非对称性的产物”。 因此,科学家推断,由于长期宇宙作用力的不对称性,使生物体中蕴藏着大量手性分子,如氨基酸、糖、DNA和蛋白质等。绝大多数的昆虫信息素都是手性分子,人们利用它来诱杀害虫。很多农药也是手性分子,比如除草剂Metolachlor,其左旋体具有非常高的除草性能,而右旋体不仅没有除草作用,而且具有致突变作用,每年有2000多万吨投放市场,其中1000多万吨是环境污染物。Metolachlor自1997年起以单旋体上市,10年间少向环境投放约1亿吨化学废物。研究还发现,单旋体手性材料可以作为隐形材料用于军事领域。 左旋体和右旋体在生物体内的作用为什么有这么大的差别呢?由于生物体内的酶和受体都是手性的,它们对药物具有精确的手性识别能力,只有匹配时才能发挥药效,误配就不能产生预期药效。正如“一把钥匙开一把锁!”因此,1992年美国FDA规定,新的手性药物上市之前必须分别对左旋体和右旋体进行药效和毒性试验,否则不允许上市。2006年1月,我国SFDA也出台了相应的政策法规。 怎样才能将非手性原料转变成手性单旋体呢?从化学角度而言,有手性拆分和手性合成两种方法。经典化学反应只能得到等量左旋体和右旋体的混合物,手性拆分是用手性拆分试剂将混旋体拆分成左旋体和右旋体,其中只有一半是目标产物,另一半是副产物,而且需要消耗大量昂贵的手性拆分试剂。化学家一直在探索,是否有更经济的方法,将非手性原料直接转化为手性单旋体呢? 上世纪60年代初,科学家们开始研究在极少量的手性催化剂作用下获得大量的单旋体,这就是手性合成

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法 非对映体结晶法适用于拆分外消旋化合物,利用天然旋光纯手性拆分试剂与消旋化合物

手性与手性药物

手性与手性药物 【摘要】近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。 【关键词】手性;手性药物 Abstract:Recently,clinical sigmificance of chiral drug attracts wide attention.Exploration of chiral drug was an heated discussion of internatiomal research.The paper expounded the concept of chirality and drug ,chiral actual meaning of research,and progresses on the research of chiral drug,showed that market foreground of chiral drug was extensive. Key words:Chirality;Chiral drug. 1 手性 手性是自然界的普遍特征。构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。

在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的,等等。因此,分子手性在自然界生命活动中起着极为重要的作用。人类的生命本身就依赖于手性识别。如人们对L一氨基酸和D一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。 人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者Jhvan[2]。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。1956年Pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50年代中期,反应停(沙利度胺,Thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。结果在欧洲导致1.2万例胎儿致残,即海豹婴。于是1961年该药从市场上撤消。后来发现沙利度胺R型具有镇静作用,而S型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是S型还是R型,作为药物都有致畸作用。1984年荷兰药理学家Ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。他

离子液体在有机合成中的应用概述

离子液体在有机合成中的应用 摘要:室温下的离子液体作为一种绿色、环保、可替代传统有机溶剂的新型溶剂受到了极 大关注。总结了近年来离子液体在有机合成反应中的研究新进展, 包括氧化反应、还原反应、Fr iedel Crafts 应、Diels Alder 反应、H eck 反应、硝化反应及其它合成反应。 关键词:绿色化学; 离子液体; 有机合成 引言:离子液体离子液体由带正电的离子和带负电的离子构成,在- 100~ 200 之间均呈 液体状态。与典型的有机溶剂相比, 离子液体具有无味、无恶臭、无污染、不易燃、易与产物分离、使用方便、易回收、可多次循环使用等优点, 此外还具有优良的可设计性, 可以通过分子设计获得具有特殊功能的离子液体。因此, 离子液体是传统挥发性溶剂的理想替代品, 能有效地避免使用传统有机溶剂所造成的环境、健康、安全以及设备腐蚀等问题, 是名副其实的、环境友好的绿色溶剂, 适合于清洁技术和可持续发展的要求, 已经被人们广泛认可和接受。 1 含有手性阳离子的手性离子液体 1.1 咪唑盐类CIL 利用手性试剂作为反应底物立体选择性地合成手性产物的不对称诱导反应已被很多研究者关注. 早在1975 年, Seebach 和Oei[1]首次将手性的氨基醚作为反应介质, 应用于酮的电化学还原反应中, 尽管产量很低,但是该方法促进了手性溶剂的进一步发展和研究.近些年来, 由于天然氨基酸易得、种类多等优点,它作为手性源并将手性中心引入到阳离子来合成CIL 已经引起了人们广泛的兴趣. 该方法可以克服手性试剂价格昂贵、难以合成等缺点, 而且合成出的离子液体种类比较多. 2003 年, Bao 等[2]首次报道了用天然手性氨基酸合成带有侧链的咪唑类手性离子液体(Scheme 1). 首先是利用氨基酸1 与醛反应生成咪唑环后酯化得到酯2,接着用四氢铝锂还原酯得到咪唑类的醇3, 3 与溴乙烷发生烷基化反应得到咪唑类手性离子液体4, 总产率为30%~33%. 这些手性离子液体的熔点为5~16 ℃, 它们可作为溶剂应用于不对称反应中.

