当前位置:文档之家› 文献综述-船舶动力定位控制技术研究

文献综述-船舶动力定位控制技术研究

文献综述-船舶动力定位控制技术研究
文献综述-船舶动力定位控制技术研究

文献综述

电气工程及其自动化

船舶动力定位控制技术研究

前言:随着人类不断地深入海洋,人们对海洋的开发和探索的范围越来越广。由于海面上的不稳定因素很多,风、海、浪对船舶的运动以及在海面上的位置有很大的影响,因此对船舶在海洋中的控制的要求越来越高。以往,大多船舶采用锚泊等方法进行定位,所需建设工程时间较长,尤其在深海处,锚泊定位方法存在较大困难。因此,船舶动力定位也就应运而生了。船舶动力定位有别于传统的定位方法,船舶动力定位是依靠自身的动力,在控制系统的指挥下抵抗外界的干扰,使其保持某一姿态和艏向、悬停于空间任何一定点位置。它具有不受海水深度影响、定位准确快速等特点。在船舶动力定位系统中,控制系统是它的核心部分。随着控制技术的不断的发展,船舶动力定位控制技术得到快速的提高。至今,动力定位控制技术也经历了三代的发展,其特点分别是经典控制理论、现代控制理论和智能控制理论在动力定位控制技术中的应用。模糊控制技术作为一种智能控制技术,其具有可以不依赖于对象的精确模型,鲁棒性好,响应速度快,抗干扰能力强的特点,考虑到船舶动力定位的特点,模糊控制技术还是比较适合的一种动力定位控制技术[1]。

正文:船舶在海上运行时会遇到风、海浪和海流等海洋环境的干扰,这样船舶就产生了受扰运动。例如科学考察船在海上进行作业时,需要停在指定的位置上。但是由于海上环境的影响,考察船不能一直停在指定的位置上。因此为了确保船舶在海上运作的稳定性,需要对船舶进行定位。以往,传统的定位方法是锚泊定位。传统的抛锚定位是将锚扔入海底,利用锚钩住海底的淤泥,从而使船舶抵抗受到的外界的干扰力。抛锚定位它的优点是,锚是任何船舶上都会备有的定位设备,从而不用另外加装其他的定位设备。但是这种定位系统有不可避免的缺陷:1、定位不够准确,其精确性与水深成反比;2、抛锚、起锚费时比较麻烦,机动性能差。一旦抛锚,如果需要重新定位时,需要收锚然后重新抛锚定位,这一过程本身就很繁琐和费时。3、锚泊系统很容易受海底情况及水深的影响和限制,在一般情况下,它的有效定位的范围是在水深100米左右的区域。4、对于一些需要在深海作业或者航行的船舶,随着水深的增加,锚泊系统的抓底力会逐渐减小,抛锚的困难程度也会增加,同时还要增加锚链的长度和加强强度,从而导致锚链的重量一下增大,使海上的布链作业将变得复杂。

此外,锚链的价格和安装费用也会猛烈增加。在实际情况下,当水深达到一定的深度时,多点锚泊系统已经没有多大的用处[2]。

而船舶动力定位系统与传统的定位不同,它不需要借助锚泊系统定位,而是通过测量系统检测出船舶的实际位置与所需要的目标位置的偏差,然后再根据外部环境扰动力的影响来计算出使船舶恢复到目标位置时需要的推力大小,再通过控制船舶上的推力器进行推理分配,从而使推力器产生相对应的推力,尽可能地使船保持在要求的位置上。动力定位系统的特点是不受海水深度的影响,推力器能在任何水深下提供推力抵抗环境力,动力定位系统的定位成本不会随着水深的增加而增加,同时它具有定位迅速准确,快速响应天气环境的变化和不受海洋环境的影响等优点。由此看来,相比于传统的锚泊定位,动力定位有很大的优势,尤其适用于深海领域。因此对动力定位的研究具有重要的意义。

动力定位系统(Dynamic Positioning System)是一种闭环的控制系统,它是通过推力器来提供抵抗风、浪、流等作用在船上的环境力,从而使船尽可能地保持在海平面上要求的位置上,其定位成本不会随着水深增加而增加,并且操作也比较方便。

随着动力定位技术的发展,动力定位的概念也在扩大。采用动力定位技术,可以使船舶与其他船只保持相对位置不变,使船舶按预定轨迹移位,按预定计划航线以预定航速航行,实现船舶自动驾驶,对水下目标进行自动跟踪等。动力定位控制系统的工作原理如下:该系统由DP控制和JS控制组成。其中DP控制是自动控制而JS控制是人为手动控制。其中风速风向仪、差分GPS、电罗经和参考垂直单元等用来测量位置和外部环境信息,然后将这些信息经过信息采集单元的收集和处理传送给DP控制主电脑进行计算,再将计算的结果传送给信号处理单元,接着输出到控制转换单元来控制推进器等设备来产生推力。其中的推进设备中的主发1、主发2、主发3是三台柴油发电机。母联1和母联2分别是主配电板和配电板。通过船舶的功率管理系统即PMS管理输出控制信号来驱动这三台柴油发电机供电开关、主配电板和配电板的开关使相应功率提供得到保障。JS控制是人为通过输入参数来控制[3]。

通常研究船舶在海上的运动需要建立运动模型。由于海流、风和波浪的作用,导致船在海上航行或者作业时会产生六个自由度的运动。通常对于在海上环境作用下的水面动力定位船舶,动力定位系统是用来控制船舶的纵荡(X向)、横荡(Y向)和艏摇的平面运动。

动力定位船舶数学模型由两部分组成:第一部分低频运动(小于0.5rad/s),动力定位系统仅仅控制的这部分运动是由海流、风和二阶波浪引起的运动,这样做的好处是减少控制所需的能量和推力器的磨损,还有降低设备的制造成本;第二部分是由一级波浪引起的高频运动(0.3~1.6rad/s),由于这部分运动造成船舶的振荡,不会造成船舶的位移,因此这部分

运动不反馈给控制系统,控制器也不控制这部分运动。船舶的总运动是由这两部分迭加而成[4]。

船舶动力定位系统最早开始使用是从20世纪60年代和70年代初。而率先使用动力定位系统的船是用于铺设电缆,勘探或是对水下的作业进行一定的水面支援,并且船的排量大概是450—1000吨。“犹勒卡”号是第一艘装有动力定位系统的船舶。动力定位系统最明显的特点是它一般都装有好几台推力器,但是并不会影响船体的形状和尺寸。在早期的装有动力定位系统船舶中,最出名同时也是最成功的是“格洛马挑战者”号。这艘船差不多游遍了世界的每一个海洋,在水深超过2000英尺的海洋中收集岩心,这些岩心为地质学上的发现特别是为板壳结构理论提供了非常有利的证据。

在第二代装有动力定位系统的船舶中,虽然每艘船舶都有一些不同之处,但是都采用了差不多相同的传感器和数字计算机控制系统,数字控制器一般都是有计算机组成的,而位置传感器是从单一型发展到综合型的,在一个系统中可以同时采用竖管角、声学和张紧索这三种位置基准传感器。第二代动力定位船舶中最具有代表性的船舶是“赛德柯445”,该船是在1971年投入运营的,与早期的动力定位系统相比,它的主要的特点是采用了数字式的控制器,其中包括了一台16位小型计算机,系统可以长期不间断的运行。同时该船还装有多台推力装置,其中有2个主螺旋桨与11个辅助推进器。

