当前位置:文档之家› 铜氨溶液吸收法测氧过程影响因素分析

铜氨溶液吸收法测氧过程影响因素分析

铜氨溶液吸收法测氧过程影响因素分析
铜氨溶液吸收法测氧过程影响因素分析

超氧自由基清除能力测定法-操作图解

超氧自由基(·O2-)的清除能力测定法(连苯三酚自氧 化法) (适用于:SOD及各种抗氧化剂) 操作图解 具体方法 1 溶液配制 1.1 Tris溶液(0.1mol/L):1.21 gTris(三羟甲基氨基甲烷,M.W. 121.1)+100 mL蒸馏水。 1.2 HCl溶液(0.1mol/L):取0.1 mL浓盐酸,加蒸馏水稀释到6 mL。 1.3 Tris-HCl缓冲液(0.05mol/L,pH7.4,含1mmol/L Na2EDTA) 40 mL0.1 mol/L Tris溶液+ x mL0.1 mol/L HCl溶液+15.2 mg Na2EDTA,混合,稀释到80 mL。用pH 计测量,pH应为7.4。用棕色瓶保存在冰箱内(最多保存三天) 。(以上为一个样品的用量)用前稍热至室温,再测pH值,符合要求即可。 1.4 60 mmol/L连苯三酚溶液(溶于1 mmol/L盐酸中) 取0.1mol/L HCl溶液(见1.2项)20μL,用蒸馏水稀释到2 mL,得1 mmol/L盐酸溶液(用pH计测量,pH=2.5-3.0)。再往里加连苯三酚14.6 mg (M。W.126.1 ),即得。(当天有效,以上为1个样品的用量)。 2 测试液 2.1连苯三酚溶液:取2950μL Tris-HCl缓冲液加入到石英比色皿中,再加约50μL连苯三酚溶液,迅速混合(颠覆式),开始计时,每隔30秒读数一次A值(325nm),至300秒(5min)时为止。(空白参比:Tris-HCl 缓冲液) ΔA=A325nm,300s - A325nm,30s。由于ΔA值反映了生成·O2的初始浓度,所以,对于同一批实验而言,此时的ΔA值必须相等。此时的ΔA为ΔA0。 3.2 样品溶液:取xμL样品溶液加入到大石英比色皿中,再加(2950-x)μL Tris-HCl缓冲液,再加50μL 连苯三酚溶液,迅速混合(颠覆式),开始计时,每隔30秒读数一次(A值,325nm),至300秒时为止。(空白参比:Tris-HCl缓冲液) ΔA=A325nm,300s - A325nm,30s。此时的ΔA为ΔA样。 3 计算公式

羟基自由基清除注意事项

一般而言,对于Fenton试剂与有机化合物氧化能力的影响因素大致上可分为: A.亚铁离子浓度。 B.过氧化氢浓度。 C.溶液于反应时的反应温度。 D.溶液中的pH值。 以下将对此四项变因做详细的探讨: A.亚铁离子浓度的影响 在Fenton试剂的反应中,亚铁离子主要是扮演着催化过氧化氢的角色。因此,若溶液中没有亚铁离子当触媒,则其溶液可能就没有氢氧自由基的生成。所以,大致上分解反应会随亚铁离子的浓度增加而加快,亚铁添加量会影响脱色效率,亚铁剂量愈高效果愈佳,此原因为增加亚铁剂量将使氧化反应更加完全并且可产生混凝机制而进行脱色(26)。但亚铁离子本身会与有机物形成竞争,亚铁离子浓度过高会增加氢氧自由基的消耗,反而造成处理效果的下降,反应式如下: Fe2+ + ·OH Fe3+ + OH- 故当浓度到达某一定值时,则其分解速率便不会在随着亚铁离子浓度的增加而持续加快,且亚铁离子浓度和生成物的比值也将可能会影响生成物的分布。一般而言,亚铁离子浓度皆维持在亚铁离子与其反应物之浓度比值为1:10-50(wt/wt)。 此外,亚铁在Fenton程序中除了扮演催化过氧化氢的角色外,亦具有混凝的功能,因此过量的铁离子加入将会造成过度的混凝,降低Fenton程序处理的效果,其可能的反应如下所示: B.过氧化氢浓度的影响 反应过程中,过氧化氢的浓度会直接影响氧化有机物的效果。一般而言,随着过氧化氢添加量的增加,有机物的氧化效果亦将随之提升,并且过氧化氢的添加浓度不同,则分解反应生成的产物将会有所差异。大致而言,在过氧化氢浓度越高的情况下,则其氧化反应产物,将会更趋近于最终产物。但是,当溶液中的过氧化氢浓度过高时,反而会使过氧化氢与有机物竞争氢氧自由基,而造成反应速率的结果可能不如预期一般增加。此外,当Fenton试剂系统中过氧化氢浓度远高于亚铁离子浓度时,Fenton法所产生的氢氧自由基会与过氧化氢反应产生perhydroxyl radical (HO2.)及一系列反应,且三价铁离子会与HO2.进行氧化还原反应生成superoxide radical anion (O2.),造成过氧化氢消耗量的增加,过量的过氧化氢加药量并不必然增加氢氧自由基的浓度,氢氧自由基达到稳定浓度所需反应时间随加药量增加而增加(27)。因此,若以连续之方式加入低浓度之过氧化氢,减少因为过氧化氢初始浓度过高所导致的抑制效应,亦可得到较好的氧化效果。 C.温度的影响 根据Arrhennius' Law:k=k0exp(-Ea/RT)可得知温度的改变会影响活化能及反应速率常数,进而影响反应速率。 对于Fenton试剂反应而言,一般若选用的反应温度条件是在小于20℃以下时,其对有机物的氧化速率将会随温度升高而加快。但是,倘若将其反应的温度升高至40-50℃时,其Fenton反应将会可能因为温度过高,进而使过氧化氢自行分解成水与氧(2H2O2 → 2H2O + O2 ),造成Fenton试剂对氧化有机物之反应速率减慢。 因此,当过氧化氢浓度超过10-20 g/L时,在其经济与安全的考量下,应谨慎选择适当的温度。在一般商业应用上,通常皆将其反应的温度设定在20-40℃之间。 D. pH值的影响 于Fenton试剂反应中,其反应溶液之pH值对Fenton法之影响,关系到铁离子错合效应、铁