手性分子与手性药物1

有机化学 ——手性分子和手性药物 12应化一班 高钰(120911103) 胡傲(120911106) 文正(120911118) 鲍敏(120911126) 李梦园(120911132) 张艳(120911146) 郑丽(120911150)

手性分子 手性:实物和其镜像不能重叠的现象 手性碳:连有4个不同的原子或基团的碳原子(“*”)手性分子:不能与其镜像重合的分子 如何判断一个分子是否有手性? ●最直接法:画其对映体,看是否重合 ●观察有无手性碳: ●若分子中只含有一个手性碳,即为手性分子●若分子中含有2个以上手性碳,视情况分析●观察其结构中是否具有对称因素(对称面、对 称中心及其它对称因素);一般说来,如果分子既没有对称面有无对称中心,分子就具有手性。

最直接法 两者不能重合,是手性分子 两者能重合,不是手性分子

观察有无手性碳 有手性碳,是手性分子 有手性碳,但不是手性分子 有手性碳(两个及两个以上)的不一定是手性分子

对称性 (一)对称面:假想有一个平面它可以把分子分割成互为镜像的两半,这个平面就叫对称面。 (二)对称中心:在分子中取一点P,画通过P点的任一直线,若在与P点等距离的此直线两端为相同原子(团),则P点即为该分子的对称中心。 (三)对称轴:如果穿过分子画一条直线,分子以它为轴旋转一定角度后,可以获得与原来分子相同的形象,这一直线即为该分子的对称轴。

R/S构型标记法 (一)R/S构型标记法命名规则 1、根据次序规则,排列成序,a>b>c>d; 2、把最小的d基团放在最远,其它三个朝向自己; 3、观察a b c顺序,若呈顺时针为R-构型;呈逆时针为S-构型。(二)由费歇尔投影式确定R/S构型的方法