第三代动力定位系统开始形成于80年代初,当时主要采用的是刚开始发展起来的微处理机技术和Vme、Mutibus多总线标准等,其中典型的有法国的DPS800、挪威的ADP100、ADP503系列,这些动力定位系统装备了潜水支持船、海洋三用工作船、科学考察船、穿梭油船、消防船、电缆敷设船等多种船舶。

我国从70年代开始研究动力定位技术,目前有很多研究单位通过结合实际课题并且开展了技术攻关。例如,我国唯一的专门从事国际海底区域资源勘察研究开发的“大洋一号”远洋科学考察船,该船已经达到了国际先进水平。2002年,该船进行了动力定位系统,用以科学考察船在海上的作业需求[5]。

由于推进技术、传感器和计算机技术的发展使动力定位系统产生巨大的进步,然而动力定位技术的核心是控制技术,因此控制技术的发展才真正代表了动力定位技术的发展水平。到目前为止,动力定位控制技术已经发展到第三代,这三代动力控制技术的特点分别是经典控制理论、现代控制理论和智能控制理论在动力定位控制技术中的应用。以下是几种控制技术的介绍:

1、PID控制

PID控制是早期的动力定位控制技术,它控制船舶的三个自由度,分别是纵荡、艏摇和横荡。PID控制采用风前馈技术,根据艏向和位置的偏差来计算推力大小,然后确定推力的分配逻辑并控制推力器产生推力,从而实现船舶的定位。在早期不得不说PID控制确实取得很大的成功。但是PID控制还是有不可避免的缺陷,首先,PID控制使用的是一种线性模型,而动力定位系统是一种非线性系统,因此PID控制的功效就有一定的局限性。此外,由于海上的环境情况是不断变化的,因此对PID参数的选择也要随之变动。这也促使了动力定位控制技术要进一步的发展[6]。

2、LQG控制

第二代动力定位控制技术是LQG控制,该技术在现代的船舶应用十分广泛,它将Kalman 滤波引入到动力定位的控制中,通过Kalman滤波器测量船舶的位置信息,然后估算出其低频运动状态,并将之反馈形成针对船舶低频运动的线性随机最优控制。LQG控制在鲁棒性、节能和安全上较PID控制都有较大的进步,同时还解决了在控制中由于滤波而导致的相位滞后的问题。但是也有一些缺点:一是它的计算工作量比较大;二是由于模型不够精确导致有一定的误差产生。

3、模糊控制

模糊控制是一种新型的控制技术,它与传统的控制技术有一定的区别。模糊控制可以不依赖于对象的精确模型,鲁棒性好,响应速度快,抗干扰能力强。考虑到船舶动力定位的特点,模糊控制技术还是比较适合的。Inoue最初在单点系泊中结合了模糊控制动力定位,给出了其基本的模型,控制器的输入量是位置及位置偏差,输出量是推进力。但是模糊控制缺乏自适应与自学习的能力导致其控制策略都是提前设定好的,一旦海上情况发生变化,控制的效果将不会很理想。因此在模糊控制中加入自我调节功能,这样能提高模糊控制在外部条件发生变化时能自动调整控制策略[7]。

4、神经网络控制

神经网络控制和模糊控制一样,都属于智能控制。由于神经网络控制比较适合高度非线性和不确定性的对象,所以还是比较适合作为动力定位控制技术来使用。Yip和Pao为了证明用船的轨迹可以导出漂移力的基础上提出一种神经网络控制器,并把它应用到动力定位系统中。做法如下:将一段时间历程的控制力及船的平均位置作为输入,通过一个循环神经网络学习船的漂移动力学关系,以此来预测为使船在下一时刻与预定位置误差最小所需的控制力。值得注意的是控制力也包括下一时刻将要受到的波浪漂力[8]。

总结:船舶动力定位技术作为一种新型的海上定位技术,相比传统的定位技术,它具有快速定位,定位的区域不会随着水深的增加而受到限制,受海上环境及天气的影响较小。除此之外,动力定位的费用也不会随着水深的增加而提高。由于动力定位技术的优越性,这种定位方法已经应用到很多的船舶,例如,客船、货船、挖泥船、海缆船等需要在海上需要作业的船舶。动力定位技术经过几十年的发展,技术也变的越来越先进。而控制技术作为其核心部分,也得到了快速的发展。从早期的经典理论到现在的智能控制理论,控制技术也朝着越来越智能化的道路发展以便船舶能更好地适应海洋上复杂多变的环境。模糊控制技术作为智能控制技术的一种,它的特点是不依赖于对象的精确模型,鲁棒性好,响应速度快,抗干扰能力强。模糊控制比PID控制更适合动力定位控制技术。近几年我国动力定位控制技术发展很快,但跟国外的动力定位控制技术还有差距。而且我国很多的动力定位控制技术还停留在理论仿真和实验研究的状态。随着控制技术的发展,动力定位控制技术的精度和稳定性将有更好地提升。

参考文献

[1] 施亿生.船舶动力定位系统[J].船舶工程.1995,1(4):20~24.

[2] 周利,王磊,陈恒.动力定位控制系统研究[J].航海工程,2008(2).

[3] 周利,王磊,陈恒.动力定位控制系统研究.船海工程,2008,37(2):86~91.

[4] 童进军,何黎明田,作华.船舶动力定位系统的数学模型[J].船舶工程,2002(5):27~29.

[5] 余培文,陈辉.刘芙蓉船舶动力定位系统控制技术的发展与展望[J].中国水运,2009.2.

[6] 张显库,贾欣乐.船舶运动控制[M].北京:国防工业出版社,2006.2.

[7] 章卫国,杨向忠.模糊控制理论与应用[M],第二版.西安:西北工业大学出版社,2000.10.

[8] 李士勇.模糊控制??神经网络和智能控制论[M],第二版.哈尔滨:哈尔滨工业大学出版社,1998.9.

自主访问控制综述

自主访问控制综述 摘要:访问控制是安全操作系统必备的功能之一,它的作用主要是决定谁能够访问系统,能访问系统的何种资源以及如何使用这些资源。而自主访问控制(Discretionary Access Control, DAC)则是最早的访问控制策略之一,至今已发展出多种改进的访问控制策略。本文首先从一般访问控制技术入手,介绍访问控制的基本要素和模型,以及自主访问控制的主要过程;然后介绍了包括传统DAC 策略在内的多种自主访问控制策略;接下来列举了四种自主访问控制的实现技术和他们的优劣之处;最后对自主访问控制的现状进行总结并简略介绍其发展趋势。 1自主访问控制基本概念 访问控制是指控制系统中主体(例如进程)对客体(例如文件目录等)的访问(例如读、写和执行等)。自主访问控制中主体对客体的访问权限是由客体的属主决定的,也就是说系统允许主体(客体的拥有者)可以按照自己的意愿去制定谁以何种访问模式去访问该客体。 1.1访问控制基本要素 访问控制由最基本的三要素组成: ●主体(Subject):可以对其他实体施加动作的主动实体,如用户、进程、 I/O设备等。 ●客体(Object):接受其他实体访问的被动实体,如文件、共享内存、管 道等。 ●控制策略(Control Strategy):主体对客体的操作行为集和约束条件集, 如访问矩阵、访问控制表等。 1.2访问控制基本模型 自从1969年,B. W. Lampson通过形式化表示方法运用主体、客体和访问矩阵(Access Matrix)的思想第一次对访问控制问题进行了抽象,经过多年的扩充和改造,现在已有多种访问控制模型及其变种。本文介绍的是访问控制研究中的两个基本理论模型:一是引用监控器,这是安全操作系统的基本模型,进而介绍了访问控制在安全操作系统中的地位及其与其他安全技术的关系;二是访问矩阵,这是访问控制技术最基本的抽象模型。

