当前位置:文档之家› 毕业设计煤油冷却器的设计换热器毕业设计说明

毕业设计煤油冷却器的设计换热器毕业设计说明

毕业设计煤油冷却器的设计换热器毕业设计说明
毕业设计煤油冷却器的设计换热器毕业设计说明

某某大学

毕业设计(论文)

题目:煤油冷却器的设计(处理量1600kg/h)学院:机电工程学院

专业班级:过控084班

学生姓名:某某

指导老师: X X X

成绩:

2012年 6 月15 日

摘要

本次毕业设计的任务是设计一个换热器。首先分析设计任务和条件,初步选择换热器的类型,进行流程安排,接着进行工艺结构计算,并重点针对湍流程度和传热面积裕度进行核算。以上完成后是结构设计,包括管板、壳体、管箱、折流板、封头、换热管、法兰、接管等的设计,并确定连接方式和密封形式。下一步是进行强度计算,对各个部分进行计算后,再进行面积、许用应力、力矩计算,然后进行各种可能情况下的应力校核。最后选择接管法兰、密封元件和鞍座,完成本次设计任务。在实际应用中,固定管板式换热器结构简单、制造方便、成本低、管程清洗方便、规格系列范围广,故在工程上得到广泛应用。所以我本次设计选择了固定管板式换热器的设计。

关键词:换热器;结构设计;强调计算;应力校核

Abstract

The graduation design task is to design a heat exchanger. First analysis design task and conditions, choose the type of preliminary heat exchanger, process arrangement, then process structure calculation, and focusing on the turbulent flow and heat transfer area degree the margin accounts. After the completion of the above is the structure design, including the tube plate, shell and tube box, baffle plate, sealing, head of heat exchange tube, flange, take over of design of, and determined the connection mode and sealing form. The next step is for strength calculation, calculated for each part, then area, allowable stress calculation, torque, and then carry out all the possible check the stress. The last choice to take over flange, seal components and saddle, complete the design task. In practical applications, fixed tube plate heat exchanger simple structure, easy fabrication, low cost, convenient washing, provide specifications series range wide, it is widely applied in engineering. So this design I chose fixed tube plate heat exchanger to design.

Keywords:Heat exchanger; Structure design; Emphasize computing; Stress checking

目录

摘要......................................................................................................................................... I Abstract.................................................................................................................................... II

第1章绪论 (1)

1.1 课题背景 (1)

1.2 换热器的研究现状 (1)

第2章确定设计方案 (3)

2.1 设计任务和操作条件 (3)

2.2 换热器类型的选取 (3)

2.3 流程安排 (3)

第3章工艺计算 (4)

3.1 物性数据的确定 (4)

3.1.1 定性温度的确定 (4)

3.1.2 物性数据 (4)

3.2 估算传热面积 (5)

3.2.1 平均传热温差 (5)

3.2.2 由煤油的流量计算热负荷 (6)

3.2.3 传热面积计算 (6)

3.2.4 冷却水用量 (7)

3.3 结构尺寸的设计 (7)

3.3.1 换热管的选择和管内流速的确定 (7)

3.3.2 确定管程数和传热管数 (7)

3.3.3 平均传热温差校正及壳程数 (8)

3.3.4 壳体内径 (9)

3.3.5 折流板 (10)

3.3.6 传热管排列和分程方法 (10)

3.3.7 接管 (11)

3.3.8 其他附件 (12)

3.4 换热器核算 (13)

3.4.1 传热能力核算 (13)

3.4.2 壁温核算 (17)

3.4.3 换热器内流体的流动阻力 (18)

3.5 换热器主要结构尺寸表 (19)

第4章换热器结构设计 (21)

4.1 壳体、管箱壳体和封头设计 (21)

4.2 选取接管 (21)

4.2.1 接管外伸长度 (22)

4.2.2 接管与筒体和管箱壳体的连接 (22)

4.2.3 接管位置的确定 (22)

4.3 换热管与管板 (23)

4.3.1 换热管 (23)

4.3.2 管板 (24)

4.4 壳体与管板、管板与换热管的连接 (25)

4.4.1 壳体与管板的连接 (25)

4.4.2 换热管与管板的连接 (26)

4.5 其他部件 (26)

4.5.1 拉杆与定距管 (26)

4.5.2 折流板 (27)

4.5.3 膨胀节 (27)

第5章强度计算 (30)

5.1 设计条件 (30)

5.2 结构尺寸 (30)

5.3 材料选择及许用应力的计算 (31)

5.4 管箱设计 (33)

5.5 封头计算 (33)

5.6 筒体设计 (34)

5.7 换热器管板设计 (34)

5.7.1 相关面积计算 (34)

5.7.2 换热管许用应力的计算 (36)

5.7.3 力矩计算 (36)

5.8 应力校核计算 (43)

P 的情况 (43)

5.8.1 壳程设计压力0

s

5.8.2 管程设计压力0

P 的情况 (51)

t

5.9 开孔补强 (57)

第6章法兰、垫片及鞍座的设计 (58)

6.1 接管法兰 (58)

6.1.1 接管法兰的材料 (58)

6.1.2 对材料的加工要求 (58)

6.1.3 排气、排污接管法兰 (58)

6.1.4 煤油进出口接管法兰 (58)

6.1.4 循环冷却水进出口接管法兰 (59)

6.1.5 垫片选择 (59)

6.2 鞍座的选择 (59)

6.3 技术要求 (62)

结论 (63)