有关抗氧化能力分析

有关抗氧化能力分析 ORAC (Oxygen radical absorbance capacity) 即抗氧化能力指数,是目前抗氧化研究领域一个重要的评价方法。该方法以偶氮类化合物AAPH作为过氧自由基来源,以荧光素Fluorescence为荧光指示剂,维生素E水溶性类似物Trolox为定量标准,使用荧光微孔板分析仪进行分析。与其他抗氧化能力分析方法相比, ORAC方法具有诸多显著的优点。该方法自1993年建立以来,经过不断发展和完善,可以说ORAC方法是目前评价抗氧化物质的抗氧化活性的最为简单、准确、灵敏度高、应用范围广和最具影响力的抗氧化能力研究方法之一。目前,ORAC方法已成功应用于生物样品、植物或食品提取物和纯化合物等多种样品的体内外抗氧化能力分析。 科标检测,其团队通过多年的研究沉淀,通过模拟各种氧自由基在人体内的产生机制产生各种氧自由基,而这些自由基可破坏荧光探针的结构从而造成荧光信号的衰减。当具有抗氧化活性的样品加入到实验体系中时,可以不同程度的保护荧光探针不被氧自由基所损坏,因而通过检测荧光信号的不同,便可以计算出某种样品的抗氧化活性。在ORAC实验中,以水溶性维生素E(Trolox)为标准品,因此最终样品的抗氧化实验结果最终以每克或是每毫升样品含有多少Trolox当量的形式表示。通过ORAC5.0检测样品的抗氧化活性,为抗氧化食品、保健品、化妆品以及药品的研发提供了有效的检测手段。 ORAC(Oxgen Radical Absorbance Capacity)指氧自由基吸收能力,即测试食品药品中抗氧化物的含量的国际通用标准单位。ORAC的含量超高,抑制自由基的抗氧化能力就越强。 对于一个未知样品,ORAC化学方法测试出样品的理论抗氧化值,并测出对各种自由基作用的具体数值,以寻找研发方向。然后通过ORAC生物细胞方法测试其生物利用度(被人体细胞所吸收的值),以验证其真实的效果。最后进行动物临床或人体临床,证实样品(产品)的实际效果。通过这种循序渐进、符合逻辑的研发方案步骤,企业可以安全、有效的研发出符合预期的新产品,建立起一套扎实的数据支撑体系。ORAC已建立从化学层面、生物细胞层面、临床层面纵向立体的分析方法。 常见蔬菜或水果的ORAC: "ORAC-total"是指总抗过氧化自由基能力值;“ORAC-5.0”是指总抗自由基能力值; 芦荟: ORAC-total :2737 μmol TE/g ORAC-5.0 :135,647 μmol TE/g

铜氨液吸收基本原理

铜氨液吸收基本原理 一、吸收一氧化碳反应 铜氨液吸收CO 是靠溶液中亚铜络氨盐和游离氨进行反应,化学反应方程式表示如下: 醋酸亚铜络二氨 一氧化碳醋酸亚铜三氨 吸收机理: 第一步,CO 与铜液相接触,气体中的CO 溶解于铜液中(物理过程); 第二步,在游离氨存在的条件下,CO 与铜液中的低价铜复盐作用生成络合物,即一氧化碳醋酸亚铜三氨(化学过程)。 二、吸收二氧化碳的反应 铜液有吸收CO 2能力,是因铜液中有游离氨存在,其反应如下: ()H CO NH O H CO NH ?+=++324223(1—1) 反应生成的碳酸铵继续吸收CO 2,生成碳酸氢铵,其反应如下: ()H HCO NH O H CO CO NH ?+=++34223242(1—2) 在铜洗塔中,铜液吸收CO 2的过程,气相中的CO 2含量与铜液中CO 2含量有关。铜液中CO 2含量随铜液中氨含量不同而不同。由上式(1—1)可知,两者生成碳酸铵溶液。在不同温度下,气相与液相平衡的CO 2含量也不同。温度高,CO 2平衡含量高。 综上所述,铜液塔出口气体CO 2的净化度随铜液中CO 2含量、游离氨含量和铜液温度三因素而变。即铜液中含CO 2低、游离氨高和铜液温度低,出塔气相净化度高。 式(1—1)和(1—2)均为放热反应。进铜洗系统气体中含CO 2愈高,反应放热愈多,过高的CO 2含量,使铜塔的操作温度迅速上升,导致铜液的吸收效率会因此迅速减退。目前对于丙碳和高压水洗脱碳的流程,严格控制进铜洗系统原料气中CO 2含量,是保证精炼工段正常操作的必要条件。 在吸收操作中,还须注意,吸收温度过低时,吸收CO 2后生成的碳酸氢铵和碳酸铵易产生结晶;当铜液中醋酸和氨含量不足时,铜液吸收 CO 2后,又会生成碳酸铜沉淀。所以这些,都会造成设备和管道堵塞而影响生产。 三、铜液吸收氧的反应,是依赖铜液中低价铜被氧化而进行的,其反应如下: ()()Q NH CO Ac NH Cu O HAc NH Ac NH Cu +++=+++322432323622 1242(1—3) ()()34323232322 16CO NH Cu O NH CO CO NH Cu =+++(1—4) 铜液吸收氧后,将低价铜Cu +氧化成高价铜Cu 2+ CuO O O Cu 4222=+(1—5) 四、吸收二氧化硫的反应 铜氨液吸收硫化氢有以下三种反应; Q O H S NH S H OH NH ++=+224242)(2(1—6) S NH Ac NH S Cu S H Ac NH Cu 24422323)(22)(2++=+(1—7) ()()S NH Ac NH CuS S H Ac NH Cu 244243222++=+(1—8) 进精炼系统原料气的硫化氢含量要求小于10mg/m 3。硫化氢与铜氨液中低价铜中的氨生成硫化氢,见上式(1—6)。如原料气中硫化氢含量过高,会与铜氨液中低价铜及高价铜的络合物,生成硫化铜沉淀,见式(1—7)、(1—8),堵塞