本科毕业设计文献综述范例(1)

###大学 本科毕业设计(论文)文献综述 课题名称: 学院(系): 年级专业: 学生姓名: 指导教师: 完成日期:

燕山大学本科生毕业设计(论文) 一、课题国内外现状 中厚板轧机是用于轧制中厚度钢板的轧钢设备。在国民经济的各个部门中广泛的采用中板。它主要用于制造交通运输工具(如汽车、拖拉机、传播、铁路车辆及航空机械等)、钢机构件(如各种贮存容器、锅炉、桥梁及其他工业结构件)、焊管及一般机械制品等[1~3]。 1 世界中厚板轧机的发展概况 19世纪五十年代,美国用采用二辊可逆式轧机生产中板。轧机前后设置传动滚道,用机械化操作实现来回轧制,而且辊身长度已增加到2m以上,轧机是靠蒸汽机传动的。1864年美国创建了世界上第一套三辊劳特式中板轧机,当时盛行一时,推广于世界。1918年卢肯斯钢铁公司科茨维尔厂为了满足军舰用板的需求,建成了一套5230mm四辊式轧机,这是世界上第一套5m以上的轧机。1907年美国钢铁公司南厂为了轧边,首次创建了万能式厚板轧机,于1931年又建成了世界上第一套连续式中厚板轧机。欧洲国家中厚板生产也是较早的。1910年,捷克斯洛伐克投产了一套4500mm二辊式厚板轧机。1940年,德国建成了一套5000mm四辊式厚板轧机。1937年,英国投产了一套3810mm中厚板轧机。1939年,法国建成了一套4700mm 四辊式厚板轧机。这些轧机都是用于生产机器和兵器用的钢板,多数是为了二次世界大战备战的需要。1941年日本投产了一套5280mm四辊式厚板轧机,主要用于满足海军用板的需要。20世纪50年代,掌握了中厚板生产的计算机控制。20世纪80年代,由于中厚板的使用部门萧条,许多主要产钢国家的中厚板产量都有所下降,西欧国家、日本和美国关闭了一批中厚板轧机(宽度一般在3、4米以下)。国外除了大的厚板轧机以外,其他大型的轧机已很少再建。1984年底,法国东北方钢铁联营敦刻尔克厂在4300mm轧机后面增加一架5000mm宽厚板轧机,增加了产量,且扩大了品种。1984年底,苏联伊尔诺斯克厂新建了一套5000mm宽厚板轧机,年产量达100万t。1985年初,德国迪林冶金公司迪林根厂将4320mm轧机换成4800mm 轧机,并在前面增加一架特宽得5500mm轧机。1985年12月日本钢管公司福山厂新型制造了一套4700mmHCW型轧机,替换下原有得轧机,更有效地控制板形,以提高钢板的质量。 - 2 -

船舶动力定位系统及其控制技术

船舶动力定位系统及其控制技术 为使船舶或作业平台在海上航行或作业时更好地保持航迹或稳定在某一工作水域范围内,对船舶的定位精度提出更高的要求。阐述船舶动力定位系统的定义、组成、工作原理、研究状况及其数学模型等,指出控制技术的快速发展和智能化,使其在动力定位系统中的应用越来越广泛;分析几种不同时期基于不同控制技术的船舶动力定位控制器的原理,阐述船舶动力定位系统未来的發展趋势,从而对今后的研究起到一定的参考作用。 标签:动力定位系统;控制技术;船舶 随着海洋经济时代的到来,人们对海洋资源的需求越来越多。由于深海环境复杂多变,因而对获取海洋资源的装置定位精度要求也越来越高。传统的锚泊系统有抛起锚操作过程繁琐、定位精度和机动性差等缺陷,难以符合定位精度的要求;而船舶动力定位系统(以下简称“DP系统”)则在保持航迹或保持位置方面具有突出的优势,已被逐渐应用到海上航行船舶和作业平台上,快速发展的控制理论在DP系统中的应用,取得了很好效果。 1 DP系统概述 1.1 定义 DP系统是指不依靠外界的辅助,通过固有的动力装置来对船舶或作业平台进行定位的一种闭环控制系统,系统包括控制系统、测量系统和推进系统,控制系统是其核心。 1.2 组成 DP系统由控制系统、测量系统和推力系统组成。控制系统是整个系统的核心,对测得的信息和外界干扰信号进行处理,能够通过计算推算出抵抗外界干扰的推力,并传递给推力系统。测量系统能够获得船舶运动所需要的信息,其种类有DGPS、电罗经、张紧索系统、水下声呐系统、垂直参考系统、风力传感器等。推力系统根据控制系统计算出的推力来控制船舶。 1.3 研究状况 第1代DP系统的研发始于1960年。钻井船“Eureka”号是世界上第一艘基于自动控制原理设计的DP船舶。该船配备的DP模拟系统与外界张紧索系统相连。该船除装有主推力系统外,在还在船首和船尾装有侧推力系统,在船身底部也安装有多台推进器。第2代DP系统始于1970年,具有代表性的是“SDEC0445”号船,该船安装有多台推进器,系统的控制器采用kalman滤波等现代控制技术,且控制系统中的元件有冗余,其安全性、稳定性和作业时间均有了较大的改善和提高。第3代DP系统始于1980年。系统采用微机处理技术和Muti-bus、Vme

【文献综述】船舶舵机建模与航迹控制系统设计

文献综述 电气工程及其自动化 船舶舵机建模与航迹控制系统设计1.引言 船舶自动操舵仪,俗称“自动舵”,是根据指令信号自动完成操纵舵机的装置,是一个重要的船舶控制设备。它能代替舵手操舵,保证船舶在指令航向或给定航迹上航行。自动舵在相同的航行条件下,不仅可以减轻驾驶员的工作,而且在远航时,可以减少偏航次数,减小偏航值。因而可以提高实际航速,缩短航程的航行时间,节省燃料,提高航行的经济效益。一般说来,自动舵按控制功能可分为两类:一类是航向自动舵,保证船舶自动跟踪指令航向,实现自动保持或改变航向的目的;另一类是航迹自动舵,控制船舶沿计划航线航行。由于航迹自动舵具有控制船舶精确的航行轨迹的功能,它将是自动舵未来的发展方向。 航迹控制一直是船舶运动控制的重点研究对象。由于国内起步较晚,与国外先进水平相比仍 []2 有较大的差距。主要表现在:(l)航向舵仍占据主导地位,航迹舵产品尚未成熟的,更不用说自动航行系统和综合船桥系统。(2)在控制理论上,虽然国内有些专家提出了一些控制方法,也解决了一些问题,但由于船舶操纵运动数学模型存在非线性问题、操舵执行机构存在滞后问题以及船舶航行环境和所受干扰的不确定等问题,使得一些建立的数学模型的控制方法无法得到正常实现。据国内外有关研究证明,船舶智能控制能解决上述问题。因此,将智能控制理论用于自动舵,改进我国的自动舵性能是一项迫切的任务。 2.国内船舶自动舵的研究概况 []2 自动舵发展的大致经历:第一代是以继电器机械结构为代表;第二代是以电子管磁放大器为核心控制部件为代表;第三代是以半导体、线性运行放大器为核心控制部件为。1921年德国安修斯公司发明了自动舵,即利用罗经的电讯号,通过继电器、机械结构来实现控制电动舵机。1930年苏联也相继研究出以电罗经为航向接收讯号的自动舵。 我国对自动舵系统的研究相对国外起步比较晚,从二十世纪50年代开始以仿造苏联自动舵,其自动舵是磁放大器为控制核心。到了60年代末才自行研制成功以半导体分立元件为核心