参考文献 (64)

致谢 (65)

第1章绪论1.1 课题背景

1.2 换热器的研究现状

第2章确定设计方案2.1 设计任务和操作条件

2.2 换热器类型的选取

2.3 流程安排

第3章 工艺计算

3.1 物性数据的确定

3.1.1 定性温度的确定

参考文献,对于一般轻油和水等低粘度流体,其定性温度可取流体进出口温度的平均值。

故管程流体冷却水的定性温度为:

122

t t

t += (3-1)

式中 t —冷却水定性温度(℃) 1t —冷却水进口温度(℃) 2t —冷却水出口温度(℃)

122532

28.522

t t t ++=

== ℃, 壳程煤油的定性温度为:

122

T T

T += (3-2)

式中 T —煤油定性温度(℃)

1T —煤油的进口温度(℃) 2T —煤油的出口温度(℃)

1214035

87.522

T T T ++=

== ℃, 3.1.2 物性数据

参考文献,分别参考管程和壳程流体在对应的温度下,在生产中的物性数据实测值,循环冷却水在28.5℃时的有关物性数据如下:

比热容: 4.174pi c = kJ/(kg 2℃)

密 度:995.7i ρ= kg/3

m ; 粘 度:30.800710i μ-=? Pa 2s ; 导热系数:0.6176i λ= W/(m2℃)。 煤油在87.5℃下的有关物性数据如下: 比热容: 2.22pi c = kJ/(kg 2℃); 密 度:825i ρ=kg/3

m ;

粘 度:47.1510i μ-=? Pa 2s ; 导热系数:0.14i λ= W/(m2℃) 。

确定物性数据后,后面的计算中需用到以上数据者,可直接引用。

3.2 估算传热面积

3.2.1 平均传热温差

煤油的进出口温度分别为140℃和35℃,冷却水的进出口温度分别为25 ℃和32℃。先按纯逆流计算,得:

12

11

2m t t t t ln t ?-??=

?? (3-3)

()()14032352541.2

140323525

ln

---==-- ℃

式中 m t ?—逆流或并流的平均传热温差 12,t t ??—可按图3-1所示进行计算。

图3-1 列管式换热器内流型

3.2.2 由煤油的流量计算热负荷

依据文献公式: h h ph h Q w c t =? (3-4)

式中 Q h —热负荷,W ;

W h —工艺流体的流率,kg/h ; c ph —工艺流体的热容;kJ/(kg 2℃); h t ?—工艺流体的温度变化,℃;

h h ph h

Q w c t =?

=

1600

2.22(14035)3600

??- = 51.03610?W

3.2.3 传热面积计算

由于壳程煤油的压力不高,所以可以选择较小的K 值。假设400K = W/(m 22℃),则估算的传热面积A 为:

5'

2

1.03610 6.2840041.2

h m Q A m K t ?===??

考虑到估算值对计算结果的影响,根据文献提供的经验范围,取实际传热面积为估算值的1.15~1.25倍,取1.15倍。即

'21.15 1.15 6.287.23A A m ==?=

3.2.4 冷却水用量

对于工艺流体被冷却的情况,工艺流体所放出的热量等于冷却剂所吸收的热量与热损失之和,在实际设计中,为可靠起见,常可忽略热损失,依据公式:p Q wc t =?,计算冷却水用量:

h c pc c

Q w c t =

?

()

5

31.03610 3.55/12763/4.174103225kg s kg h ?===??- 3.3 结构尺寸的设计

3.3.1 换热管的选择和管内流速的确定

考虑到管径太小,流动阻力大,机械清洗困难,由文献根据具体情况选用192φ?mm 传热管。材料为20号钢。参考文献取管内流速1i u =m/s 。

3.3.2 确定管程数和传热管数

参考文献,根据公式

24

s i V

n d u

π

=

(3-5)

可由传热管内径和流体流速确定单程传热管数目, 式中 n s —单程管子数目;

V —管程流体的体积流量,m 3/s ; d i —换热管内径,m ;

u-管内流体的流速,m/s 。

计算得:

24

s i V

n d u

π

=

23.55995.720.2210.0151

4

π

=

=≈??根

按单管程计算,所需的传热管长度为L :

o s A

L d n π=

(3-6)

式中 L —按单管程计算的管子长度,m ; A —估算的传热面积,m 2; d 0—管子外径,m 。

o s

A L d n π=

7.23

5.770.01921

m π=

=??

如果按照单管程设计,传热管尺寸过长。应该采用多管程结构。根据本设计实际情

况,参考文献推荐的传热管长3m ,则该换热器的管程数p N 为:

5.7723

p L N l =

=≈(管程) 换热器内传热管根数T N 为:

21242T s p N n N ==?=

3.3.3 平均传热温差校正及壳程数

参考文献,折流情况下的平均传热温差可先按纯逆流情况计算,然后加以较正,由于在相同的流体进出口,温度下,逆流流型具有较大的传热温差,所以在工程上,若无特殊要求均采用逆流。

均传热温差校正系数:

12

21

T T R t t -=

- (3-7)

式中: 12,T T —热流体的进、出口温度,℃

21

11

t t P T t -=

-

12,t t —冷流体的进、出口温度,℃。

14035

153225R -=

=-

32250.06114025

P -==-

计算平均传热温差m t ?如下:

m m t t ??=?逆

(3-8)