手性药物拆分技术的研究进展

手性药物拆分技术的研究进展 摘要:简要阐述了手性药物的世界销售市场。综述了目前实验室和工业生产领域手性药物的拆分方法,包括:结晶拆分法,化学拆分法,动力学拆分法,生物拆分法,色谱拆分法,手性萃取拆分法和膜拆分法等,并简要介绍了每种方法的应用情况及优缺点。 关键词:手性药物; 外消旋体; 手性拆分 自然界存在各种各样的手性现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。据统计,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上[ 1 ]。美国FDA在1992年发布了手性药物指导原则,该原则要求各医药企业今后在新药研发上,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。随后欧共体和日本也采取了相应的措施。此项措施大大促进了手性药物拆分技术的发展,手性药物的研究与开发,已经成为当今世界新药发展的重要方向和热点领域[ 2 ]。当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。但是近年来单一对映体药物市场每年以20%以上的速度增长。1993年全球100个热销药中,光学纯的药物仅仅占20%;然而到了1997年, 100个中就有50个是以单一对映体形式存在,手性药物已占到世界医药市场的半壁江山。在1993年,手性药物的全球销售额只有330亿美元;到了1996年,手性药物世界市场已增长到730亿美元; 2002年总销售额更是达到1720亿美元, 2010年可望超过2500亿美元[ 3~5 ]。广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。 不同的立体异构体在体内的药效学、药代动力学和毒理学性质不同,并表现出不同的治疗作用与不良反应,研究与开发手性药物是当今药物化学的发展趋势。随着合理药物设计思想的日益深入,化合物结构趋于复杂,手性药物出现的可能性越来越大;另一方面,用单一异构体代替临床应用的混旋体药物,实现手性转换,也是开发新药的途径之一[ 1 - 3 ]。1985~2004年上市的550个新化学合成药物中,有313个药物具有手性中心,其中以单一异构体上市的手性药物为167个,手性药物数量呈逐年上升趋势; 2005年世界药物的销售总额为6 020亿美元,而手性药物的销售总额为 2 250亿美元,占全球制药市场销售总额的37% , 2010年可望超过 5 000亿美元[ 4 - 6 ]。总之, 手性药物大量增长的时代已经来临,手性药物制备技术的发展亦日趋完善,这为以制备和生产手性药物为主要内涵的手性工业的建立和发展奠定了基础。 手性药物的制备技术由化学控制技术和生物控制技术两部分组成。手性药物的化学控制技术可分为普通化学合成、不对称合成和手性源合成3类;手性药物的生物控制技术包括天然物的提取分离技术和控制酶代谢技术。以前手性化合物为原料,经普通化学合成可得到外消旋体,再将外消旋体拆分制备手性药物中间体或手性药物,这是工业生产手性药物的主要方法。1985~2004年上市的58个含有一个手性中心的手性药物中,有27个手性药物是通过手性拆分法生产的[ 4 ]。 1结晶法拆分 结晶法拆分包括直接结晶法拆分( direct crys ta llization resolution )和非对映异构体拆分( dias te reom er crys tallization resolution) ,分别适用于外消旋混合物( conglom e rate)和外消旋化合物( racem ic compound)的拆分。在一种外消旋混合物的过饱和溶液中,直接加入某一对映体的晶种,即可得到一定量的该对映体,这种直接结晶的拆分方法仅适用于外消旋混合物,其应用几率不到10%。外消旋化合物较为常见,大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物,扩大直接结晶法拆分的应用范围。 对于外消旋化合物,可采用与另一手性化合物(即拆分剂, reso lving agent)形成非对映异

离子液体应用及其发展

离子液体应用及其发展 罗树琴生化系化学教育2001541 摘要:离子液体也称为室温离子液体或低温盐,通常是指熔点低 于100℃的有机盐。由于完全有例子组成,离子液体有许多不同于常规有机溶剂的性质。离子液体在各方面都有广泛应用前景,目前离子液体的制备和研究正在快速的发展,其应用前景也是相当广阔的。 关键字:离子液体应用发展及前景 离子液体也称为试问离子液体或低温盐,通常是指熔点低于100℃的有机盐。由于完全有例子组成,离子液体有许多不同于常规有机溶剂的性质。如熔点低,不挥发,液程范围宽,热稳定性好。溶解能力强,性质可调,不易燃,电化学窗口宽等。与传统的有机溶剂,水,超临界流体等相比,起黏度低,比热容大,有的对水对空气均稳定,故易于处理,制造较为容易,不太昂贵。是理想的绿色高效溶剂,研究其性质极其应用成了一项热门课题, 1.离子液体的性质 离子液体大多呈无色,完全由阴阳离子组成,但样离子较大,且是有机物。离子液体 1有酸碱性(主要由阳离子决定,可通过调节阳离子来改变其酸碱性), 2亲水性:含C越多亲水性越弱 3热稳定性:较高的稳定性与杂原子氢键,阴阳离子组成相关,其蒸汽压低(可忽略不计),不易挥发,可去取代有机溶剂。 4熔点低:熔点与阴阳离子组成有关,是随阳离子对称性增大而增大的 5溶解性好:可溶解有机物,无机物,聚合物等 6密度:和阴阳离子组成有关,阳离子增多密度变大 7生物降解性:其一降解,相当环保,是绿色的环保剂 8电化学窗口:其可产生5-7V的高电压, 2.离子液体的合成制备 2.1 常规合成法 2.1.1一步法:采用叔胺与卤代烃或脂类物质发生加成反应,或利用叔胺的碱性和酸性发生中和反应而一步生成目标离子液体的方法 2.1.2两步法:两步法的第一步是通过叔胺和卤代烃反应制备出