万吨级散货船破舱稳性评估【文献综述】

文献综述 船舶与海洋工程 万吨级散货船破舱稳性评估 背景 20世纪初TAITANIC 号客船首航的沉没,引起了海事组织对船舶事故的重视,并成立了国际海上人命安全公约(SOLAS)。此后,一系列的海事国际公约相继出台,并与海上航运业的发展相互依存,对保障海上航运安全起到至关重要的作用。近几年来,接连几条大型散货船失事,国际海事组织(IMO)及国际船级社协会(IACS)通过对失事报告进行研究后认为,尽管实施了SOLAS 第XII 章“散货船的附加安全措施”的要求,但是散货船在航行及装卸货等情况下的稳性仍需要进一步提高[4]。 散货船自20世纪50年代中期出现以来,总体上保持着强劲的增长势头。由于全球对于散货运输的需求量大幅增加,散货船运输在海上货物运输中占据着越来越重要的地位,在货运总量中所占的比重也越来越大。由于货运量大,货源充足,航线固定,装卸效率高等因素,散货船运输能获得良好的经济效益,散货船已成为运输船舶的主力军[3]。然而由于大自然之复杂海洋环境之恶劣,船舶的稳性问题已然成为船舶发生海损事故的主要原因之一,保证船舶良好的稳性,便可以大大减少船舶事故。因此对散货船稳性的研究和评估是非常有必要的。 现状与发展 20 世纪50 年代以前没有专用散货船,都是用普通杂货船运输散货。粮食、水泥等散货的流动性比液体小,都有一定的休止角,因而装这些散货时在舱口围扳内装满后,舱口四周的甲板下仍留有一个楔形空档。船在海上发生横摇后,散货流向空档,形成横贯整个船宽的自由表面.出现较大横摇时散货将流向一舷,船随即横倾,在风浪中很容易发生倾覆事故[7]。 据统计,20 世纪50 年代全世界有150 余艘运送散货的船发生海损事故。为了解决这个安全问题,才逐步形成了现在广泛应用的典型专用散货船结构型式,典型专用散货船的出现,较好地解决了散货流动问题,改善了散货运输的安

船舶动力定位系统控制技术的发展与展望

科技创新 随着人类向深海进军,动力定位系统(dynamic position- ing,DP)越来越广泛地应用于海上作业船舶(海洋考察船、半 潜船等)、海上平台(海洋钻井平台等)、水下潜器(ROV)和军 用舰船(布雷舰、潜艇母船等)。它一般由位置测量系统,控制 系统,推力系统三部分构成。位置测量系统(传感器)测量当 前船位,控制器根据测量船位与期望值的偏差,计算出抗拒 环境干扰力(风、流、浪)使船舶恢复到期望位置所需的推力, 推力系统进行能量管理并对各推力器的推力进行分配,推力 器产生的推力使船舶(平台)在风流浪的干扰下保持设定的航 向和船位。动力定位系统的核心是控制技术,它标志着动力 定位系统的发展水平。 动力定位控制技术的发展 计算机技术,传感器和推进技术的发展,无疑给动力定 位系统带来了巨大的进步,但是真正代表动力定位技术发展 水平的还是控制技术的发展。至今动力定位控制技术已经经 历三代,其特点分别是经典控制理论、现代控制理论和智能 控制理论在动力定位控制技术中的应用。对应的是第一,二, 三代动力定位产品。 进入九十年代以后,智能控制方法在动力定位系统获得 广泛应用,逐步形成了第三代动力定位系统。Katebi等在 1997年,Donha和Tannuri2001年研究了基于鲁棒控制的 控制器,1998年,Thor I.Fossen做了全比例实验,采用李亚 普洛夫设计被动非线性观测器。非线性随机过程控制方法的 应用以及欠驱动控制逐渐成为研究的热点。神经网络,模糊 控制,遗传算法等等理论给动力定位系统控制器的研究开辟 了一片新的天地。 国内外常用的动力定位控制技术 1.PID控制 早期的控制器代表类型,以经典的PID控制为基础,分 别对船舶的三个自由度:横荡,纵荡,艏摇进行控制。风力采 用风前馈技术。根据位置和艏向偏差计算推力大小,然后确 定推力分配逻辑产生推力,实现船舶定位。这种方法在早期 曾取得成功。但是它有不可避免的缺陷:一是除了风前馈以 外,位置和艏向控制都不是以模型为基础的,属于事后控制, 控制的精度和响应的速度都有局限性;二是若在PID控制器 的基础上,采用低通滤波技术,可以滤除高频信号,但它却使 定位误差信号产生相位滞后。这种相位滞后限制了可以用于 控制器的相角裕量,因此滤波效果越好,则对控制器带宽和 定位精度的限制就愈大;三是PID参数难以选择,一旦海况 和船体有变化,PID参数将不得不重新选择。 2.LQG控制 Kalman滤波和最优控制相结合形成了线性二次高斯型 LQG控制(Linear Quadratic Guass),基于LQG控制的第二代 动力定位系统应用非常广泛。现代较多商用船舶的DP系统 都是采用的这种控制方式。 Kalman滤波器或扩展Kalman滤波器接收测量的船舶 运动综合位置信息,实现以下功能:1)滤除测量噪声和船舶高 频运动信号;2)给出船舶低频运动的状态估计值,该估计值 反馈提供给LQG最优控制器;3)状态递推,实时修正低频估 计值,在传感器故障无数据时,系统也能正常运行一段时间。 由于采用Kalman滤波或扩展Kalman滤波,取样和修正 能在同一个周期内完成,因而解决了控制中存在的由于滤波 而导致的相位滞后问题。LQG控制在节能、安全、鲁棒性能 上都有比较大的进步。控制精度和响应速度满足了大部分需 求。但它也有如下缺点:一是模型不够精确。动力定位系统设 计时,是在假设一系列固定的艏摇角度(一般线性化为36个 艏摇角,从0°到360°,间隔为10°)或者假设艏摇很小(采用小 角度理论)的基础上对运动方程进行线性化而获得的模型。 而实际的船舶定位过程是一个复杂的高度非线性的过程。上 述假设条件势必带来误差;二是计算工作量比较大。船舶动力定位系统控制技术的发展与展望 余培文陈辉刘芙蓉 摘要:船舶动力定位是深海开发的关键技术之一,随着海上油气生产向深海的发展,动力定位系统会更受重视,对控制技术也会提出更高的要求。本文简要介绍了动力定位控制技术的发展过程以及一些代表性的控制技术 在动力定位中的应用,包括PID控制,最优控制,模型参考自适应控制,反步法,模糊控制,神经网络等,最后 对动力定位控制技术的发展热点做了展望。 关键词:动力定位控制技术展望 44 CWT中国水运2009·2