式中 m t ?—折流情况下的平均传热温差; ?—温差校正系数。

按单壳程双管程,查文献图F2可知:0.96?= 所以,平均传热温差:

m m t t ??=?逆

=0.9641.2?=39.5℃

参考文献,因为计算得平均传热温差校正系数为0.96,大于0.8,所以取单壳程合适。

3.3.4 壳体内径

参考文献采用多管程结构,取管板利用率η=0.7,则壳体的内径为:

1.05D =

1.05203.3=?=mm 按无缝钢管进级档,可取219DN =mm,初步选取壁厚为6mm ,即207i d mm =。

3.3.5 折流板

折流板有横向折流板和纵向折流板,横向折流板同时兼有支撑传热管,防止发生震动的作用,其常用的型式有弓形折流板和和圆盘-圆环形折流板,弓形折流板结构简单,性能优良,在实际中最为常用。本设计采用弓形折流板,取弓形折流板圆缺高度约为壳体内径的20%,则切去的圆缺高度h 为:

20720%41.4h =?=mm

所以,取40h =mm 。

参考文献取折流板的的间距0.3B D =,则

2070.362.1B =?=mm

所以,取60B =mm 。 折流板数B N 为:

3000

115014960

B N =

-=-=-=传热管长折流板间距

折流板选择圆缺竖直装配,具体型式见总装配图。

3.3.6 传热管排列和分程方法

对于多管程换热器,常采用组合排列方式,每一程内都采用正三角形排列,而在各程之间为了便于安装隔板,采用正方形排列方法。如图3.1所示。

参考文献,管心距选择 1.25o t d =为:

1.25 1.251923.75o t d ==?=mm ,取25t =mm 。

隔板中心距离相邻的换热管中心距离S 等于:

256618.51922

t S mm =+=+=≈

各程之间相邻换热管的管心距等于:

1932=38mm

横过管束中心线的管数:

1.198c n ===根

图3-2换热管组合排列

两管程,每程各有换热管数目为21根,管箱中隔板安装位置和介质的流通方式按照图3.2所示。

图3-3管程隔板安装位置和换热管分程方式

3.3.7 接管

1. 管程流体进、出口接管:

选取接管内冷却水的流速为:

22.5

u=m/s,则接管内径

2

D如下:

2

0.043 D===

m

圆整后,管程进、出口接管规格为:45 2.5

φ?。

2. 壳程流体进、出口接管

取接管内流体流速为:

10.7

u=m/s,则接管内径

1

D如下:

1

0.0313

D===m

为了方便取材,圆整后,壳程进、出口接管规格也选择为38 2.5

φ?。

3.3.8 其他附件

1. 拉杆数量与直径

根据文献表43和表44查得,本换热器换热管外径为19mm,所以拉杆直径12mm

n

d=。拉杆数不得少于4个,考虑到壳体内径较小,选择4根拉杆。

2. 防冲挡板

参考文献,当管程采用轴向入口接管或换热管内流体速度超过3m/s时,应设置防冲板。

当壳程进口流体的2

ρυ(其中ρ味流体密度,3

/

kg m;υ味流体的流速,m/s)值为下列数值时,应在壳程进口管处设置防冲板或导流筒:

(1)非腐蚀、非磨蚀性的单向流体,22

2230/()

kg m s

ρυ>?者;

(2)其他液体,包括沸点下的液体,22

740/()

kg m s

ρυ>?者。

有腐蚀或有磨蚀的气体、蒸汽及汽液混合物,应设置防冲板;当壳程进出口接管距管板较远,流体停滞区过大时,应设置导流筒,以减小流体停滞区,增加换热器的有效换热长度。

本换热器设计中,管程进口流速为2.5m/s,

壳程222

8250.11210.35740/()

kg m s

ρυ=?=

故管程和壳程均无需设置防冲板。

3.膨胀节

膨胀节是装在固定管板式换热器壳体上的挠性构件,依靠这种易变形的挠性构件,对管束与壳体间的变形差进行补偿,以此来消除壳体与管束间因温度而引起的温差应

力。

固定管板式换热器换热过程中,管束和壳体有一定得温差存在,而管板、管束与壳体之间是刚性地连接在一起的,当温差大于50℃时,由于过大的温差应力往往会引起壳体的破坏或造成管束弯曲。当温差很大时,可以选用浮头式、U 型管及填料函式换热器。但上述换热器的造价较高,若管间不需要清洗时,也可采用固定管板式换热器,但需要设置温差补偿装置,如膨胀节。

膨胀节的型式较多,通常有波形膨胀节、平板膨胀节、Ω形膨胀节。在生产实际中,应用最多也最普遍的是波形膨胀节。本设计初步选用波形膨胀节。

图3-4 波形膨胀节

3.4 换热器核算

3.4.1 传热能力核算

1. 管程传热膜系数

参考文献,用克恩法进行计算,选择公式:

0.8n 0.023

Re Pr i

i i

d λα=?

(3-9) n=0.4(当流体被加热时) n=0.3(当流体被冷却时)

所以取n=0.4正确。

因为3000

1575019

l d =

=>,μ=30.800710-?<0.002Pa 2s ,满足条件,定性温度可取流体进出口温度的算术平均值;特征尺寸取换热管的内径d i 。

管程冷却水流通截面积i S 计算得:

220.015210.00374

4

i i s S D n π

π

=

?=

??=m 2

管程冷却水流速i u 为:

1276536003600995.70.9620.0037

i i i i w u S ρ??===m/s

雷诺数3

995.70.9620.02

Re 0.800710e i ud ρμ-??=

=?=23926 普兰特数33

4.174100.800710Pr

5.410.6176

p c μ

λ-???=== 用克恩法计算,则管程流体传热膜系数为:

0.80.40.023Re Pr i

i i

d λα=?