清除自由基能力的研究概况

清除自由基能力的研究概况 陶涛 (西南林业大学林学院农学(药用植物)昆明 650224) 摘要:自由基及其诱导的氧化反应是导致生物衰老和某些疾病如癌症、糖尿病、一心血管疾病等的重要因素。乳酸茵作为一种高效、低毒的生物源天然抗氧化荆,正逐步受到食品、制药、化工等领域的广泛关注。就目前国内外常用的乳酸茵抗氧化活性的筛选方法、乳酸茵抗氧化机理的国内外研究进展及未来的发展趋势作一综述。 关键词:自由基;乳酸茵;抗氧化. Study on the scavenging ability of lactic acid bacteria on free radical bstract:Free radical and its inducing oxiditative reaction may CaUSe biological doat and certain diseases such as Cancers,diabetes and the cat- diovascular.The lactic acid baaeria as one ofbiological SOUrCeS oxidation inhibitor is becoming more and more popular in the fields offood.,drug manufacture and chemical industry.This article mainly reviews the screening methods for antioxidative of lactic add bacteria among domestic and foreign countries,the advance of the research progress in lactic add bacteria antioxidative and r∞earch trends in future. 引言 氧化过程可以提供能量.对大多数生物体来说,是维持生命必不可少的一个能量转化过程。但过多的氧化过程会对生物大分子引起损伤.氧化损伤主要是由于自由基和过氧化产物作用于人体而产生的。 自由基(free radicals)27..称游离基.为人体氧化代谢过程中形成含有一个不成对电子的原子或原子团。人体的自由基主要包括超氧阴离子自由基(o2)、

铜离子的吸附及化学清洗

金属离子的吸附及化学清洗 1、杂质污染形态 (1)微粒型污染杂质 ①无机微粒 原子型吸附杂质——化学吸附 离子型吸附杂质——化学吸附 ②有机微粒 分子型吸附杂质——物理吸附 (2)膜层型污染杂质 ①有机膜层 原子型吸附杂质——化学吸附 离子型吸附杂质——化学吸附 ②无机膜层 分子型吸附杂质——物理吸附 2、杂质吸附种类及特性图1.物理吸附和化学吸附的比较 (1)物理吸附 物理吸附是分子吸附。污染杂质以分子形式吸附在硅片表面,主要是油脂(矿物类、动物类)、树脂和油类物质。如切磨抛机器设备的润滑油、防锈油、粘片用的粘合剂(松香、石蜡或其他混合物)、手油、光刻胶,有机溶剂残膜残渣等都属于分子型吸附杂质。 (2)化学吸附 硅表面原子与被吸附杂质依赖化学键力结合,这种成键的力在一定情况下是共价键力,但也混合有离子的相互作用力。化学吸附既可以是原子吸附型,也可以是离子型吸附。 ①离子型杂质吸附 以离子形式吸附在硅片表面的杂质一般由K+、Na+、Ca+2、Mg+2、Fe+2、Cu+2、H+、(OH)-、F-、Cl-、S--、(CO3)--等。这类杂质的来源广泛,可以来自空气,生产设备、工装夹具,化学药品、去离子水、自来水、人的呼吸、汗液等许多方面。 ②原子型杂质吸附 以原子形式吸附在硅片表面的污染杂质,主要有金、铂、铝、铜、铁、镍等金属原子。这些金属的离子多存在于酸性腐蚀液中,通过置换反应还原成原子吸附在硅片表面。 (3)特性比较 物理吸附和化学吸附都是由于硅片表面的悬挂键(吸附力场)形成的。 ①物理吸附的吸附热一般仅为几十J,而化学吸附的吸附热为100~1000J,两者相差甚远。 ②化学吸附的平衡距离(ro)比物理吸附的小得多。 ③物理吸附的特点是,杂质分子与硅表面的接触通常是依靠静电力来维持。结合力和分子型晶体结构的范德瓦尔斯(Vander Waals)引力一样。这种引力较弱,且随着分子间距的增加很快消弱。所以这种力所涉及的范围只有2~3?左右,要彻底清除这种杂质并不困难。 ④化学吸附的特点是,杂质离子和硅片表面之间依靠化学键力结合,杂质离子和硅片表面原子力所达到的平衡距离(ro)极小,以至可以认为这些杂质离子已成为硅片整体的一部分。由于化学吸附力较强,所以比分子型物理吸附杂质难消除。特别是金、铂等重金属原子不容易和一般酸性溶液起化学反应,必须采用王水之类的腐蚀液使之形成络合物溶于高纯水中加以清除。 3、金属离子的清洗 (1)过氧化氢在清洗中的作用——氧化(还原)作用 过氧化氢是强氧化剂又可作为还原剂,它对有机物、非金属和大多数金属有氧化能力。过氧化氢具有极微弱的酸性,在酸性、中性介质中比较稳定,在碱性介质中不稳定。在半导体清洗中,主要是利用H2O2的强氧化性来清除有机和无机杂质。 (2)氢氧化铵在清洗中的作用——络合剂和碱的作用 氢氧化铵是很好的络合剂,它能与Cu+2、Ag+、Co+2、Ni+2、Pt+4、Cd+2等金属离子发生络合作用,生成可溶性的络合物,故可利用其与许多重金属离子形成可溶性络合物这一特性来除去吸附在硅片表面的杂质金属原子和离子。例如,氢氧化铵与铜离子发生络合作用生成稳定的可溶性的铜氨络离子[Cu(NH3)4]+2。 碱性过氧化氢清洗液(又称Ⅰ号液)是用度离子水、30%过氧化氢、25%氨水配制而成。 Ⅰ号液配比:H2O:H2O2:NH4OH=5:1:1到7:2:1 当Ⅰ号液中过氧化氢耗尽时,便会发生硅片被NH4OH腐蚀的现象。 (3)盐酸在清洗中的作用——络合剂和强酸的作用 盐酸是一种强酸,除了起酸的作用外还兼有络合剂的作用,盐酸中的氯离子能为Au+3、Pt+2、Cu+2、Ag+、Hg+2、Ca+2、Co+3、Ni+3、Fe+3等金属离子提供内配位体,形成可溶于水的络合物。 盐酸过氧化氢清洗液(又称Ⅱ号液)是用度离子水、30%过氧化氢、37%盐酸配制而成。 Ⅱ号液配比:H2O:H2O2:HCl=6:1:1到8:2:1 Ⅱ号液对硅片没有腐蚀作用。 Ⅰ号液和Ⅱ号液一般应在75~85℃条件下进行清洗,时间为10~20min,然后用去离子水冲洗干净。清洗作用是基于过氧化氢的氢氧化性,使有机和无机杂质被氧化而得以去除,同时由于在两种清洗液中还有络合剂NH4OH、HCl,因此对一些难氧化的金