船用动力定位DP系统概述(报告精选)

北京先略投资咨询有限公司

船用动力定位DP系统概述 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.doczj.com/doc/f09808787.html, 1

目录 船用动力定位DP系统概述 (3) 第一节船用动力定位DP系统的定义和分类 (3) 一、动力定位DP0系统 (3) 二、动力定位DP1系统 (3) 三、动力定位DP2系统 (3) 四、动力定位DP3系统 (3) 第二节船用动力定位DP系统的市场情况 (4) 一、动力定位DP1系统的市场情况 (4) 1、全球 (4) 2、中国 (5) 二、动力定位DP2系统的市场情况 (8) 1、全球 (8) 2、中国 (8) 三、动力定位DP3系统的市场情况 (10) 1、全球 (10) 2、中国 (11) 2

船用动力定位DP系统概述 第一节船用动力定位DP系统的定义和分类 国际海事组织和国际海洋工程承包商协会将DP定义为动力定位船舶需要装备的全部设备,包括动力系统、推进器系统和动力定位控制系统。 由于海上作业船舶对动力定位系统的可靠性要求越来越高,IMO和各国船级社都对DP提出了严格要求,制定了三个等级标准。设备等级一(DP1):在单故障的情况下可能发生定位失常。设备等级二(DP2):有源组件或发电机、推进器、配电盘遥控阀门等系统单故障时不会发生定位失常,但当电缆、管道、手控阀等静态元件发生故障时可能会发生定位失常。设备等级三(DP3):任何但故障都不会导致定位失常。DP的分级主要考虑设备的可靠性和冗余度,目的是对动力定位系统的设计标准、必须安装的设备、操作要求和试验程序等作出规定,保证DP安全可靠运行,并避免在DP作业时对人员、船舶、其他设备造成损害。 一、动力定位DP0系统 DP0船舶装备一套集控手动操作系统和航向自动保持的动力定位系统(DPS),能在最大环境条件下,使船舶的位置和航向保持在限定范围内。 二、动力定位DP1系统 DP1船舶装备具有自动定位和航向自动保持的动力定位系统(DPS),另外,还有一套独立的集控手动操作系统和航向自动保持的动力定位系统,能在最大环境条件下,使船舶的位置和航向保持在限定范围内。 三、动力定位DP2系统 DP2船舶装备系统具有自动定位和航向自动保持的动力定位系统(DPS),另外,还有两套独立的集控手动操作系统和航向自动保持的动力定位系统,即使船舶发生单个故障,能在最大的环境条件下,使船舶的位置和航向保持在限定范围内。 四、动力定位DP3系统 DP3船舶装备具有自动定位和航向自动保持的动力定位系统(DPS),另外, 3

智能船舶研究和发展综述

智能船舶研究和发展综述 0 引言 人工智能可以提高决策能力、重塑商业形象、增加商业回报。当前,船舶智能化研究和发展引起多方关注。随着科技进步和实际需要,为了满足对船舶运输越来越高的安全性、经济性、节能环保和管理效率的需要,船舶已经逐步变成集多种自动化系统为一体的多功能综合系统。随着大数据、信息物理系统、物联网等技术的发展,在IMO等国际组织和国家的倡导和助推下,航运业智能化研发方兴未艾。2017年12月5日,世界第一艘通过船级社认证的智能船舶38800吨散货船“大智”号成功交付,在智能船舶发展史上影响深远。 船舶智能方面的研发工作涉及船舶建造、船舶运营、海事搜救行业和与航海相关专业诸多领域。本文主要针对把船舶作为一个整体来阐述其智能化研发情况。 1 智能船舶概念和发展路线 1.1 智能船舶概念类别 对于智能船舶表述英文有多种形式:例如“Intelligent Ship”、“Robotic Ship”、“Connected Ship”、“Smart Ship”等等,目前还没有一个统一说法。全球对于无人自主船舶技术的研究和概念设计还在进行[]。 2006年,IMO率先给出智能船舶的定义(e-Navigation):使用电子信息手段,在船、岸收集、融合和显示港航信息,实现船、岸相互之间信息沟通,达到航行安全、经济和防污染的目标。

2014年,丹麦船级社在《未来航运业》给出智能船舶的定义:智能船舶是指实时信息传输、计算、建模、控制和传感器应用能力的集合。 2016年3月生效的《智能船舶规范》对智能船舶的定义:利用物联网、传感器、通信等技术手段,自动感知船舶、环境、货物和港口等方面的信息,并基于计算机、自动控制和大数据分析技术,在船舶航行、管理、维护、货运等方面实现智能化的船舶,确保航行更安全、环保、经济和可靠。 2016年7月,劳氏船级社在《智能船舶入级指导文件》对船舶自动化程度进行分级,从AL1-AL6,分为6个等级。涉及从船舶设计到营运诸多环节,该文件对各个等级的特征做了清晰准确的定义,并阐释了可能存在的风险。 虽然不同国家和机构对智能船舶的定义存在一定差异,但智能船舶定义具备以下特征:通过船舶相关信息融合、提高船舶自主决策能力、从而使得船舶运营更加安全、环保、经济、可靠。 1.2 智能船舶发展路线 对于智能船舶研究和发展,各主要国际机构和各国侧重点不同:IMO重视技术,CCS重视自主研发,劳氏船级社重视分析人与船舶关系。对智能船舶发展经历阶段也有不同主张。从航行安全和智能船舶研发经验积累的角度,罗尔斯-罗伊斯公司认为智能船舶实现需要经历减少船员岸基控制船舶、近海无人岸基船舶、远洋无人岸基控制船舶、自主航行船舶4个阶段。从智能船舶智能实现的物理范围、数据

内部控制文献综述

中小企业已成为国民经济的重要组成部分,对经济的发展与社会的稳定起着举足轻重的作用。然而在发展过程中,一些中小企业存在着内部管理薄弱、经济效益较差的现象。其主要原因是没有建立和完善内部控制制度,致使其经济发展受到严重的制约。因此,加强中小企业内部控制制度的建设是促进企业健康发展、良性循环的重要途径。随着2007年12月深圳证券交易所的《中小企业板上市公司内部审计工作指引》及2008年6月财政部等五部委的《企业内部控制基本规范》等相关政策的出台,中小企业在内部控制的设计、制定、实施等方面初步取得了一些成效。近年来,针对上市公司内部控制建设众多学者作了分析,促进上市公司的良性发展发表了意见。但是,对中小企业内部控制建设问题的研究尚不多见,为此,进一步研究其内部控制建设问题就显得尤为迫切。 1 内部控制定义 其实我们通过学习观察所得,内部控制的定义在不同年代都有所不同。各国对内部控制的认识是随着人们对社会经济活动发展的不同时期,不同经济活动和不同的经济管理要求的变化而变化的。 冯培根(2000)认为,内部控制在企业发展过程中担负着极其重要的角色,是企业经营活动中强化内部监督,进行自我调节和自我约束的内在机制。文章认为加强企业内部控制不仅可以保证会计信息质量和资产的安全完整,同时对于企业防范经营风险,提升管理水平,实现经营目标具有重要的意义。但是,目前企业内部控制存在着法人治理结构不完善、风险评估不足、意识薄弱、会计信息失真等问题,为此,提出了加强企业内部控制的相关对策。 Lauraf.Spira(2003)指出 Turnbull 指南的公布从根本上重新定义了内控的性质,尤其是将内部控制与风险管理相接合。 彭君翔(2008)从企业内部控制的概念、企业内部控制的演进过程和企业内部控制原理探析三方面,阐述了企业内部控制的理论基础。并且回顾了“内部牵制、内部控制制度、内部控制结构、内部控制整体框架、全面风险管理”五个发展阶段;并从“控制论、委托代理理论、博弈论”三个角度,探析了企业内部控制的原理。 安艳红(2008)提出内部控制制度是一个单位的各级管理部门,为了保护经济资源的安全完整,确保经济信息的真实、正确,利于协调经济行为,控制经济