??

0.80.40.6176

0.02323926 5.410.015

=?

?? =5925 W/(m 22℃)

2. 壳程流体传热膜系数

可用克恩法进行计算,0.14

1

0.551

3

0.36Re Pr o e W d λμαμ??=?? ???

当量直径,按三角形排列时公式如下:

2200

424e d d d ππ??- ?

??= (3-10) 式中 t —管间距,m ; d 0—换热管外径,m ; 有上式,当量直径e d 如下:

222200440.019440.020.019

e d d m d ππππ??-?-???

????===? 壳程流通截面积为:

000.01910.060.20710.025d S BD t ????=-=??- ?

????

?=0.002882

m 壳程流体流速o u =

V S ,即 001600360036008250.00288

m u S ρ??===0.187m/s

雷诺数004

8250.1870.02

Re 7.1510e u d ρμ-??=

=?=4315 普兰特数34

2.22107.1510Pr 11.3380.14p c μ

λ-???=== 粘度校正0.14

1W μμ??

≈ ?

??

,则:

用克恩法计算,则壳程流体传热膜系数o α为:

1

3

0.14

0.5510

0.36Re Pr o e W d λ

μαμ??=? ???

1

0.55

30.140.36431511.33810.02

=???? =565W/(m 22℃)

3. 污垢热阻和管壁热阻 查文献表F1、F7.3得:

管外侧污垢热阻为:41.719710o R -=?(m 22K)/ W 管内侧污垢热阻为:.43.439410i R =?(m 22K)/ W

查表F3得:碳钢在该条件下的导热系数50w λ=W/(m 22K) 则管壁热阻W R :

W W

b

R λ=

(3-11)

式中 b —换热管壁厚,m ;

毕业设计-换热器设计模版

毕业设计-换热器设计模版

一、 设计参数 过热蒸汽压力P 1:0.35Mpa ;入口温度T 1:250C ;出口温度T 2:138.89C (查水和水 蒸汽热力性质图表P11);传热量Q :375400kJ/h 。 冷却水压力P 2:0.7MPa ;入口温度t 1:70C ;出 口温度t 2(C );水流量m 2:45320kg/h 。 水蒸汽走管程,设计温度定为300C ,工作压力 为0.35Mpa (绝压);冷却水走壳程,设计温度定位100C ,工作压力为0.9Mpa (绝压)。 二、 工艺计算 1.根据给定的工艺条件进行热量衡算 )t t ()()T T (1 2 2 2 2 1 2 1 1 2 1 1 1 p p c m Q h h m c m Q 查水和水蒸汽热力性质图表得 0.3MPa ,140C ,2738.79kJ/kg 250C ,2967.88 kJ/kg 0.4MPa, 150C ,2752.00 kJ/kg 250C ,2964.50 kJ/kg 采用插值法得到:0.35MPa 水蒸汽从138.89C 到 250C 的焓变为:234.6 kJ/kg h kg h h Q m /16006.234/375400)/(1 211 由表得70C 时水的比热2 p c 为4.187C kg J /k (【1】《化

200C 粘度0.136mPa/s ,导热系数 1.076C m W ,比热容4.505C kg kJ /【3】 得:194.45 C 时密度 3 16193.1m kg ,粘度 s 0.14m Pa 1 ,导热系数C m W 0699.11 ;比热容 C kg kJ c p /479.41 588 .00699 .100014 .044791 1 11 p r c P 0.7MPa ,70.99C 时水的物性参数:(【4】《化 工原理》P525页) 70C 密度977.83 m kg ,粘度0.406mPa/s ,导 热系数0.668C m W ,比热容4.187C kg kJ /[4] 80C 密度971.83 m kg ,粘度0.355mPa/s ,导 热系数0.675C m W ,比热容4.195C kg kJ /[4] 得:70.99 C 时密度 3 271.926m kg ,粘度 s 0.383m Pa 2 ,导热系数C m W 671.02 ;比热容 C kg kJ c p /329.42 393 .2667 .0000383 .043292 2 22r p c P 3.初定换热器尺寸 ①已知传热量Q