超氧阴离子清除实验

·O2ˉ自由基清除实验 (1) 实验原理 黄嘌呤氧化酶 黄嘌呤+H2O+O2尿酸+H2O2+·O2ˉ 即黄嘌呤氧化酶在有氧条件下催化黄嘌呤转化为尿酸,同时产生超氧阴离子自由基(·O2ˉ)。·O2ˉ与NBT结合后呈蓝色,样品清除能力越大,与NBT结合的·O2ˉ越少,溶液的颜色越浅。 (2)试剂 Xanthine(黄嘌呤): (C5H4N4O2 ), MW=152.1, 6.084mg/100mL(0.4mmol/l) 实际配制:1.216mg/10mL,与NBT等体积混合使用 Xanthine oxidase(黄嘌呤氧化酶)贮液: 1 unit/mL , (溶解酶的溶液要高压灭菌!防止蛋白酶对酶的降解!) 0.05 unit/mL,每次取200uL稀释到4mL(PBS溶解) NBT: (Nitro blue tetrazolium chloride氯化硝基四氮唑蓝), MW=817.65, 黄色19.6236mg/100mL(0.24mmol/l) 实际配制3.925mg/10mL,与Xanthine等体积混合使用 PBS(0.01mol/L,pH=8.0): NaCl 8g, KCl 0.2g, Na2HPO4(无水) 1.44g, KH2PO4 0.24g, 800mL水,用NaOH(1M)调pH到8.0,定容到1000mL。 实际配制500mL。高压灭菌,室温保存。 PBS(0.01mol/L,pH=7.4): 配制同上 Ascorbic acid: MW=176.12 母液为1mg/mL 先两倍逐级稀释5个浓度 实际配制见记录本! HCl(1M): MW=36.5 310ul/10ml.(36% HCl密度1.18g/ml) 实际配制:800uL浓盐酸+9mL水,于塑料管中4℃保存。 NaOH(1M): MW=40 0.4g/10mL, 存于冰箱 (3) 测定方法 超氧阴离子自由基清除能力的测定参照Bae等人的方法略加改进。样品溶液1-5mg/ml 起始浓度,用于水或50%乙醇溶液。 Bae, S.W., Suh, H.J., 2007. Antioxidant activities of ve different mulberry cultivars in Korea.

清除氧自由基

1、超氧负离子 黄嘌呤-黄嘌呤氧化酶系统产生超氧负离子产生超氧负离子 黄嘌呤、黄嘌呤氧化酶、 清除超氧自由基负离子O2- 徐艳,曲婷婷. 甘草消除氧自由基的体外研究[J]. 食品研究与开发,2006,(8). 2、1.2.2NBT 光还原反应中主要试剂的配制 1.2.2.1 测试缓冲液: 0.026 mol/LMet- 磷酸钠缓冲液具体配制方法: 首先配制0.1 mol/LpH7.8Na2HPO4- NaH2PO4缓冲液 a 称取Na2HPO4·12H2O( MW=358.14) 3.581 4 g 于100 mL 小烧杯中, 加少量蒸馏水溶解后, 移入100 mL容量瓶中, 用蒸馏水定容至刻度。 b 称取NaH2PO4·2H2O(MW=156.01)0.780 g 于50 mL小烧杯中, 加少量蒸馏水溶解后, 移入50 mL 容量瓶中, 用蒸馏水定容至刻度。 c 量取91.5 mL a 液与8.5 mL b 液混合后, 该液即为0.1 mol/LpH7.8 磷酸钠缓冲液。 d 称取L- Met( MW=149.2) 0.194 1 g 于50 mL 小烧杯中, 用少量0.1 mol/LpH7.8 磷酸钠缓冲液溶解后, 移入50 mL 容量瓶中, 用0.1 mol/LpH7.8 磷酸钠缓冲液定容至刻度。 1.2.2.2 NBT( 氯化硝基四氮唑蓝) 的配制(7.5×10-4mol/L) 称取NBT( MW=817.7) 0.061 3 g 于50 mL 小烧杯中, 用少量蒸馏水溶解后, 移入100 mL 容量瓶中, 用蒸馏水定容至刻度。 1.2.2.3 核黄素溶液(2×10-5 mol/L) a.称取EDTA( MW=292) 0.002 92 g 于50 mL 小烧杯中, 用少量蒸馏水溶解。 b.称取核黄素( MW=376.36) 0.073 5 g 于50 mL 小烧杯中, 用少量蒸馏水溶解。合并 a 液和 b 液, 移入100 mL 容量瓶中, 用蒸馏水定容至刻度( EDTA0.1 mmol,核黄素2 mmol)。贮于冰箱中, 避光保存, 用时稀释100 倍。 1.2.3 甘草提取物溶液的配制 1.2.3.1 甘草酸溶液的配制 称取甘草酸0.05 g 用少量稀醇(10 %乙醇溶液)溶解后, 移入50 mL 容量瓶中, 用稀乙醇定容至刻度, 即为 1 g/ mL 的甘草酸溶液。 1.2.3.2 甘草次酸溶液的配制 称取甘草次酸0.05 g 用少量稀醇(10 %乙醇溶液)溶解后, 移入50 mL 容量瓶中, 用稀乙醇定容至刻度,即为 1 g/mL 的甘草次酸溶液。 1.2.3.3 甘草总黄酮组溶液的配制

