当前位置:文档之家› 港口沉箱码头初步设计书

港口沉箱码头初步设计书

港口沉箱码头初步设计书
港口沉箱码头初步设计书

港口沉箱码头初步设计书

一、设计目的和要求

对某市和尚岛港区沉箱码头部分水工结构的设计,掌握《港口航道工程学》这门课程的主要内容,并初步学会运用有关专业课、技术基础课的理论去解决实际工程问题,训练编写设计说明书、绘制港口水工建筑物图纸的能力和技巧,以及培养正确的设计思想,熟悉有关的设计规范等。

二、地区概况

某市地处辽东半岛最南端,三面环海,气候温和,交通方便,是我国东北的一颗明珠,也是我国的重要港口和旅游城市,工业和旅游业十分发达。

但是,多年来该市一直处于缺煤少电状态,已严重影响了工业生产和人民生活,该市是围绕着老港口发展起来的城市,位于市中心的某些货场(如煤场)等已严重威胁着该市的安全。同时,由于国民经济的蓬勃发展,吞吐量的急骤增加,船舶的停泊时间长,造成政治、经济上不应有的影响和损失。

为了缓和本地区能源供应紧张的问题,解决该市缺煤少电的状况,并使这些货物有专用装卸码头和库场,国家计委批准兴建和尚岛港区,并列入国家重点工程项目。以下是该地区的基本情况。

1、地理位置

和尚岛港区位于本市海湾北端的红土堆子湾。背靠市第四发电厂,与市经济开发区隔海相望,交通方便,有公路与该市至沈阳公路相接,铁路接东北干线,可达全国各地。港区距市内陆路25公里,水路8海里。

2、自然条件

该港区属海洋型气候,平均气温10.2℃,7~8月最高,一般为25℃左右,极值达34.4℃,1~2月最低,一般为-5~-10℃,极值达-21℃。

红土堆子湾内一般不结冰,只在湾内西北部零米水深线以上的海滩结冰,冰层厚度0.3~0.5m,土层最大冰深0.93m。

由于地处东南亚季风带边缘,基本受季风控制。夏季以ES风为主,冬季以N风为主,常风向为SSE,六级以上的风很少。本地区一般每隔三年有一次台风通过,风力为7~8级,风向多为ESE,最大风速34m/s。

年降水量为671mm,平均年降雨日数75天,多集中在7~8月份。降雪不多,年平均降雪天数为20天左右,最大积雪厚度为0.11m。

降雾日较多,年平均雾日40天,三级以下重雾日为40天,一般5~7月为盛雾期,雾的形态多属平层雾。

本区潮型为规则半日潮,涨潮延时6小时04分,落潮延时6小时46分,其潮位特征值(按大连港筑港零点计)为:

多年最高潮位:+4.6m

多年最低潮位:-0.66m

多年平均高潮位:+4.35m

多年平均低潮位:-0.26m

多年平均潮差:2.08m

多年最大潮差:3.93m

多年最小潮差:0.89m

最大潮流流速0.21m/s,流向与湾内中心轴线接近一致,上、中、下三层流向相同。

该市老虎滩设有海洋站,自1963年开始观测至今,同时,1983年1月该市老港又在和尚岛设立观测站,资料基本齐全。经统计、推算,主波向为SSE、SE 及S向,其频率分别为14.31%、9.26%及7.13%,强波向为S及SE向,最大波高为2.2米,小于1米的波高频率为98.61%。其设计水位如下:

设计高水位:+3.81m

设计低水位:+0.62m

校核高水位:+4.83m

校核低水位:-0.85m

施工水位按照当地习惯取+2.50m。

港区陆域处丘陵区,山势走向NW,山体呈浑圆状,区内沟谷发育,基岩裸露;海底地形平坦,向ES倾斜。地层构造复杂,属第四系地层,层位不稳定、

分布不规则,主要由淤泥、淤泥质亚粘土、粘土、亚粘土、粉细砂混砾石、卵石混砾石等构成。基岩为石灰岩、泥灰岩和页岩,石灰岩为弱风化,泥灰岩、页岩为中等到强风化。岩面起伏变化较大,埋藏标高为-4.1~22.89m。港区水域各土层分布情况为:-91m以上为淤泥、淤泥质亚粘土,-14.8m以上为粘土、粉细砂混砾石等。

港区内有三条NNE向断裂,但不属于金州断裂,为小规模断裂,延伸不远,属不发震斯裂,本区地震基本烈度为八度,设计中考虑了抗震设防。

由上述可知,红土堆子湾风浪小;地处丘陵,不占良田;湾内无天然河流入海,泥沙淤积现象不显著,按自然地貌沉积速度推算,海湾沉积速率为0.3~0.5毫米/年;潮流流速小;气候温和,湾内不结冻,常年可以装卸作业;水深适宜,航道可与大港航道相接,具有建设深水泊位的良好天然条件。