现代船舶轮机管理模式探讨【文献综述】

毕业论文文献综述 轮机工程 现代船舶轮机管理模式探讨 一、研究历史和国内外研究现状述评 1、资料来源简介 本文采用文献资料法。资料充分,研究的结果就可靠。因此,本人在研究中对资料的收集将采取几种方式:利用本人在船实习期间积累的经验和曾收集到的资料,进行分类整理;从国际互联网上搜索有关信息;通过学校图书馆查询各类期刊、学术报告、学位论文等获取信息;采访有关人士,咨询老师。根据相关资料,进行分析研究,找出提高船舶营运管理安全性及经济性的可行办法,探讨创新型的轮机管理模式在船舶上的应用。 2、轮机管理的发展历史 综合国内外关于轮机管理研究的文献,可以将轮机管理的发展分为三个阶段: 第一阶段:1807年一19世纪末。轮机工程管理发展的初期,轮机结构简单、附加设备少,使得维修、保养、操纵和管理比较方便。轮机管理人员配备较少,以维持锅炉蒸汽机的正常运转,对技术水平要求也不高,而且管理水平低下,没有较完整的管理制度来保障机器的正常安全运行,仅凭管理者的主观意志和经验行事,实际上当时的轮机管理处于萌芽状态。 第二阶段:19世纪末一20世纪60年代。随着各种甲板机械的引入,轮机设备所处场所由机舱扩展到甲板,为主机服务的动力管系也随之产生。为了工作的顺利进行及人员安全生活而服务的辅助管系,也日臻完善,扩展了轮机工程的范围。由于机舱设备增多,技术复杂性大大增强,对轮机管理人员数量、管理水平的要求也相应提高。在这阶段,实现了分工到岗,轮机管理人员有了明确的职级分工。出现了轮机长、大管轮、二管轮、三管轮和机工等职级。各种设备及相应的系统都有专人负责。 第三阶段:20世纪60年代至今。各国经济得到了迅速恢复。促进了船舶朝着大型化、专门化、节能化和自动化方向发展。轮机工程管理引进已在陆地上发展比较成熟的自动化遥控技术。20世纪90年代初,又引进计算机网络技术,使船舶管理实现了“智能自动化”。 随着自动化技术、微电子技术、通讯技术等高科技的飞速发展,轮机人员进一步减少,信息化、智能化、网络化,现代船舶轮机管理将要迎接更大的挑战。 3、国内外研究现状述评 轮机管理是一项十分复杂的系统工程,是建立在众多学科基础上的应用科学;涉及到科学管理、正确使用、精心维护、定期保养、计划修理、热工节能、防止污染、配件管理、革新改造以及推广

船舶动力定位非线性控制研究

船舶动力定位非线性控制研究 船舶动力定位是指船舶依靠自身推进系统产生的动力,抵抗由浪、流、风引起的海洋环境扰动的影响,以一定姿态定位于海面某目标位置或沿着预设轨迹航行。动力定位系统具有不受水深限制、定位精度高、机动性强等特点,被广泛应用于供给船、铺管船、救援船和石油钻井平台等。 由于作业中的船舶操纵条件及所处的海洋环境等时常发生变化,船舶动态及所遭受到的环境扰动存在明显的不确定性。船舶推进系统由于物理限制,导致其为船舶提供的控制力和力矩会受到饱和约束。 此外,船舶速度通常是不可测的。因此,船舶动力定位控制问题是具有挑战性的一类复杂不确定非线性系统控制问题。 开展船舶动力定位非线性控制研究,具有重要的理论意义和实际应用价值。本文的主要研究工作如下:1.针对未知时变扰动下的船舶动力定位控制问题,考虑存在输入饱和的情况,应用扰动观测器、辅助动态系统和动态面控制方法,设计了动力定位鲁棒自适应非线性控制律,动态面控制方法避免了中间控制函数的求导运算,使控制律计算简单;又考虑推进器动态、船舶动态模型参数不确定性,利用扰动观测器、辅助动态系统与指令滤波逆推方法,设计了动力定位鲁棒非线性控制律,引入指令滤波器,使所设计的控制律计算简单,且指令滤波器引起的滤波误差被补偿,动力定位控制律的性能被改善。 此外,通过构造扰动观测器,结合投影算法及矢量逆推方法,设计了动力定位鲁棒自适应非线性控制律,保证了动力定位控制系统的全局渐近稳定性。2.针对存在动态不确定性和未知时变扰动的船舶动力定位控制问题,利用径向基函数神经网络、带死区的自适应技术、鲁棒控制项和矢量逆推方法,设计了动力定位鲁

棒自适应非线性控制律,自适应神经网络在线逼近船舶不确定动态,在自适应律中引入死区,避免了自适应参数的漂移,鲁棒控制项补偿未知时变扰动和神经网络逼近误差,提高了动力定位控制律的鲁棒性;进一步考虑输入饱和问题,引入辅助动态系统处理输入饱和,结合径向基函数神经网络、自适应技术、鲁棒控制项和动态面控制方法,设计了动力定位鲁棒自适应非线性控制律。 此外,通过建立一个线性外部系统并对其进行标准型变换,标准型的输出方程为线性参数化回归模型,用来表示未知时变扰动;然后,构造状态观测器估计该回归模型的回归器,则未知时变扰动被表示成线性参数化形式,使得船舶动力定位扰动补偿问题转化成了自适应控制问题;再将投影算法与矢量逆推方法相结合,设计了动力定位鲁棒自适应非线性控制律,保证了动力定位控制系统的全局渐近稳定性。3.针对速度不可测、动态不确定以及存在未知时变扰动的船舶动力定位输出反馈控制问题,构造高增益观测器估计不可测的船舶速度,再结合径向基函数神经网络、自适应技术和矢量逆推方法,设计了仅依赖于船舶位置和艏摇角测量值的船舶动力定位鲁棒自适应输出反馈控制律;进一步考虑输入饱和问题,引入辅助动态系统处理输入饱和,结合高增益观测器、径向基函数神经网络、自适应技术和动态面控制方法设计了动力定位鲁棒自适应输出反馈控制律。 4.利用Matlab/Simulink工具箱对上述研究设计的动力定位控制律分别进行了数值仿真实验研究,仿真结果表明,所设计的动力定位控制律能够有效解决船舶存在的未知时变扰动、动态不确定性、输入饱和以及船舶速度不可测量等问题,使船舶位置和艏摇角在不同海况下均可定位于期望值上,实现船舶动力定位。

公司治理与内部控制的开题报告

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 湖南工业大学 本科毕业设计(论文)开题报告 (2014届) 学院(部):财经学院 专业:财务管理 学生姓名:彭瑶 班级: 103班学号: 指导教师姓名:谢刚职称:讲师 2013年 12 月 22日 3word格式支持编辑,如有帮助欢迎下载支持。