换热器设计开题报告

毕业设计开题报告 论文题目: 抽余液塔底换热器设计 学院化工装备学院 专业:过程装备与控制工程 学生姓名:邓华 指导教师:翟英明(高级工程师) 开题时间:2015年3月16日 一、选题目的 1、通过毕业设计,练习综合运用课程和实践的基本知识,进行融会贯通的独立思考。 2、在规定的时间内完成指定的设计任务,从而得到化工换热器设计的主要程序和方法。 3、培养分析和解决工程实际问题的能力。 4、树立正确的设计思想,培养实事求是,严肃认真,高度负责的工作作风。 5、通过此次设计任务,学会换热器的结构及强度设计计算及制造、检修和维护方法。 二、选题意义 在不同温度的流体间传递热能的装置称为热交换器,简称换热器。在换热器中至少要有两种温度不同的流体,一种流体温度高,放热;另一种流体温度低,吸热。换热器是实现传热过程的基本设备。而此设备是比较典型的传热设备。 二十世纪20年代出现板式换热器,并应用于食品工业。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。 化工、石油等行业中广泛使用各种换热器,它们是化工,石油,动力,食品及其它许多工业部门的通用设备,在工业设备价值及作用方面占有十分重要的地位。随着工业的迅速发展,能源消耗量不断增加,能源紧张已成为一个世界性问题。为缓和能源紧张的状况,世界各国竞相采取节能措施,大力发展节能技术,已成为当前工业生产和人民生活中一个重要课题。换热器在节能技术改造中具有很重要的作用,表现在两方面:一方面是在生产工艺流程中使用着大量的换热器,提高这些换热器效率,显然可以减少能源的消耗;另一方面,用换热器来回收工业余热,可以显著地提高设备的热效率。 三、国内现状 目前,我国换热器产业的市场规模大概为700亿人民币,主要集中于石油、化工、冶金、电力、船舶、集中供暖、制冷空调、机械、食品、制药等领域。其中,石油化工领域仍然是换热器产业最大的市场。基于石油、化工、电力、冶金、船舶、机械、食品、制药等行业对换热器稳定的需求增长,我国换热器产业在未来一段时期内将保持稳定增长。2010年至2020年期间,我国换热器产业将保持年均10~15%左右的速度增长。到2015年,我国换热器产

列管式换热器课程设计

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

推荐-煤油冷却器的课程设计课程设计 精品

x x x x x大学 化工原理课程设计题目煤油冷却器的设计 教学院 专业班级 学生姓名 学生学号 指导教师 20XX年6月8日 目录

第一章绪论 (1) 第二章方案设计说明 (1) 2.1换热器的选型 (1) 2.1.1 换热器的分类 (1) 2.1.2 间壁式换热器 (1) 2.1.3 管壳式换热器 (1) 2.1.4 换热器的选型 (2) 2.2材质的选择 (2) 2.3换热器其他结构设计 (2) 2.3.1 管程机构 (2) 2.3.2 壳程结构 (2) 第三章管壳式换热器的设计计算 (3) 3.1确定设计方案 (3) 3.1.1 选择换热器类型 (3) 3.3.2 流动空间及流苏确定 (3) 3.2 确定物性参数 (3) 3.3 计算总传热系数 (4) 3.3.1 热流量 (4) 3.3.2 平均传热温差 (4) 3.3.3 冷却水用量 (4) 3.3.4 总传热系数 (4) 3.4 计算传热面积 (5) 3.5 工艺结构尺寸 (5) 3.5.1 管径和管内流速 (5) 3.5.2 管程数和传热管数 (5) 3.5.3 平均传热温差校正及壳程 (6) 3.5.4 传热管排列和分程方法 (6) 3.5.5 壳体内径 (6) 3.5.6 折流板 (7) 3.5.7 接管 (7) 3.6 换热器核算 (7)

3.6.1 热量核算 (7) 3.6.2 换热器内流体的流动阻力 (9) 第四章计算结果一览表 (11) 课程设计心得与体会 (12) 参文文献 (14) 附录(1)油冷却器的设计任务书 (15) 附录(2)符号说明 (16)

第一章绪论 工程设计是工程建设的灵魂,又是科研成果转化为现实生产力的桥梁和纽带,它决定了工业现代化水平。设计是一项政策性很强的工作,它涉及政治、经济、技术、环保、法规等诸多方面,而且还会涉及多专业、多学科的交叉、综合和相互协调,是集体性的劳动。先进的设计思想、科学的设计方法和优秀的设计作品是工程设计人员应坚持的设计方向和追求的目标。而化工原理课程设计,是将所学的化工原理理论知识联系实际生产的重要环节。一方面,它要求综合运用物理,化学,化工原理,工程制图的理论知识,确定生产工艺流程和计算设备的尺寸;另一方面,又要求根据设计对象的具体特征,凭借设计者的经验(或借鉴前人的经验),灵活运用设计的诀窍,对所选设备,工艺过程以及各种参数进行合理的筛选,校正和优化,达到经济合理的生产要求。 第二章设计方案说明 2.1换热器的选型 2.1.1换热器的分类 换热器是化工,炼油工业中普遍应用的工艺设备,用来实现热量的传递,使热量由高温流体传给低温流体。根据传热方式可分为混合式换热器,蓄热式换热器,和间壁式换热器,其中间壁式换热器是工业中应用最为广泛的一类。其主要特点为:冷热流体被一固体间壁隔开,通过壁面进行转热。考虑到间壁式换热器设计技术比较成熟,而且国家在该类换热器的设计,制造,检验和验收等方面已有较为完善的设设计资料和系列化标准,因此选择间壁式换热器。 2.1.2间壁式换热器 按照传热面的形状和结构特点,间壁式换热器又可细分为管式换热器,如套管式,螺旋管式,管壳式,热管式;板面式换热器,如板式,螺旋式,板壳式等;扩展面式换热器,如板翅式,管翅式,强化的传热管等。在管式换热器中,管壳式换热器是应用最广泛的一种,该类换热器结构相对简单,造价不高,壳选用多种结构材料,管内清洗方便,处理量大,在高温条件下也能应用。考虑其诸上优点,以及生产任务均符合管式换热器的要求,选择管壳式换热器。 2.1.3 管壳式换热器 管壳式换热器又称列管式换热器,是一种通用的标准换热设备。它因结构简单、耐用、造价低廉、用材广泛、清洗方便、适应性强等优点而在换热设备中占据主导地位。管壳式换热器根据其结构特点分为:固定管板式换热器,浮头式换热器,U形管式换热器。以下主要介绍固定管板式换热器。 固定管板式换热器,管端以焊接或胀接的方法固定在两块管板上,而管板则以焊接的方法与壳体连接,与其他形式的管壳式换热器相比,结构简单,当壳体