铜氨溶液吸收法

铜氨溶液吸收法 一、铜氨液吸收法的原理: 取一定量的样品气与吸收液接触,在有氨气存在下,铜被氧化,生成氧化铜和氧化亚铜。氧化物再与氢氧化铵、氯化铵作用,生成可溶性的高价铜盐和低价铜盐。低价铜盐吸收氧转为高价铜盐,高价铜盐又被铜还原为低价铜盐,低价铜盐又与氧反应,如此循环作用,达到吸收氧的目的,根据气体体积的减少就可测出样品中的氧含量。 二、氧分析器的测量及对象 分析常用的氧分析器有高纯氧分析器和常量氧分析器两种,前者主要针对高纯氧的分析,量气管的刻度是不均匀分布的,只有氧纯度达到9 9%以上时,才能准确定量,即每小格刻度为0 . 1%。而后者的量气管刻度是均匀分布的,即每小格为0 . 2%。只要不是 对样品氧纯度的精度要求过高,氧含量在0%至10 0%范围内的样品均可分析。两种分析器的取样量均为100毫升。 三、氧分析器的构成: 铜氨液氧分析器通常由水准瓶(内装圭寸气液)、100毫升量气管、吸收瓶(内置铜丝卷和铜氨混合吸收液)三大部分组成。 水准瓶中封气液组成为5%的稀盐酸滴入几滴甲基橙指示剂。 吸收瓶中溶液的组成为配制好的铜氨溶液。即为1:1 (25%)的浓氨水 与饱和氯化氨的水溶液的混和物,再加入少量硫酸铜(每1 0 0 0 0毫升混合液加入10 克硫酸铜。) 铜丝卷:用直径为1mm的铜丝,绕于直径5mnm勺棒上,然后取下剪成10mm长的小段。 四、氧分析器分析的操作步骤: 1、检查仪器是否漏气:保证仪器密封良好。 2、必须确保吸收瓶与量气管之间的毛细管内为纯氮气,并使吸收瓶液面保持在一标记位置。 3、提起水准瓶,让封气液把量气管中的气体全部排出,接上取样胶管,准确 取样100毫升,将样品气全部送入吸收瓶,关闭三通活塞,然后微微摇动吸收瓶,使 样品气与吸收液充分接触,其中的氧便被吸收液吸收。旋转三通活塞,让残余气体回 到量气管,并使吸收瓶液面保持在原标记位置。关闭三通活塞,提起水准瓶,使水准 瓶内液面与量气管液面在同一水平面上,读出气体体积。 4、再次提起水准瓶,把气体送入吸收瓶,重复上述操作,直到两次读数相同为止,即可读 数,得到分析结果。 五、注意事项 铜氨液吸收瓶中铜丝装多少为合适?当吸收液出现黄绿色沉淀时怎么办? 答:铜氨液吸收瓶中铜丝的装入量以不少于瓶容量的五分之四为合适。当吸收液出现黄绿色沉淀时,应将旧液倒掉三分之二,留下三分之一,然后再加入新的吸收液至适量 即可。 注:铜丝量过少,不利于吸收瓶中的氧充分、快速地吸收。而适当保留一部分旧液,也是为了使吸收瓶中的高、低价铜盐能尽快达到一种平衡状态,使仪器能在短时间内投 入作用。一般刚换过吸收液的仪器,在正式分析前,应先随意分析几个样,以促使 吸收瓶中的新旧吸收液均匀混合,使吸收瓶与封气液间的毛细管柱内气体为纯氮 气。此时的该仪器即可随时投入使用。 铜氨液吸收法测氧浓度时的注意事项: 1、量气管必须洁净,无挂珠现象。

氧自由基与氧自由基清除剂依达拉奉

氧自由基与氧自由基清除剂依达拉奉 山东大学齐鲁医院麻醉科(250012)于金贵 一、氧自由基 (一)自由基的概念 自由基(free radical,FR)是指外层轨道上有未配对电子的原子、原子团、分子或离子的总称。因其含有未配对的电子,故化学性质非常活泼,极易与其生成部位的其他物质发生反应,而这种反应的最大特点是以连锁反应的形式进行。氧原子上有未配对电子的自由基称为氧自由基。人体吸入的分子氧,在正常状态下绝大多数(98%)都连接4个电子,它们最终与H+结合,代谢还原为H2O。但有极少数氧(1~2%)在代谢过程中被夺去或接受一个电子而形成活性氧,即氧自由基。 (二)氧自由基的生理作用 氧自由基在生理上是必需的物质,如合成ATP 和前列腺素、中性粒细胞杀灭细菌、酸性粒细胞杀灭寄生虫等过程都必须有氧自由基参与。氧自由基在体内的生成与清除保持动态平衡,且在体内存在时间甚短。由于其化学性极强,反应剧烈,过量产生会对机体造成极大危害。 (三)氧自由基的种类及其作用

1. 超氧化物阴离子:氧自由基连锁反应的启动者,使生物膜、激素和脂肪酸过氧化。 2. 羟自由基(OH∙):作用最强的自由基,可破坏氨基酸、蛋白质、核酸和糖类。 3. 过氧化氢(H2O2):过渡型氧化剂,主要使巯基氧化,可氧化不饱和脂肪酸。 4. 单线态分子氧(1O2):氧分子的激发状态,亲电子性强,在光作用下可由O2直接产生,对细胞有杀伤作用。 5. 其他含氧的自由基如脂质过氧化物(ROOH):易于分解再产生自由基,腐化脂肪,破坏DNA,可与蛋白质交联使之形成变性交聚物。 (四)机体抗氧化机制 机制一:直接提供电子,以确保氧自由基还原;机制二:增强抗氧化酶的活性,以有效地消除或抵御氧自由基的破坏作用如酶类抗氧化剂超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX);非酶类抗氧化剂如维生素E、维生素C、辅酶Q、还原型谷胱甘肽(GSH)、葡萄糖、含硫氨基酸和不饱和脂肪酸等。 SOD多存在于细胞的线粒体内,作用是将氧自由基歧化,将其一半转变成H2O,另一半转变成O2,从而清除氧自由基。CAT是血红蛋白酶类之一,作用是分解H2O2,并将其清除之。

化工工艺学(高起专)