一、结合课题任务情况,查阅文献资料,撰写1500~2000字左右的文献综述(一)国外的研究现状 西方内部控制理论的演进,经历了五个阶段,其内容由简单到复杂、目标由单元到多元、对象由局部到整体的演进。而随着人们对公司治理与内部控制的关系的不断认识,基于公司治理对内部控制的研究也不断兴起和深入,目前仍处于不断发展和完善的过程中。 国外有关公司治理下对内部控制的研究,主要是以卡德伯利报告、哈姆佩尔报告和特恩布尔报告,以及COSO的内部控制框架和OECD《公司治理原则》为代表。其中,前三者被称为英国公司治理和内部控制研究历史上的三大里程碑。 卡德伯利报告(1992)从财务角度研究公司治理,将内部控制置于公司治理的框架内,明确要求公司建立审计委员会、实行独立董事制度,并以内部控制、财务报告质量以及公司治理之间的相互关系为前提,明确要求公司改善内部控制机制,建议董事会应就公司内部控制的有效性发表声明,外部审计师和审计委员会应对董事会发表的声明进行复核。 特恩布尔报告(1999)作为公司治理委员会综合准则指南指出,董事会应对公司内部控制的有效性负责,制定正确的内部控制制度并寻求日常的保证,使内部控制系统能有效发挥作用,还应进一步确认内部控制在风险管理方面是有效的。其中特别指出,董事会应在谨慎、仔细了解相关信息的基础上形成对内部控制是否有效的正确判断。 DECD《公司治理原则》(2004)规定:公司治理结构应确保董事会对公司的战略指导和对管理层的有效监督,对公司和股东的责任和忠诚。同时,要求董事会确保公司会计和财务报告制度的完整性,其中包括独立审计师的完整性,确保公司具备恰当的控制制度,特别是风险管理制度,财务和营运控制制度等,确保公司的行为不违反法律和相关的准则等。 (二)国内的研究现状 在我国,改革开放之前,有关内部控制的理论研究几乎处于空白状态,我国政府是从20世纪90年代起开始加大企业内部控制的推动力度的。我国在内部控制规范的建设过程中,内部控制的研究取得了许多重大理论突破,特别是基于公司治理的内部控制研究也呈现出勃勃生机并不断发展。 吴水澎(2000)指出,公司治理结构是内部控制的环境因素;阎达五(2001)也指出,内部控制框架与公司治理机制是内部控制管理监控系统与制度环境的关系;李连华(2005)认为,公司治理与内部控制之间是一种互动关系。 阎达五、杨有红(2001)则将内部控制框架与公司治理机制结合起来,认为内部控制外延的拓宽正是由公司治理机制变化所致。因此他们建议采取双管齐下和分两步走的战略建立内部控制框架,认为首先要在组织机构设置和人员配备方面做到董事长和总经理分设、董事会和总经理班子分设,避免人员重叠;特别强调董事会在公司治理的核心地位,认为董事会应该对公司内部控制的建立、完善和有效运行负责。

访问控制模型综述

访问控制模型研究综述 沈海波1,2,洪帆1 (1.华中科技大学计算机学院,湖北武汉430074; 2.湖北教育学院计算机科学系,湖北武汉430205) 摘要:访问控制是一种重要的信息安全技术。为了提高效益和增强竞争力,许多现代企业采用了此技术来保障其信息管理系统的安全。对传统的访问控制模型、基于角色的访问控制模型、基于任务和工作流的访问控制模型、基于任务和角色的访问控制模型等几种主流模型进行了比较详尽地论述和比较,并简介了有望成为下一代访问控制模型的UCON模型。 关键词:角色;任务;访问控制;工作流 中图法分类号:TP309 文献标识码: A 文章编号:1001-3695(2005)06-0009-03 Su rvey of Resea rch on Access Con tr ol M odel S HE N Hai-bo1,2,HONG Fa n1 (1.C ollege of Computer,H uazhong Univer sity of Science&Technology,W uhan H ubei430074,China;2.Dept.of C omputer Science,H ubei College of Education,Wuhan H ubei430205,China) Abst ract:Access control is an im port ant inform a tion s ecurity t echnolog y.T o enha nce benefit s and increa se com petitive pow er,m a ny m odern enterprises hav e used this t echnology t o secure their inform ation m ana ge s yst em s.In t his paper,s ev eral m a in acces s cont rol m odels,such as tra dit iona l access control m odels,role-bas ed acces s cont rol m odels,ta sk-ba sed acces s control m odels,t as k-role-based access cont rol m odels,a nd s o on,are discus sed a nd com pa red in deta il.In addit ion,we introduce a new m odel called U CON,w hich m ay be a prom ising m odel for the nex t generation of a ccess control. Key words:Role;Ta sk;Access Cont rol;Workflow 访问控制是通过某种途径显式地准许或限制主体对客体访问能力及范围的一种方法。它是针对越权使用系统资源的防御措施,通过限制对关键资源的访问,防止非法用户的侵入或因为合法用户的不慎操作而造成的破坏,从而保证系统资源受控地、合法地使用。访问控制的目的在于限制系统内用户的行为和操作,包括用户能做什么和系统程序根据用户的行为应该做什么两个方面。 访问控制的核心是授权策略。授权策略是用于确定一个主体是否能对客体拥有访问能力的一套规则。在统一的授权策略下,得到授权的用户就是合法用户,否则就是非法用户。访问控制模型定义了主体、客体、访问是如何表示和操作的,它决定了授权策略的表达能力和灵活性。 若以授权策略来划分,访问控制模型可分为:传统的访问控制模型、基于角色的访问控制(RBAC)模型、基于任务和工作流的访问控制(TBAC)模型、基于任务和角色的访问控制(T-RBAC)模型等。 1 传统的访问控制模型 传统的访问控制一般被分为两类[1]:自主访问控制DAC (Discret iona ry Acces s Control)和强制访问控制MAC(Mandat ory Acces s C ontrol)。 自主访问控制DAC是在确认主体身份以及它们所属组的基础上对访问进行限制的一种方法。自主访问的含义是指访问许可的主体能够向其他主体转让访问权。在基于DAC的系统中,主体的拥有者负责设置访问权限。而作为许多操作系统的副作用,一个或多个特权用户也可以改变主体的控制权限。自主访问控制的一个最大问题是主体的权限太大,无意间就可能泄露信息,而且不能防备特洛伊木马的攻击。访问控制表(ACL)是DAC中常用的一种安全机制,系统安全管理员通过维护AC L来控制用户访问有关数据。ACL的优点在于它的表述直观、易于理解,而且比较容易查出对某一特定资源拥有访问权限的所有用户,有效地实施授权管理。但当用户数量多、管理数据量大时,AC L就会很庞大。当组织内的人员发生变化、工作职能发生变化时,AC L的维护就变得非常困难。另外,对分布式网络系统,DAC不利于实现统一的全局访问控制。 强制访问控制MAC是一种强加给访问主体(即系统强制主体服从访问控制策略)的一种访问方式,它利用上读/下写来保证数据的完整性,利用下读/上写来保证数据的保密性。MAC主要用于多层次安全级别的军事系统中,它通过梯度安全标签实现信息的单向流通,可以有效地阻止特洛伊木马的泄露;其缺陷主要在于实现工作量较大,管理不便,不够灵活,而且它过重强调保密性,对系统连续工作能力、授权的可管理性方面考虑不足。 2基于角色的访问控制模型RBAC 为了克服标准矩阵模型中将访问权直接分配给主体,引起管理困难的缺陷,在访问控制中引进了聚合体(Agg rega tion)概念,如组、角色等。在RBAC(Role-Ba sed Access C ontrol)模型[2]中,就引进了“角色”概念。所谓角色,就是一个或一群用户在组织内可执行的操作的集合。角色意味着用户在组织内的责 ? 9 ? 第6期沈海波等:访问控制模型研究综述 收稿日期:2004-04-17;修返日期:2004-06-28