换热器毕业设计论文.doc

第1章 浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗,在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构,然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数、压强校核、壳程压降、管程压降的计算;设计的后半部分则是关于结构和强度的设计。主要是根据已经选定的换热器型式进行设备内各零部件(如壳体、折流板、管箱固定管板、分程隔板、拉杆、进出口管、浮头箱、浮头、支座、法兰、补强圈)的设计。 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%。换热设备在现代装置中约占设备总重30%左右,其中管壳式换热器仍然占绝对的优势,约70%。其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备。其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。浮头式换热器是管壳式换热器系列中的一种。换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

课程设计换热器-煤油

《化工过程设备设计Ⅰ(一)》 说明书 设计题目:换热器的设计 专业: 班级: 学号: 姓名: 指导教师: 设计日期: 设计单位:青海大学化工学院化学工程系

目录 前言 (4) 任务书 (5) 目的与要求 (6) 一、工艺设计方案 (8) 二、确定物性数据 (9) 三、估算传热面积 (9) 四、工艺结构尺寸 (10) 五、换热器核算 (12) 六、设计结果概要一览表 (17) 七、参考文献 (19)

前言 化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所学知识,完成以单元操作为主的一次设计实践。通过课程设计使学生掌握化工设计的基本程序和方法,并在查阅技术资料、选用公式和数据、用简洁文字和图表表达设计结果、制图以及计算机辅助计算等能力方面得到一次基本训练,在设计过程中能够培养学生树立正确的设计思想和实事求是、严肃负责的工作作风。 化工原理课程设计是化工原理课程教学的一个实践环节,是使学生得到化工设计的初步训练,为毕业设计奠定基础。围绕以某一典型单元设备(如板式塔、填料塔、干燥器、蒸发器、冷却器等)的设计为中心,训练学生非定型设备的设计和定型设备的选型能力。设计时数为3周,其基本内容为: (1)设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。 (2)主要设备的工艺设计计算(含计算机辅助计算):物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算。 (3)辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备的规格、型号的选定。 (4)工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点。 (5)主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。 (6)设计说明书的编写。设计说明书的内容应包括:设计任务书,目录,设计方案简介,工艺计算及主要设备设计,辅助设备的计算和选型,设计结果汇总,设计评述,参考文献。 整个设计由论述,计算和图表三个部分组成,论述应该条理清晰,观点明确;计算要求方法正确,误差小于设计要求,计算公式和所有数据必需注明出处;图表应能简要表达计算的结果。 设计者: 2015年月日

浮头式换热器毕业设计说明书

摘要 本次设计为浮头式换热器,浮头式换热器主要由管箱、管板、壳体、换热管、折流板、拉杆、定距管、钩圈、浮头盖等组成。浮头换热器的一端管板与壳体固定,另一端为浮动管板。因此其优点为热应力较小,便于检查和清洗,缺点为结构较为复杂。在传热计算工艺中,包括传热量、传热系数的确定和换热器径及换热管型号的选择,以及传热系数、阻力降等问题。在强度计算中主要讨论的是筒体、管箱、管板厚度计算以及折流板、法兰和接管、支座、分隔板等零部件的设计,还要进行一些强度校核。本设计是按照GB151《管壳式换热器》和GB150《钢制压力容器》设计的。换热器在工、农业的各个领域应用十分广泛,在日常生活中传热设备也随处见,是不可缺少的工艺设备之一。随着研究的深入,工业应用取得了令人瞩目的成果。 关键字:换热器,工艺计算,强度校核

Abstract This design is floating head heat exchanger, it is made up of tube box 、tube sheet、shell、heat exchange tube、baffle plate、draw bar、spacer pipe、hook circle、floating head cover and so on. One tube sheet of the exchanger is connected with shell, and the other tube sheet is floating tube sheet. So it’s easy to check and clean. On the other hand the structure of it complex. In the process of heat transfer calculation, include area computation 、capacity of heat transmission 、the determine of heat transfer coefficient and the choice of the heat exchange tube. About strength calculation, it involve the calculating of shell、tube box、sealing head and so on. This design is according to GB151 << shell-and-tube heat exchanger >> and GB150 << Steel pressure vessel >> to design. Heat exchanger is one of the indispensable process equipment. With the deepening of the research, industrial application made remarkable achievements. Keywords:heat exchanger; Process calculation;strength check

煤油冷却器的设计----原版.doc

课程设计任务书

一、摘要 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。 在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。由于使用条件的不同,换热器可以有各种各样的形式和结构。在生产中,换热器有时是一个单独的设备,有时则是某一工艺设备的组成部分。 衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、安全可靠、节省材料、成本低,制造、安装、检修方便、节省材料和空间、节省动力。 二、关键字 煤油,换热器,列管式换热器,固定管板式

目录 一、概述 (1) 二、工艺流程草图及设计标准 (1) 2.1工艺流程草图 (1) 2.2设计标准 (2) 三、换热器设计计算 (2) 3.1确定设计方案 (2) 3.1.1选择换热器的类型 (2) 3.1.2流体溜径流速的选择 (2) 3.2确定物性的参数 (3) 3.3估算传热面积 (3) 3.3.1热流量 (3) 3.3.2平均传热温差 (3) 3.3.3传热面积 (3) 3.3.4冷却水用量 (4) 3.4工艺结构尺寸 (4) 3.4.1管径和管内流速 (4) 3.4.2管程数和传热管数 (4) 3.4.3平均传热温差校正及壳程数 (4) 3.4.4传热管排列和分程方法 (5) 3.4.5壳体内径 (5) 3.4.6折流板 (5)