一、简答题(每小题6分,共36分) 1.常采用哪些方法对合成气精制?这些方法各有何优缺点。 答:精制合成气的方法有铜氨液吸收法,甲烷化法,液氮洗涤法三种。三种精制方法比较,铜氨液精制法需建立一套加压铜氨液吸收塔及再生系统,设备投资增大管理复杂;甲烷化转化法只需增加一套甲烷化反应装置和催化剂,设备虽然简单,但消耗了合成气中的氢气,除了采用低温变换反应外,最好增加一套一氧化碳选择氧化反应器,以便进一步降低一氧化碳残余含量;液氮洗涤法需有空分装置,如果已具备此条件,只需增加一套高效热交换器和液氮洗涤泡罩塔。 2. 裂解气为何脱炔,如何脱炔? 答:乙烯和丙烯产品中所含炔烃对乙烯和丙烯衍生物生产过程带来麻烦。它们可能影响催化剂寿命,恶化产品质量,形成不安全因素,产生不希望的副产品。常采用脱除乙炔的方法是溶剂吸收法和催化加氢法。溶剂吸收法是使用溶剂吸收裂解气中的乙炔以达到净化目的,同时也回收一定量的乙炔。催化加氢法是将裂解气中乙炔加氢成为乙烯或乙烷,由此达到脱除乙炔的目的。溶剂吸收法和催化加氢法各有优缺点。 3.简述工业制硫酸中三氧化硫的吸收原理及适宜的工艺条件。 吸收原理:n SO3 + H2O = H2SO4 + (n-1)SO3 吸收条件:影响吸收率有两个重要因素:吸收酸浓度及吸收酸温度。 (1)吸收酸浓度采用98.3%的浓硫酸作吸收剂,吸收率最大,高于或低于这个浓度的硫酸作吸收剂都会使吸收率下降。 (2)吸收酸温度:当吸收酸浓度一定时,温度越高,吸收率越低。单从吸收看,酸温越低越好。但温度过低会增加酸冷却器面积,同时低温热不能有效利用。所以通常的吸收酸温度控制在50℃以下,出塔酸的温度控制在70℃以下。 气温太低生成酸雾(3)进塔气温:从吸收角度看,温度低一点好。但进塔SO 3 机会多;提高进气温度,能有效减少酸雾形成。 4. 重油部分氧化法制取合成氨原料气的工艺流程包括几部分? 答: 重油部分氧化法制取合成氨原料气的工艺流程包括五个部分:原料油和气化剂的加压、预热和预混合;高温非催化部分氧化;高温水煤气废热的回收;水煤气的洗涤和消除炭黑;炭黑回收及污水处理。 5. 丁烯催化氧化脱氢制丁二烯的过程有什么特点?工艺流程主要分哪几个部分? 答:特点: (1)强放热反应,必须及时移去反应热; (2)产物沸点低,在酸存在下容易自聚; (3)副产物类型多,其中不饱和的含氧化合物在一定压力、温度条件下,容易自聚,而且,在酸的存在下,加速了自聚的速度。副产物大部分溶于水,因此可用水作溶剂,使丁烯及丁二烯与副产物分离。 正丁烯氧化脱氢,生成丁二烯的工艺流程,主要分三部分: (1)反应部分;(2)丁二烯的分离和精制;(3)没有转化的正丁烯的回收。 6、温度对氨合成反应的平衡氨浓度有何影响? 答:对于氨合成反应,温度是一个矛盾的影响因素,从反应平衡角度出发,温度升高,对反应平衡不利,会降低氨的平衡浓度;从动力学的角度出发,提高温度

如何清除体内自由基

如何清除体内自由基 消除体内自由基,应该要了解自由基的来源,从外界到身体内部的代谢一起中和性的描叙不要单方面的讲叙体内各种酶与自由基之间的关系 人体内的自由基有两个来源:其一是来自环境,如环境污染、食品污染、过度的紫外线照射和各种辐射、杀虫剂、室内外废气、吸烟、二手烟、酗酒、工作压力、生活不规律等等,都会直接导致人体内产生过多的自由基(活性氧);食品添加剂、食用脂肪和熏炸烤肉、某些抗癌药物、安眠药、抗生素、有机物腐烂物、塑料用品制造过程、油漆干燥挥发、石棉粉尘、空气污染、化学致癌物、大气中的臭氧等也都能诱发人体内产生自由基。 其二是来自体内,人体内组织细胞的新陈代谢也会产生自由基,这是人体代谢过程的正常产物,十分活跃又极不稳定,它们会附着于健康细胞之上,再慢慢瓦解健康细胞,而被破坏的细胞则又再转而侵害更多健康的细胞,如此恶性循环从而导致人体的衰老和疾病的发生。另外,组织器官损伤后的缺血一段时间后又突然恢复供血(即重灌流),如心肌梗塞、脑血栓、外伤、外科手术后,自由基会大量生成。正常人体有一套清除自由基的系统,但这个系统的力量会因人的年龄增长及体质改变而减弱,致使自由基的负面效应大大增强,引起多种疾病发病率的提高。活性氧自由基对人体的损害实际上是一种氧化过程。因此,要降低自由基的损害,就要从抗氧化做起。 听说过抗氧化剂吗?它对人体的健康可是有着密切的关系。既然自由基不仅存在于人体内,也来自于人体外,那么,降低自由基危害的途径也有两条:一是,利用内源性自由基清除系统清除体内多余自由基;二是发掘外源性抗氧化剂——自由基清除剂,阻断自由基对人体的入侵。 大量研究已经证实,人体内本身就具有清除多余自由基的能力,这主要是靠内源性自由基清除系统,它包括超氧化物歧化酶(SOD)、过氧化氢酶、谷胱甘肽过氧化物酶等一些酶和维生素C、维生素E、还原型谷胱甘肽、β-胡萝卜素和硒等一些抗氧化剂。酶类物质可以使体内的活性氧自由基变为活性较低的物质,从而削弱它们对肌体的攻击力。酶的防御作用仅限于细胞内,而抗氧化剂有些作用于细胞膜,有些则是在细胞外就可起到防御作用。这些物质就深藏于我们体内,只要保持它们的量和活力它们就会发挥清除多余自由基的能力,使我们体内的自由基保持平衡。 要降低自由基对人体的危害,除了依靠体内自由基清除系统外,还要寻找和发掘外源性自由基清除剂,利用这些物质作为替身,让它们在自由基进入人体之前就先与自由基结合,以阻断外界是自由基的攻击,使人体免受伤害。在自然界中,可以作用于自由基的抗氧化剂范围很广,种类极多。目前,国内外已陆续发现许多有价值的天然抗氧化剂。如β-胡萝卜素(维生素A)、维生素C、维生素E、番茄红素、辅酶q10、等等。此外,我国很多中草药植物中的有效成分都是天然抗氧化剂,例如,银杏黄酮、甘草黄酮等,另外还有巴西菇、灰树花、茯苓、黄芪、丹参、银杏、枸杞、灵芝、人参......。 吃什么可以减少体内自由基 在正常的生命过程中,自由基为维持生命所必需。体内自由基不断产生,也不断地被清除,两者 处于动态平衡之中,使之维持在一个正常的生理水平上。自由基在生物体内具有参与吞噬病原体,参 与前列腺素和凝血酶原的合成、解毒,参与体内部分生化反应和胶原蛋白的合成,调节细胞增殖与分化,参与机体免疫和环核苷酸的生物合成,以及生殖和胚胎发育等重要的生理功能。但是当自由基过 量时,自由基在机体内损伤蛋白质、核酸和生物膜,导致细胞凋亡,并参与许多疾病的发病过程。 由基清除剂即抗氧化剂清除机体自由基,保护机体免受氧化损害中起重要作用。因此,近年来对 自由基清除剂的研究备受关注。多吃点抗氧化剂食物有利于减少体内多余自由基。 方法/步骤 1.全面复方自由基清除剂:葡茶多酚胶囊。适当吃葡茶多酚可以全面清除体内多余自由