手性药物的检测方法研究进展

2 019年第3期分析仪器Analy tical InstrumentationNo.3May .2019 1 基金项目:江苏省高等学校自然科学研究项目(18KJD150003 )。檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱殗 殗 殗 殗 综 述 手性药物的检测方法研究进展 李周敏* 曾 韬 姚开安 李心爱 宣 婕 (南京大学金陵学院,南京210089 )摘 要:对手性药物的分析一直是药学领域的一个研究热点,近年来各种检测新方法也不断应用于手性药物的分析中。本文主要介绍了近十年来手性药物的检测方法。比较目前已有的手性药物检测方法的优势与不足,并对手性药物检测方法的发展趋势进行了展望。 关键词:手性药物 对映异构体 手性检测 综述DOI:10.3969/j .issn.1001-232x.2019.03.001Research on progress in detection methods of chiral drugs.Li Zhoumin*,Zeng Tao,Yao Kaian,Li Xi'nai,Xuan Jie(Nanjing University Jingling College,Nanjing2 10089,China)Abstract:This article introduced detection methods of chiral drugs in the past decade,compared theadvantages and disadvantages of these methods,and prospected the trends.Key  words:Chiral drugs;Enantiomer;Chiral detection;Review1 前言 手性药物即在药物分子结构中引入手性中心所得到的一对互为镜像与实物的对映异构体。目前,临床上使用的药物约有三分之一是手性药物。在药代动力学方面,手性药物也可能在体内的吸收、分布、代谢和排泄中表现出一定程度的立体选择性。因此手性药物的检测在新药研发、活性化合物筛选和药物检验中均十分重要。本文就手性药物的检测方法进行综述。 2 手性药物的检测方法 近年来各种检测新方法不断应用于手性药物的分析中,包括旋光法(polarimetry)和旋光色散法(optical rotation dispersion method,ORD)、圆二色性法(电子圆二色性法electron circular dichroism,ECD、振动圆二色性法vibration circular  dichroism,VCD)、手性拉曼光谱法(Raman optical activity ,ROA)、质谱法(mass sp ectrum,MS)、核磁共振法(nuclear magnetic resonance,NMR),电化学法(Electrochemical)、光学传感器等。2.1 旋光法和旋光色散法 旋光法(polarimetry)一直是人们最常用来检测手性分子的方法,以其操作简单、检测价格低而极受欢迎,也是现在《中国药典》中广泛使用的方法。虽然影响因素较多,包括温度、检测光波长、样本杂质等,但其在一定条件下满足手性分析基本需求。在实验中通常以光学纯度来对样品进行分析。通常将供试品在钠光谱D线处的旋光度与相同条件下同种纯品旋光度的比值定义为光学纯度(opticalpurity ,O.P),其值某种意义上反映了供试品纯度。戴月华等人[1] 用旋光法测定硫酸西索米星氯化钠注 射液中西索米星的含量。郝玲花等人[2]用旋光度法 测定布洛芬注射液中精氨酸的含量,主药布洛芬不 干扰精氨酸测定。杨振林等人[3]用旋光法测定氯霉素滴耳液中氯霉素的含量。董杰[4]用旋光法测定盐