换热器的壳体设计毕业设计

换热器的壳体设计毕业设计 目录 第一章换热器概述1 1.1换热器的应用 (1) 1.2换热器的主要分类 (1) 1.2.1换热器的分类及特点 (1) 1.2.2 管壳式换热器的分类及特点 (2) 1.3管壳式换热器特殊结构 (5) 1.4换热管简介 (5) 第二章工艺计算7 2.1设计条件 (7) 2.2换热器传热面积与换热器规格: (8) 2.2.1 流动空间的确定 (8) 2.2.2 初算换热器传热面积'A (8) 2.2.3 传热管数及管程的确定 (9) 2.2.4管心距的计算 (9) 2.2.5换热器型号、参数的确定 (9) 2.2.6壳体径计算 (9) 2.2.7折流板的计算 (10) 2.3换热器核算 (10) 2.3.1传热系数核算 (11)

2.3.2换热器的流体阻力 (13) 2.3.3换热器的选型 (14) 第三章 换热器的结构计算和强度计算 15 3.1换热器的壳体设计 (15) 3.2筒体材料及壁厚 (15) 3.3封头的材料及壁厚 (16) 3.4管箱材料的选择及壁厚的计算 (16) 3.5开孔补强计算 (17) 3.6水压试验及壳体强度的校核 (19) 3.7 换热管 (20) 3.7.1 换热管的排列方式 (20) 3.7.2 布管限定圆L D (20) 3.7.3 排管 (21) 3.7.4 换热管束的分程 (21) 3.8 管板设计 (22) 3.8.1 管板与壳体的连接 (22) 3.8.2 管板计算 (22) 3.8.3 管板重量计算 (26) 3.9 折流板 (26) 3.9.1 折流板的型式和尺寸 (27) 3.9.2 折流板排列 (27) 3.9.3 折流板的布置 (27)

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

煤油冷却器的设计

南京工业大学《材料工程原理B》课程设计 设计题目: 煤油冷却器的设计 专业:高分子材料科学与工程 班级:高材0801 学号: 1102080104 姓名: 夏亚云 指导教师: 周勇敏 日期: 2010/12/30 设计成绩:

目录 一.任务书 (3) 1.1.设计题目 1.2.设计任务及操作条件 1.3.设计要求 二.设计方案简介 (3) 2.1.换热器概述 2.2列管式换热器 2.3.设计方案的拟定 2.4.工艺流程简图 三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 四.工艺结构设计…………………………………………………………………………………………..-8- 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.传热管排列和分程方法 4.5.壳程内径及换热管选型汇总 4.6.折流板 4.7.接管 五.换热器核算………………………………………………………………………………………….-13- 5.1.热量核算 5.2.压力降核算 六.辅助设备的计算和选择……………………………………………………………………………17 6.1.水泵的选择 6.2.油泵的选择 七.设计结果表汇 (20) 八.参考文献. (20) 九.心得体会………………………………………………………………………………….…………… 21附图:(主体设备设计图,工艺流程简图)

§一.化工原理课程设计任务书 1.1设计题目 煤油冷却换热器设计 1.2设计任务及操作条件 1、处理能力 15.8×104t/y 2、设备型式列管式换热器 3、操作条件 (1)煤油: 入口温度140℃,出口温度40℃ (2)冷却介质:工业硬水,入口温度20℃,出口温度40℃ (3)油侧与水侧允许压强降:不大于105 Pa (4)每年按330天计,每天24小时连续运行 (5)煤油定性温度下的物性参数: 1.3设计要求 选择合适的列管式换热器并进行核算 1.4绘制换热器装配图 (见A4纸另附) §二.设计方案简介 2.1换热器概述 换热器是化工,炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门,如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的意义。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。

管壳式换热器设计课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (1) 第二章管壳式换热器简介 (2) 第三章设计方法及设计步骤 (4) 第四章工艺计算 (5) 物性参数的确定 (5) 核算换热器传热面积 (6) 传热量及平均温差 (6) 估算传热面积 (8) 第五章管壳式换热器结构计算 (10) 换热管计算及排布方式 (10) 壳体内径的估算 (12) 进出口连接管直径的计算 (13) 折流板 (13) 第六章换热系数的计算 (19) 管程换热系数 (19) 壳程换热系数 (19) 第七章需用传热面积 (22) 第八章流动阻力计算 (24) 管程阻力计算 (24) 壳程阻力计算 (25) 总结 (27)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