三、码头设计

1、码头等级

由码头前沿水深较大且码头货物堆积能力较大,初定其等级中型码头。

2、码头地面高程

码头前沿高程,按有掩护港口大潮时不被淹没,并尽量减少回填土石方量为原则,则设计高水位加超高值确定为+5.20m。

3、港区平面布置

港区陆域以进港道路的海堤与岸公路相接。进口煤码头、甲一码头为突堤式。甲二码头为顺岸式,并与甲一码头相连,港池宽度320m。工作船码头和出口煤码头布置在进口煤码头与甲二码头之间的小港池内。防波堤布置在甲一码头端部。甲一码头外侧是一突堤护岸,其与防波堤相接。进口煤码头根部外侧为二突堤护岸,通过堆场护岸与海堤相连。考虑到远期发展,填平小港池与甲二码头相连,可开拓一个3万吨级泊位,进口煤码头外侧系2万吨级泊位。

陆域为生产和生产辅助建筑物区。

港区总平面布置详见图2。

4、工艺流程

(1)进口煤码头:

自卸船(悬臂皮带机)→前沿漏斗→卸船皮带机系统→堆料机→堆场。

(2)甲二码头

采用拖、铲、吊方式。前方用门机或船机进行装卸作业,水平搬运作业采用拖头、平板车或铲车,库场作业配备流动起重机或铲车。其流程为:船→门机或船机→平板车或铲车→堆场或仓库。

甲二码头配5吨门机两台。

5、水工结构的选择

1)防波堤

本区防波堤处地质条件较好,其土层自上而下为淤泥质亚粘土、碎石及角砾、亚粘土、石灰岩。防波堤座落在碎石及角砾层上,地基承载力、沉降和整体稳定完全可以满足要求。

大连地区石料丰富,主要是石灰石,石质好。交通部一船局三公司在盐岛有护面块体(扭工字块)予制厂,能满足工程需要。除此之外,老港的大港区、渔港等处防波堤均为斜坡式。为此,我们经过方案比选后采用抛石斜坡式。

斜坡式防波堤具有结构简单,施工方便,对地基要求不高,可就地取材,消能性好,损坏后易修复等优点。总体建设规模见表—1

表—1 水工结构建设规模

2)护岸

一、二突堤外侧为护岸,实际起防波堤作用,因此,按防波堤设计。其他护岸工程,由于所受风浪较小,按一般护岸设计。各护岸均采用斜坡式结构。

3)码头结构

港区各码头处地质分布情况如前所述,卵石混砾石层以上各层土质,经计算均不满足承载力及整体稳定的要求,其持力层应为基岩或上的卵石混砾石层。该层标高一般在-9~-15m,海底原地面标高一般在-6m左右,而各码头前沿海底标高分别为:进口煤码头-10.1m,甲一、甲二码头为-11.5m。因复盖层较薄,该区地质条件适宜建重力式结构。

港区设有防波堤,港内波浪很小,重力式直立岸壁不致于产生过大的波浪反射作用而影响港内的泊稳条件。

该地区砂、石料充足,回填料还可采用后方陆域开山石。同时,该地区历来所建码头均为重力式。为此,本港区码头采用重力式结构。

在重力式结构中主要选择沉箱与方块,沉箱较方块经济,整体性好,抗震性能强,同时,承担水工结构施工任务的交通部一航局三公司地处大连,专业齐全,技术力量雄厚,施工经验丰富,甘井子沉箱予制厂有几十年的历史,并新建有2000吨级方型沉箱预制台座,采用预制大型方沉箱结构,可保证施工进度。

综上所述,码头采用重力式沉箱结构。

甲一、甲二码头,其上有门机作业,后方需建堆场、仓库、为此采用沉箱岸壁式。进口煤码头为皮带机运输,荷载较小且单一,为节省材料及投资,采用墩式栈桥沉箱结构。该码头虽然受北向小风区波浪影响,但吹程短,波浪小,完全满足泊稳条件,不影响作业。

四、水工结构设计

1、基槽设计

本码头采用暗基床的设计形式,基槽底宽为22.95m,开挖深度为3.5m,边

坡坡度为1:1.4,基槽前底边线距墙前趾为5.5m,后底边线距后趾为5.25m。

2、基床设计

本码头基床采用抛石,基床底宽为22.95m,顶宽为19.2m(外肩宽为2.5m,内肩宽为2m),高度为3.5m,两侧的斜坡坡度均为1:1.5。基床采用抛石,抛石仍为10~100公斤级。

3、沉箱设计

甲二码头结构为沉箱式,材料为钢筋混凝土,其断面形状为矩形。沉箱长度为20m,底宽为12.2m,高度为14m。沉箱的边壁厚度设为0.35m,底板厚度为0.5m。箱体内设有纵横隔墙,厚度为0.2m,隔墙间距纵向为4.7m,横向为3.17m。隔墙采用双面配筋,箱顶嵌入胸墙0.5m。沉箱间采用平接的方式,沉箱内一般抛填10~100公斤块石。