第十一章 手性药物的药物动力学

第十一章 手性药物的药物代谢动力学 第一节 概述 目前临床上所用药物50%是手性药物(chiral drug)。除天然产物外,合成的药物大多是外消旋体(racemate)。手性是生物系统的基本特征,构成生物系统的基本成分:糖、蛋白质、氨基酸、多核苷酸和脂质均为手性成分。许多内源性物质如激素、神经递质等都具有手性特征。药物在体内吸收、分布、排泄和代谢等过程以及药物与作用靶点结合都涉及到与这些生物大分子间的相互作用,必然存在手性问题,导致手性药物药效学(Chiral pharmacodynamics)和手性药物代谢动力学(Chiral pharmacokinetics)立体选择性。通常将活性强的对映体(enantiomer),称之为优映体(eutomer), 其亲和力(或活性)大小用aff eu表示; 将活性低或无活性的对映体,称之为劣映体(distomer),其亲和力(或活性)大小用aff dis表示。两种对映体的活性比值称为优/劣比(eudismic ratios, ER=aff eu/aff dis)。在有些情况下,劣映体不但无效,而且还可能部分抵消优映体的作用,甚至产生严重的不良反应。因此,有必要从新药研制的合理性、临床药物治疗的安全性和有效性的角度,研究各对映体的药理作用、药物代谢动力学特性,为合理开发和利用手性药物提供依据。 第二节 手性药物的生物活性 一、手性药物的作用模式 许多内源性配体(ligand)如神经递质、激素等本身具有手性,这些成分的空间结构是适合于受体(或酶)的。天然产物是在手性环境中形成的,大都只有一种构型,具有这种构型的药物往往具有较强的生物活性。如天然的去甲肾上腺素(noradrenaline)为左旋体,其活性是右旋体300倍。天然的生物碱莨菪碱(hyoscyamine)和东莨菪碱(scopolamie)都是左旋体,阻断M-受体作用是右旋体的300倍。通常用Easson和Steman 的三点作用模式描述对映体间的生物活性差异。图11-1所示是假定在两个对映体中,其中一个对映体的三个原子(或基团)B、C、D能够很好地与相对应受体中三个原子(或基团)X、Y、Z吻合,发生相互作用。那么另一对映体无论怎样旋转,它的B、C、D三个原子(或基团)不可能同时与受体的X、Y、Z吻合。这样两个对映体与受体的亲和力出现差异,呈现不同的生物活性。

浅谈手性化合物与现代医学

浅谈手性化合物与现代医学 一、手性化合物简介 手性化合物(chiral compounds)是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物。判断分子有无手性的可靠方法是看有没有对称面和对称中心。 手性问题与我们的日常生活密切相关。天然存在的手性化合物品种很多,并且通常只含有一种对映体,手性问题还牵涉到农业化学、食品添加剂、饮料、药物、材料、催化剂等诸多领域。它的研究已经成为科学研究和很多高科技新产品开发的热点。在过去20年里,手性研究具有戏剧性的发展,已从过去的少数几个专家的学术研究发展到大面积科学研究的需要,在一些领域并已带来了巨大的经济效益。物质的手性已经变成越来越需要考虑的问题,其对我们的日常生活正在起到越来越重要的作用。 手性化合物主要从天然来源、不对称合成和外消旋体拆分3个方面得到。由天然来源获得手性化合物,原料丰富,价廉易得,生产过程简单,产品的纯度一般都较高,因此很多量大的产品都是从天然物中获得。在药物工业中由于对手性药物的要求不断增加,其大大激发了不对称有机合成的发展,使一些生物技术、生物催化剂也迅速扩展到该领域产生纯的的手性中间体和手性产品。 二、手性药物 由于自然界的生命体存在有手性,因而也就产生了手性药物。手性药物指分子结构中存在手性因素的药物。通常是指由具有药理活性的手性化合物组成的药物,或者是只含有效对映体或是以有效对映体为主的药物。按药效方面的简单划分,手性药物可能存在以下几种不同的情况:①只有一种对映体具有所要求的药理活性,而另一种对映体没有药理作用或活性很小。②一对对映体中的两个化合物具有等同或近乎等同的同一药理活性。③一对对映体具有完全不同的药理活性。 ④一对对映体之间一个有药理活性,另一个不但没有活性,甚至表现出一定的毒副作用。⑤一对对映体之间药理活性相近,但存在个体差异。⑥一对对映体中,一个有活性,另一个却发生拮抗作用。 三、手性药物未来展望 手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予在分子不对称催化反应中做出杰出贡献的三位科学家。目前,世界单一对映体手性药物的销售额持续增长。1998年销售额已达到964亿美元。2000年的销售额为1330亿美元,并估计2008年达到2000亿美元。手性药物以其疗效高、毒副作用小、用药量少的优点满足了市场的需求,因而成为未来新药研发的方向。