文献综述范文-仅供参考

中小企业品牌战略研究综述 摘要:随着经济的发展,现代企业竞争已经不再单纯是规模与价格的竞争。如今的市场已经进入了品牌竞争时代,品牌在现代市场的营销和竞争中发挥着越来越重要的作用。品牌作为一种特殊的无形资产,甚至比有形资产的价值更高。本文对品牌、品牌战略的定义分类进行一些研究。 关键词:品牌、品牌战略 一、引言 1、品牌的起源、定义 品牌(BRAND),来源于英文的本意是“烙印”的意思,是自然经济时代放牧主给自己的牲口打上的财产归属标记,以区分与他人的财物。现代品牌是19世纪资本主义制度确立之后出现的。资本主义经济的发展,生产规模的扩大,商品贸易的增长,需要一种能普遍用来辨认商品的标记,即需要在商品的自然名称之外起个名字,品牌由此广泛流行。现代品牌与早期品牌标记最重要的区别在于:它己不是一种单纯的品牌标记,而成为一种可以转让买卖的工业产权,是受到法律保护的无形财产。品牌作为无形资产与其他财产一样受法律保护。 “整合营销传播”之父唐舒尔兹在其《唐舒尔兹论品牌》一书中表述道“品牌是为买卖双方所识别并能够为双方带来价值的东西。”在唐舒尔兹的营销世界里“品牌”不过是所有者赖以赚钱的一种方式, 它可以是一种产品、一种服务、一件东西、一个观念、一个过程、一个国家、一个组织或者几乎任何东西。 美国著名品牌专家大卫阿诺德认为:“品牌就是一种类似成见的偏见。”“成功的品牌是长期、持续地建立产品定位及个性的成果, 消费者对它有较高的认同。一旦成为成功的品牌, 市场领导地位及高利润自然就会随之而来。”吉尼斯

公司前董事长安东尼特纳法认为:“从本质上讲,品牌是识别标志, 是区分你的产品和你的竞争对手产品的标牌。品牌也是一种简约的标识、用容易识别和记忆的方式描述产品的重要特征,如形象、用途和价格。 美国市场营销协会对品牌的定义如下:品牌是一种名称、术语、标记、符号或设计,或是他们的组合运用,其目的是借以辨认某个销售者或某群销售者的产品或服务,并使之同竞争对手的产品和服务区别开来 2、品牌的性质 从本质上来看,品牌是一种资本。它符合马克思在《资本论》中对资本的界定,即是一种“能带来剩余价值的价值”,具有流动性和赢利性等特征。同时,品牌又是一种特殊的资本,有着与其他类型的资本相区别的独特性: (1)非实物性。品牌不具有独立实体,只是表示企业拥有的特殊权利和获取超额利润的非实体资本。 (2)高价值性。品牌凝结了大量的劳动,具有很强的收益效用,因而价值都比较高。 (3)增值性。品牌产品由于具有强大的竞争力和垄断性,所以可以使自己占据较高的市场份额。 (4)重复使用性。品牌作为一种资本,在创造价值的过程中,本身不会发生有形磨损,相反使用次数越多,其价值也越大。基于品牌的上述本质和特征,可以从资本的角度将品牌定义为“企业使用的不具有实物形态而以知识形态存在的重要经济资源,能为其产权所有者或合法使用者提供权益或优势,并能带来经营收益的非货币性资产,其价值是依据已经耗费的资金和未来创造的收益估算的”。 二、国内外品牌战略学派理论 (一)品牌整合战略学派

高性能船舶动力定位系统技术分析

高性能船舶动力定位系统技术分析 摘要:对国外一些船舶动态定位控制系统设计方案的控制精度和响应速度控制 问题等进行了分析和研究,提出了相应的改进方案。根据定位控制系统设备情况 的基本配置,分析了系统的基本工作原理,得到了定位控制系统的基本数学模型 和传递函数,并根据控制系统的工作特性提出了解决问题的方法。该方法采用了 控制系统中的神经网络控制算法,代替了原方案中的多级系统控制算法。与改进 方案的控制性能相比,改进方案的控制性能大大提高。 关键词:高性能;船舶;定位系统;技术分析 1 前言 某造船厂为国外某公司承造的多用途工作船具有向钻井平台输送物资、起锚、消防、救生及拖带船舶和钻井平台等作业功能。根据该船设计任务书的要求,该 船必须配置动力自动定位系统,既能克服自动化操船问题,又能解决该船在大风 浪下的安全作业问题。该系统原由国外某公司进行设计,使用表明,其系统的设 计方案基本可行,但尚有改进之处。本文对该系统的基本设计思路进行了分析和 研究,提出了系统的设计改进方案,仿真结果表明该改进方案优于原设计方案, 可供有关人员参考及借鉴。 2 原设计方案 根据DNV规范及船东的要求,设计方提出了本船动力定位系统的设计方案的 基本配置如下: 2.1电力系统 电力系统包括2台2 000 kW的轴带发电机,2台1 360 kW及500 kW的主柴 油发电机,1台200 kW的应急发电机,12屏的主配电板一个,应急配电板一个,电站设有电站管理系统,可实现自动起停机组、自动并车、转移负载、大功率负 载询问、故障报警及处理功能。电力系统为动力定位系统的侧推、方位推等设备 提供驱动动力,为各设备及控制系统提供工作电源。 2.2推进系统 推进系统包括2台主机及齿轮箱、2根轴系及2个可调桨、2台舵机、艏艉侧推及方位推各1个以及相关的辅助设备等。在推进系统中,方位推与艏侧推、艉 侧推与桨及舵、主机与轴带电机之间可互为备用,能够保证推进系统的有效运性,从而确保动力定位系统的功能能够安全可靠地实现。推进系统的各主要设备均通 过通讯线路与动力定位控制系统相联,可由动力定位系统自动控制或人工操控, 实现动力推进功能。 2.3动力定位控制系统 该系统包括动力定位操作台、便携式定位操作板、动力定位系统控制器等设备。能够实现:手动操作、自动转向、自动定位、自动寻迹航行、自动导航和自 动跟踪目标航行等功能。动力定位操纵台:该操纵台为动力定位系统的主要控制 中心,配有显示器及操纵杆等设备。便携式操作板可作为动力定位操作台的备用 设备,其接线盒分别安装驾驶室的前后台、左右两翼及后操作椅上共5个位置。 动力定位系统控制器:该装置为动力定位系统信号采集、控制信息处理中心。本 船采用的动力定位控制处理器将采集到的各种信号进行分析处理后,送到控制模 块进行运算,并将得出的控制指令发送至所控制的推进或报警设备,实现船舶推 进控制及报警等功能。 3 动力定位控制系统设计原理

相关主题
文本预览
相关文档 最新文档