氧自由基

第五章自由基清除剂 本章要点 1.自由基理论的产生机理及来源 2.自由基对机体活动的影响 3.自由基清除剂的基本概念 随着生命科学的飞速发展,英国人Harman于1956年提出了自由基学说。该学说认为,自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因,其中的观点被越来越多的实验所证明。 自由基(Free radical)是人体生命活动中各种生化反应的中间代谢产物,具有高度的化学活性,是机体有效的防御系统,若不能维持一定水平则会影响机体的生命活动。但自由基产生过多而不能及时地清除,它就会攻击机体内的生命大分子物质及各种细胞器,造成机体在分子水平、细胞水平及组织器官水平的各种损伤,加速机体的衰老进程并诱发各种疾病。 近年来,国内外对自由基及自由基清除剂的研究十分活跃,在各类食品科学、生命科学及医学书籍上都有许多关于自由基及其清除剂的研究报道,自由基清除剂作为功能性食品的重要原料成分之一,通过人们日常消费的食品来调节人体内自由基的平衡,已受到食品营养学家的广泛重视。 第一节自由基理论 一、自由基的产生机理及来源 自由基又叫游离基,它是由单质或化合物的均裂(Homdytic Fission)而产生的带有未成对电子的原子或基团。它的单电子有强烈的配对倾向,倾向于以各种方式与其他原子基团结合,形成更稳定的结构,因而自由基非常活泼,成为许多反应的活性中间体。 人体内的自由基分为氧自由基和非氧自由基。氧自由基占主导地位,大约占自由基总量的95%。氧自由基包括超氧阴离子(O2-·)、过氧化氢分子(H2O2)、羟自由基(OH·)、氢过氧基(HO2-·)、烷过氧基(ROO·)、烷氧基(RO·)、氮氧自由基(NO·)、过氧亚硝酸盐(ONOO-)、氢过氧化物(ROOH)和单线态氧(1O2)等,它们又统称为活性氧(reactive oxygen species,ROS),都是人体内最为重要的自由基。非氧自由基主要有氢自由基(H·)和有机自由基(R·)等。 (一)自由基的产生 人体细胞在正常的代谢过程中,或者受到外界条件的刺激(如高压氧、高能辐射、抗癌剂、抗菌剂、杀虫剂、麻醉剂等药物,香烟烟雾和光化学空气污染物等作用),都会刺激机体产生活性氧自由基。 人体内酶催化反应是活性氧自由基产生的重要途径。人体细胞内的黄嘌呤氧化酶、髓过氧化物酶和NADPH氧化酶等在进行酶促催化反应时,会诱导产生大量的自由基中间产物。除酶促反应外,生物体内的非酶氧化还原反应,如核黄素、氢醌、亚铁血红素和铁硫蛋白等单电子氧化反应也会产生自由基。外界环境,如电离辐射和光分解等也能刺激机体产生自由基反应,如分子中的共价键均裂后即形成自由基。 自由基反应包含3个阶段,即引发、增长和终止阶段。反应之初,引发阶段占主导地位,反应体系中的新生自由基形成许多链的开端,反应物浓度高。引发后的扩展阶段为反应的主体,若起始有几个引发自由基在扩展阶段没有消失或增加,那么反应中就有几条链。随着反应的进行,体系中的反应物浓度越来越

羟基自由基清除能力测定法的简易操作图解-脱氧核糖降解法-脱氧核糖分析法

羟基自由基(·OH)清除能力测定法的简易操作图解 (适用于各种抗氧化剂) 文献来源 [1] Xican Li. Solvent effects and improvements in the deoxyribose degradation assay for hydroxyl radical-scavenging. Food Chemistry, 2013, 141(3):2082-2088. 操作图解 图1 羟基自由基(·OH)清除能力测定法(脱氧核糖降解法)的实验操作图 具体方法 1 溶液配制 0.2 MKH2PO4溶液: 100mL蒸馏水+2.7218g KH2PO4。 0.2 M Na2HPO4溶液: 500mL蒸馏水+35.814g Na2HPO4·12H2O。 磷酸盐KH2PO4-Na2HPO4缓冲液phosphate buffer(0.2M, pH7.4, 100mL):19mL0.2 MKH2PO4+ 81mL 0.2 MNa2HPO4. (注意:19:81是大概的体积比,具体的比例以pH=7.4为准)。 Na2EDTA溶液:(1mM, 25mL):8.4 mg+25mL蒸馏水。 FeCl3溶液:(3.2mM, 5mL):4.2 mg+5mL蒸馏水。 抗坏血酸溶液:(1.8mM, 50mL):15 mg+50mL蒸馏水。 H2O2溶液:(50 mM,5mL):30 mg 30% H2O2+5mL蒸馏水。 脱氧核糖溶液:(50 mM, 2 mL):15 mg脱氧核糖+2 mL蒸馏水(该用量约可做40个数据) 。 三氯乙酸溶液TCA(10%, 10 mL):1 g + 10 mL蒸馏水。 硫代巴比妥酸溶液TBA:(5%, W/V, 20mL):取1gTBA+20mL蒸馏水+20mgNaOH (临用时配,超声溶解. 该用量可做40个数据) 。 样品溶液:选合适的溶剂(如甲醇、无水乙醇等),先配成1mg/mL的溶液试试。 2 操作方法与注意事项 2.1 操作方法(见图1) 2.2 注意事项 1 测试前,一定要检查试管是否干净,不净的试管不能用。正式测试前,盛装样品的容器(小瓶或试管) 必须用铬酸洗液洗净。 2 样品溶液加入到试管后,先彻底挥干溶剂,再用样品的残渣,进行实验检测(见:操作图解)。这一步至关重要,因为有机溶剂都会产生数十倍的干扰。其原因中文献[1]已做详细说明。 3 最后显色时,如颜色太淡,可能是加热温度不够高; 4 加样:在10μL以下最好用进样针,插到瓶底;取样:力保均匀。 5 如平行样之间差别太大,系混合不均所致。两次水浴前,都要充分振荡。振荡时,用保鲜膜盖住管 口上下剧烈振荡。