离子液体催化剂文献综述

离子液体在催化上的应用与研究进展摘要:离子液体具有很多独特的物理、化学性质,正引起人们越来越多的重视,被认为是一类可以取代传统有机溶剂对环境友好的新型绿色溶剂,在很多领域中有着诱人的应用前景。本文归纳了离子液体的优越性质,介绍了离子液体的分类和制备方法,综述了其作为催化剂在各种化学反应中的应用,并展望了离子液体在该领域中的应用前景。同时,还对离子液体的固定化方法进行了评述,并指出了该研究领域目前存在的问题及发展趋势。 关键字:离子液体,催化剂,合成,应用,固定化 1前言 离子液体(ionic liquid)是完全由阳离子和阴离子组成的离子液体是完全由阳离子和阴离子组成的并且在室温或近于室温时为液体的熔融盐体系,它一般由较大的有机阳离子和较小的无机阴离子组成。离子液体与传统的熔融盐的显著区别是它的熔点比较低,一般低于150℃,根据离子液体的这一性质,可以用它代替传统的有机溶剂和电解质作为化学反应与电化学体系的介质等。离子液体独特的可调节静电场、特殊的离子环境和多维弱相互作用等特点使人们更容易采用有效的手段对催化反应活性和选择性进行调控。离子液体低挥发和低可燃性等性质,使其催化反应更加安全,所以,当离子液体用作反应介质或催化剂,或同时兼具上述两种作用时,往往能表现出特殊的催化性能,这就为新催化材料和新反应的研究提供了新的机遇。经过多年的发展,离子液体的催化作用成为离子液体研究最活跃的研究方向之一。 离子液体的分类比较多,按照阳离子可以分为四类:(1)1,3-二烷基取代的咪唑离子或称N,N'-二烷基取代的咪唑离子,简记为[RR'im]+,例如1-丁基-3-甲基咪唑离子记为[Bmim]+,若2位上还有取代基R'',则简记为[RR''R'im]+,如1,2-二甲基-3-丙基咪唑离子记为[MM'M''im]+;(2)N-烷基取代的吡啶离子,简记为[RPy]+;(3)烷基季铵离子[NRXH4-x]+,例如[Bu3NMe]+;(4)烷基季磷离子[PRxH4-x]+。 根据阴离子的不同,离子液体可分为两类:(1)卤化盐+AlCl3型(其中Cl 也可用Br代替),如1-乙基-3-甲基咪唑氯代铝酸盐([emim]Cl-AlCl3),其缺点是对水极其敏感,要在真空或惰性气氛下进行处理和研究,质子和氧化物杂质的存在对在该类离子液体中的化学反应有决定性的影响;(2)非卤化盐+AlCl3型(又称为新离子液体)的阳离子多为烷基取代的咪唑离子,阴离子为BF4-、PF6-、NO3-、ClO4-、CH3COO-、CF3COO-等,许多品种对水和空气不稳定,如1-乙基-3-甲基咪唑四氟硼酸盐([emim]BF4)以及NO3-、ClO4-为阴离子的离子液体要小心爆炸,尤其是在干燥的时候。 离子液体是近年来绿色化学的研究热点之一,因为离子液体在工业有机化学的清洁合成方面显示出潜在的应用前景。例如,传统的Friedel-Crafts烷基化反应在80℃下反应8h,得到产率为80%的异构体混合物,采用离子液体,同样的反应在0℃下反应30s得到产率为98%的单一异构体。除了它们所表现出的高活性、高选择性外,离子液体还具有如下优点: (1)具有较宽的稳定温度范围。通常在300℃范围内为液体,有利于动力学控制;在高于200℃时具有良好的热稳定性和化学稳定性。

手性分子与手性药物

. . . . . 有机化学—— 手性分子与手性药物 材料与化学工程系 12级应化(1)班

. . . . . 我们吃的如甘蔗汁制的或甜莱汁制的糖,它们的分子都是右旋的。 人体内氨基酸分子都是左旋的,而淀粉的分子都是右旋的,传递遗传信息的脱氧核糖核酸(DNA),95%以上呈右旋。 星系的运动都呈圆形、椭圆形或涡旋形运动,多是“左旋”。 多数藤本植物如牵牛花、扁豆等的茎蔓是右旋的。 海螺的螺壳都是右旋的,出现左旋螺壳的概率是百万分之。 左旋 右旋 自然界中的手性