换热器设计开题报告

毕业设计(论文)开题报告设计(论文)题目: 学院:化工装备学院 专业班级:过程装备与控制工程0802 学生: 指导教师: 开题时间:2011年10 月18 日

指导教师评阅意见

一、选题的目的及意义: 换热器的基建投资在一般化工、石化企业中约占设备总投资的20%,其中固定管板式换热器约占换热器的70%。 固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。 特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。 固定管板换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束根据换热器的长度设置了若干块折流板。这种换热器管程可以用隔板分成任何程数。 固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格围广,故在工程上广泛应用。壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。 本课题所设计的冷却器属于固定管板换热器,是针对给定的设计参数,按照相关规定的要求,通过壁厚计算和强度校核等,设计固定管板式换热器产品。熟悉压力容器设计的基本要求,掌握固定管板式换热器的常规设计方法,把所学的知识应用到实际的工程设计中区,为以后的工作和学习打下扎实的基础。 二、国外现状发展及趋势 2.1 国外情况 对国外换热器市场的调查表明,管壳式换热器占64%。虽然各种板式换热器的竞争力在上升,但管壳式换热器仍将占主导地位。随着动力、石油化工工业的发展,其设备也继续向着高温、高压、大型化方向发展。而换热器在结构方面也有不少新的发展。螺旋折流板换热器是最新发展起来的一种管壳式换热器是由美国ABB公司提出的。其基本原理为:将圆截面的特制板安装在“拟螺旋折流系统”中每块折流板占换热器壳程中横剖面的四分之一其倾角朝向换热器的轴线即与换热器轴线保持一定倾斜度。相邻折流板的周边相接与外圆处成连续螺旋状。每个折流板与壳程流体的流动方向成一定的角度使壳程流体做螺旋运动能减少管板与壳体之间易结垢的死角从而提高了换热效率。在气一水换热的情况下传递相同热量时该换热器可减少30%-40%的传热面积节省材料20%-30%。相对于弓形折

冷却器毕业设计

冷却器毕业设计 篇一:换热器冷却器课程设计 课程设计任务书 1、设计题目:年处理量20万吨柴油冷却器的设计 2、操作条件: (1)柴油:入口温度175℃;出口温度90℃; (2)冷却介质:采用循环水,入口温度20℃,出口温度50℃; (3)允许压降:不大于105Pa; (4)柴油定性温度下的物性数据: ?c=720kg/m3 ?c?6.6?10-4Pa.S cpc?2.48kJ/(kg.0c) ?c?0.133w/(m.0c) (5)每年按330天计,每天24小时连续生产。 3、设计任务: (1)处理能力:XX00t/a柴油; (2)设备型式:列管式换热器; (3)选择适宜的列管换热器并进行核算; (4)绘制带控制点的工艺流程图和设备结构图,并编写设计说明书。 摘要

柴油冷却器是帮助柴油散热的一个装置。本次课程设计采用浮头式换热器来实现柴油冷却。在设计中,主要以循环水为冷却剂,在给定的操作条件下对柴油冷却器进行设计。 本设计的内容包括:1、设计方案的确定:换热器类型的选择、流动空间的选择等。2、换热器的工艺计算:换热器面积的估算、换热器工艺尺寸的计算、换热器的核算等。 3、操作条件图等内容。 目录 摘要 ................................................ ................................................... ................................................... (2) ABSTRACT .......................................... ................................................... ................................ 错误!未定义书签。 第1章绪论 ................................................ ................................................... ................................................... . (3) 1.1换热器技术概

列管式换热器课程设计

化工原理课程设计说明书列管式换热器的选用和设计

目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数 5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢

1化工原理课程设计任务书 欲用自来水将2.3万吨/年的异丁烯从300℃冷却至90℃,冷水进、出口温度分别为25℃和90℃。若要求换热器的管程和壳程压强降不大于100kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水异丁烯 密度 996 12 比热 4.08 130 导热系数 0.668 0.037 粘度 0.37×10^-3 13×10^-3 2.概述与设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。

煤油冷却器设计.docx

河西学院 Hexi University 化工原理课程设计 题目 :煤油冷却器设计 学院 :化学化工学院 专业 :化学工程与工艺 学号 : 姓名 :张冠雄 指导教师 :王兴鹏 2016 年 11 月 21 日

化工原理课程设计任务书一、设计题目 煤油冷却器的设计 二、设计任务及操作条件 1.设计任务 生产能力(进料量)25000吨 / 年 操作周期7200小时 / 年 2. 操作条件 煤油入口温度120 ℃,出口温度40 ℃ 冷却介质自来水,入口温度20 ℃,出口温度40 ℃ 允许压降≦ 105Pa 冷却水温度20℃ 饱和水蒸汽压力( 表压 ) 3. 设备型式列管式换热器 4.厂址上海(压力: 1atm ) 三、设计内容 1.设计方案的选择及流程说明 2.换热器的工艺计算 3.换热器的主要尺寸设计 4.辅助设备选型 5.设计结果汇总 6.绘制换热器总装配图:主视图、俯视图、剖面图、两个局部放大图 7.设计评述

目录 1 概述 .................................................. 化工原理课程设计的目的、要求...........................列管式换热器及其分类................................... 换热器的设计要求....................................... 符号说明 ............................................... 2 确定设计方案 .......................................... 设计任务 ............................................... 列管式换热器形式的选择................................. 管壳程的选择 ........................................... 流体流速的选择......................................... 3 列管式换热器的结构.................................... 管程结构 ............................................... 壳程结构 .............................................. 4 列管式换热器的设计计算................................ 计算步骤 ............................................... 计算传热系数 ........................................... 计算传热面积 ........................................... 5 工艺结构尺寸的计算.................................... 管径和管内流速......................................... 管程数和传热管数....................................... 平均传热温差校正系数................................... 传热管排列和分程方法................................... 壳体内径 ............................................... 折流板 ................................................. 接管 ................................................... 6 换热器核算 ............................................ 热量核算 ............................................... 面积核算 ...............................................错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。

相关主题
文本预览
相关文档 最新文档