抗氧化物活性测定方法总结

抗氧化物活性测定方法(倾向于考虑DPPH法和ORAC法) 1.FRAP法:铁离子还原抗氧化能力测定法[1] FRAP(ferric ion reducing antioxidant power)方法,在低pH值的溶液中, Fe3+-TPTz(Fe3+-三吡啶三嗪)被抗氧化剂还原成有色的Fe2+-TPTZ。反应的结果常以Fe2+当量或标准物质的抗氧化能力表示。 该法快速简便、易于操作、重复性好,但FRAP反应属于电子转移(SET)反应,因此FRAP方法不能够测定氢转移反应(HAT)起作用的物质。而且该法实际测定的是待测生物活性物质将Fe3+还原为Fe2+的能力,因此没有抗氧化能力的生物学相关性。 2.TEAC法(trolox equivalent antioxidant capacity) ABTS(2,2'-amino-di(2-ethyl-benzothiazoline sulphonic acid-6)ammonium salt,2,2'氨基-二(3-乙基-苯并噻唑啉磺酸-6)铵盐)与过氧化物酶和氢过氧化物在一起形成ABTS+阳离子自由基。在抗氧化剂存在时,这种自由基混合物的光吸收值下降,下降程度取决于抗氧化剂的抗氧化能力,测得的结果以TEAC表示,即被测抗氧化剂清除ABTS·+的能力(吸光度大小的变化)与标准抗氧化剂trolox(VE的水溶性类似物)清除ABTS·+的能力的比值。 TEAC法十分简单,适用于大量样品的分析检测。但是,ABTS·+并非生理自由基,缺乏生理相关性,而且与FRAP方法相似,ABTS·+与不同抗氧化剂问的氧化反应时间不同,因此,只能定性不能定量评价样品的抗氧化能力。 3.DPPH法[2,3](2,2-diphenyt-l-picrylhydrazyl radical scavenging capacity) DPPH·(二苯代苦味肼基自由基)法是较常用的方法之一。DPPH·是一种稳定的以氮为中心的自由基,其醇溶液呈深紫色,在517nm 处有一吸收峰。当反应系统中存在自由基清除剂时,它可以和DPPH·的单电子配对而使517nm 处的吸收峰渐渐消退。而且,这种颜色变浅的程度与配对电子数成化学计量关系。因此,根据吸光度的变化可测得抗氧化剂的活性。通过计算DPPH自由基剩余一半时所需抗氧化剂的浓度(EC50)以及时间(TEC50)反应抗氧化物的活性。 DPPH法快速、简单,仅需要一台紫外分光光度计就可以测定,但DPPH方法存在的不足是,当被测物与DPPH紫外吸收有重叠时,将会影响测定结果,比如类胡萝卜素。此外,由于空间位阻决定反应的倾向,小分子化合物由于更易接近自由基而拥有相对较高的抗氧化能力。此外该方法线性范围也相对较窄,而且所有还原剂都能够对DPPH起作用,因此结果并不能完全代表抗氧化能力。

清除自由基研究方法汇总

电子自旋共振法(ESR)、高效液相色谱法、化学发光法、比色法、分光光度法 自由基清除剂也称为抗氧化剂,可清除体内多余的自由基,减轻它们对机体的损伤。目前常用超氧阴离子自由基体系(O2-·)、羟基自由基体系(·OH)、二苯代苦味酰基自由基体系(DPPH·)对某抗氧化剂的体外清除自由基能力进行了研究。 其中ESR法和气相色谱法、HPLC 法对自由基的检测灵敏度高,但对设备要求较高,操作复杂,无法在一般实验室普及。而其中的分光光度法、化学发光法、荧光分析法等不需要昂贵的仪器,易于被一般实验室所采用,但测定过程中的干扰因素较多,容易对测定的准确性和灵敏度造成影响。分光光度法最常用。 原理部分: 1.DPPH·法测试机理 DPPH·(二苯代苦味脐基自由基)的甲醇溶液呈深紫色,可见光区最大吸收峰为492nm。当自由基清除剂加入到DPPH·溶液中时,DPPH·的单电子被配对而使其颜色变浅,在最大吸收波长处的吸光度减少,而且颜色变浅的程度与配电子数成化学计量关系,因此,可通过吸光度减弱的程度来评价自由基被消除的情况。 2. 羟基自由基(·OH) 1)邻二氮菲法[70]

实验原理:邻二氮菲可与Fe2+形成络合物,此络合物在510nm 处有最大吸收峰,是一常用的氧化还原指示剂,其颜色变化可敏锐地反映溶液氧化还原状态的改变。H2O2/ Fe2+体系可通过Fenton 反应产生羟自由基,邻二氮菲-Fe2+水溶液被羟自由基氧化为邻二氮菲-Fe3+后,其510nm 最大吸收峰消失。如果反应体系中同时存在羟自由基清除剂,则Fenton 反应产生的羟自由基将被此清除剂全部或部分清除,邻二氮菲-Fe2+络合物受到的破坏将会随之减少。根据这一原理,可建立以A510变化反映自由基清除剂对羟自由基清除作用的比色测定法。 2)水杨酸法[71] 实验原理:羟自由基易攻击芳环化合物产生羟基化合物,因此可用水杨酸捕集Fenton 反应体系中的·OH,生成的2,3-二羟基苯甲酸用乙醚萃取,用钨酸钠和亚硝酸钠显色,然后用分光光度计测定其在510nm 处的吸光值,此吸光值可反映体系中的羟自由基浓度。 3)甲基紫-Fe2+-H2O2反应体系 测定原理:在Fenton反应的基础上加入甲基紫作显色剂,反应式如下: Fe2++H2O2→Fe3++OH-+·OH 甲基紫在酸性溶液中呈现紫色[9],在578nm 处有强吸收。反应产生的·OH 具有高的反应活性,容易进攻高电子云密度点,会与甲基紫中具有高电子云密度的-C=C-基团发生亲电加成反应,使甲基紫褪色。通过测定甲基紫在578nm 处吸光度值的变化可间接测定出·OH 的生成量。当有清除自由基的物质存在时,会阻断甲基紫与·OH 的反应,从而使得甲基紫的颜色有所加重,因此可利用抗氧化剂加入前后溶液吸光度值的变化来评价物质的抗氧化性强弱。

相关主题
文本预览
相关文档 最新文档