. . . . . 长瓣兜兰花两侧长瓣的螺旋是左右对称的,右侧是左旋,左侧是右旋。——《科学》

. . . . . 化学概念中的手性 什么是手性 ⒈手性分子: 具有手性的分子称为手性分子,手性分子都具有旋光性;不具有手性的分子称为非手性分子,无旋光性。由于含一个不对称碳原子的化合物具有手性,这与其呈现手性特征的中心碳原子有关,因此这个中心碳原子称为手性中心,称其不对称碳原子为手性碳原子。 手性:实物与自身镜象不能重合的现象。 左手和右手不能叠合 左右手互为镜象 手性碳——手性分子的特征 所谓手性碳原子,是指饱和碳原子上连有四个完全不同的原子或原子团,常用“*”号予以标注。 F F C Br * 子 手性碳标记 F CH 3C H C H 2C H 3 OH * CH 3C H C H C H 3 Cl Br * * 非手性分子

. . . . . Ⅲ的结构具有对称中心,为非手性分子,与Ⅰ和Ⅱ均不成镜像,互为非对映异构体。 翻转180o,完全重合 3II 3I Ⅰ和Ⅱ互为对映异构体 ⒉含有一个手性碳原子的分子往往具有手性。含有多个手性碳原子的分子 不一定都具有手性。 例如:2,3-丁二醇的三种立体结构 互为镜像,不能重合,均为手性分子。 小结:

我国手性药物研发现状

我国手性药物研发薄弱 手性药物的巨大市场,也引起了我国学术界、工业界的注意。国内已经有一些机构开始重视手性药物的研发,尤其是中国科学院下属相关研究所的手性药物研发工作取得了明显的成果,部分研究达到了国际先进水平,还获得了多项具有自主知识产权的成果。 手性药物在我国的市场潜力不容忽视。波士顿咨询集团的一项研究报告指出,中国目前的药物市场居全球第7位,居美国、日本、德国、法国、英国和意大利之后。到2010年,中国的药物市场将达到240亿美元,超越英国和意大利列第5位。随着人们对用药安全、高效等方面要求,手性药物的需求会逐年增长。 然而,我国现在手性药物的研究还远远跟不上市场发展的需求。有专家指出,总体来说,我国对手性药物的化学合成和生物合成研究不多,基础性和创新性研究更少,与世界手性药物领域的研发水平还存在较大差距。如果国内科研机构不做进一步的探索研究,将来医药生产厂家采用国外技术的时候就要交付大量的专利费用。 一直以来,手性药物的研发是我国新药研发的一个弱项。但日前中国科学院 成都有机化学公司“手性药物国家工程研究中心”项目通过发改委的评估和中国 科学院上海有机化学研究所与日本大赛璐(中国)投资有限公司联合成立“SIOC- DAICEL手性分析技术合作研究中心”,堪称为我国手性技术的发展添上了浓墨重 彩的一笔。 回首今年,我国手性药物研究有了长足进展,表现在合成技术、制备技术等 方面取得了诸多成果。 ■更多合成新方法被发现 前一段时间,通过评估的由中国科学院上海有机化学研究所林国强院士负责 的“手性与手性药物研究中的若干科学问题研究”项目组,在手性药物的合成方 面取得了一些重要进展:发展了构筑手性季碳中心及合成砌块的新方法,并用于 合成了一系列具有药用价值的天然产物及类似物;建立了几种手性配体及金属催 化剂的负载化新方法,以及“均相催化-液/液两相分离”催化剂分离回收新方法, 发展了以水和聚乙二醇为反应介质的环境友好的不对称反应,将负载手性催化剂 应用于羰基还原反应及抗抑郁症的手性药物的合成;对苯环壬酯和戊乙奎醚光学 异构体的合成进行了较系统的研究,建立了M受体各亚型特异性评价和筛选模型, 研究了各个光学异构体的药理活性和毒性;发现了两个目标药物的活性异构体, 为进一步开发打下了基础。 日前湖南理工学院又传来捷讯,该院唐课文教授所领导的研究组以D-酒石酸 和正辛醇为原料合成了手性拆分剂D-酒石酸正辛酯,其结构经过了红外光谱(IR )确证。该研究以对甲苯磺酸为催化剂,甲苯作带水剂,对D一酒石酸正辛酯的 合成做了较为详细的探讨。通过正交实验得到的优化反应条件为:D-酒石酸100 毫摩尔,n(D-酒石酸):n(正辛醇)=1.0:2.8,对甲苯磺酸0.5克,甲苯55毫升, 慢速搅拌,酯化率在98%以上,收率达90%。 唐课文教授指出,常用的生物分离法、结晶法、色谱法等都存在这样或那样

气相色谱手性固定相研究进展

收稿:2006年3月,收修改稿:2006年5月  3国家自然科学基金项目(N o.30160092)、高等学校青年教师教学科研奖励计划(N o.2001298)以及云南省自然科学基金项目 (N o.2005E0006Z )资助 33通讯联系人 e 2mail :yuan -limingpd @https://www.doczj.com/doc/ee6859167.html, 气相色谱手性固定相研究进展 3 李 莉 字 敏 任朝兴 袁黎明 33 (云南师范大学化学化工学院 昆明650092) 摘 要 本文评述了气相色谱手性分离的发展过程,介绍了氨基酸、二肽、金属配合物、环糊精、多糖、手 性离子液体、环肽、键合以及交联类气相色谱手性固定相以及各类型的拆分机理,展望了气相色谱手性固定相的研究前景。 关键词 气相色谱 手性固定相 手性分离 中图分类号:O657.7+ 1 文献标识码:A 文章编号:10052281X (2007)02Π320393211 The Development of Chiral Stationary Phase in G as Chromatography Li Li Zi Min Ren Chaoxing Yuan Liming 33 (Department of Chemistry ,Y unnan Normal University ,K unming 650092,China ) Abstract The development of chiral separation in gas chromatography is briefly described in this paper ,and the advances in chiral stationary phases of G C are reviewed ,including amino acids ,dipeptides ,coordinated metal com plexes ,cyclodextrins ,polysaccharides ,chiral ionic liquids ,cyclopeptides ,covalently bonded and linked chiral group.The prospects of chiral stationary phases are als o discussed. K ey w ords gas chromatography ;chiral stationary phases ;chiral separation 1 早期的气相色谱手性分离 利用气相色谱分离手性化合物的研究始于1950年代末期,但真正第一次成功地分离是在1966 年,G il 2Av 等首次报道了氨基酸对映异构体的分离,手性固定相为N 2三氟乙酰基2D 2异亮氨酸月桂醇酯 [1] 。1967年G il 2Av 等[2] 又用填充柱气相色谱实现 了氨基酸的半制备分离。尽管气相色谱较早地应用于手性分离,但其在随后的年代里发展较慢,主要是该类固定相热不稳定性的原因。直到1977年,Frank 、Nichols on 和Bayer 将二甲基硅氧烷、L 2缬氨酸2 t 2丁基胺和(22羧丙基)甲氧基硅烷进行共聚,产生 了一种新的固定相。该固定相远较上述G il 2Av 固定相稳定,可以在175℃的温度下使用 [3,4] ,分析速度 较G il 2Av 柱快很多,在此温度下没有观察到固定相 的流失。由于Frank 等聚硅氧烷手性固定相的引入,使气相色谱手性分离获得了真正的新生。 2 气相色谱手性固定相的分类 色谱手性分离的关键是手性固定相的选择。气相色谱手性固定相的发展过程经历了由作用力简单、单一手性中心的氢键型手性固定相向具有多种作用力和多手性中心的复杂型手性固定相的发展过程,已有一些商品气相色谱手性柱出售。现使用的手性固定相主要有3类:氢键型手性固定相、形成包合物的手性固定相和金属配体作用手性固定相。在实践中,还经常将上述3类固定相与聚硅氧烷固定液或毛细管壁进行键合或交联。除此之外,近年来还出现了少量的新型手性固定相,如环肽、纤维素衍生物和手性离子液体等。在已有的报道中,很少有 第19卷第2Π3期2007年3月 化 学 进 展 PROG RESS I N CHE MISTRY Vol.19No.2Π3  Mar.,2007

相关主题
文本预览
相关文档 最新文档