3、胸墙设计

沉箱上部为现浇混凝土胸墙,顶宽为2.5m,底宽为5.5m。沉箱或方块背后填10~100公斤块石减载棱体,倒滤层为片石和混合料,其后回填开山石。

4、墙后回填

采用10~100公斤级块石回填,抛填棱体的断面形式为锯齿形。为了防止墙后回填土的流失,抛石棱体的顶面和坡面设置倒滤层。在抛石棱体的顶面和坡面先铺设一层0.3~0.5m厚的二片石,并加以整平,然后在其上安设倒滤层。片石的坡度为1:1,混合料的坡面为1:1.25,开山石坡度为1:1.5。

四、码头作用荷载

1、自重力

码头建筑物的自重力包括构件的自重力和其上的填料自重力,均按体积乘重度计算,水下部分为体积乘浮重度。取墙体后地下水位为水与水下的分界。

沉箱构件由钢筋混凝土建造而成,其重度作为24.5kN/m3;胸墙采用现浇混凝土形式,其重度为24kN/m3;填料为10~100kg级抛石,其重度为18kN/m3。计算见表—2。

表—2 自重力计算

沉箱码头计算书

任务要求: 码头设计高水位12米,低水位7.4米,设计船型20000吨,波高小于1米,地面堆货20kpa ,Mh —16—30门座式起重机,地基承载力不足,须抛石基床。 一.拟定码头结构型式和尺寸 1. 拟定沉箱尺寸: 船舶吨级为20000吨,查规得相应的船型参数: 设计船型 总长 (m ) 型宽 (m ) 满载吃水 (m ) 183 27.6 10.5 即吃水为10.5米。 其自然资料不足,故此码头的前沿水深近似估算为: 1.1510.51 2.1D kT m ==?=, 设计低水位7.4米,则底高程:7.412.1 4.7m -=-,因此定底高程-5.1m 处。由于沉箱定 高程即为胸墙的底高程,此处胸墙为现浇钢筋混凝土结构,要求满足施工水位高于设计低水位,因此沉箱高度要高于码头前沿水深12.1m 。 综上,选择沉箱尺寸为: 1310.214l b h m m m ??=??。 下图为沉箱的尺寸图:

2.拟定胸墙尺寸: 如图,胸墙的顶宽由构造确定,一般不小于0.8m,对于停靠小型河船舶的码头不小于0.5m。此处设计胸墙的顶宽为 1.0m。设其底宽为5.5m,检验其滑动和倾覆稳定性要否满足要求:(由于此处现浇胸墙部分钢筋直接由沉箱顶部插入,可认为其抗滑稳定性满足要求,只需验算其抗倾稳定性) 设计高水位时胸墙有效重力小于设计低水位时,对于胸墙的整体抗倾不利,故考虑设计

高水位时的抗倾稳定。 沉箱为现浇钢筋混凝土,其重度在水上为3 23.5/kN m ,水下为3 13.5/kN m ,则在设计高水位时沉箱的自重为: ()][()5.511 1.51 1 1.5 1.5 5.5123.5 3.11 1.5 5.51 3.113.5 2 4.6 4.[{]62 }G -=?+???-?+?+?+-???()则 227.83G kN =。 自重G 对O 点求矩: G 77.10.533.4967 5.510.47922/3 5.51/3=733.56M kN m =?+?-??+()() 。 考虑到有门机在前沿工作平台工作时,胸墙的水平土压力最大,此处门机荷载折算为线性荷 载为: 25010 178.5714 q kPa ?== 。 (此处近似用朗肯土压力进行验算)朗肯主动土压力系数: 224545350.()7)(=2Ka tan tan ?=-=-。 则其土压力分布如上图: 如上图,其各点的土压力强度为: ()()()()()01112=0.27178.5748.21; 10.2718 1.5178.5755.5; 120.2718 1.59.5 3.1178.5763.46. a b P Ka h q kPa P Ka h q kPa P Ka h h q kPa γγγγ+=?==+=??+==++=??+?+= 则其土压力为: ()()0.5 1.548.2155.50.5 3.155.563.46262.17E KN =??++??+=。 作用点至墙底的距离为: 221148.21 4.6 2.37.29 3.10.57.96 3.10.50.57.29 1.5 3.11 (())3=2.203y E m = ??+??+???+???+ 。则土压力对墙前O 点的弯矩值为: 262.17 2.2576.77M KN m =?=。 综上:G =733.56576.77M kN m M KN m >= ,即说明在高水位时胸墙能保持抗倾稳定。 即胸墙的尺寸为:顶宽为1.0m ,底宽为5.5m ,高为4.6m 。 则码头的结构形式及尺寸如图:

高桩码头毕业设计

本科毕业设计高桩码头结构

第1章设计依据及条件 1.1 设计依据 《港口工程地基规范》JTS 147-1-2010 《港口工程制图标准》JTJ 206-96 《高桩码头设计与施工规范》JTS 167-1-2010 《河港总体设计规范》JTJ 212-2006 《水运工程混凝土结构设计规范》JTS 151-2011 1.2 吞吐量与设计船型 1.2.1 吞吐量 根据港区功能、分货类吞吐量预测结果,到2020年本工程的设计吞吐量为460万吨,其中出口为285万吨,进口为175万吨。吞吐量见表1-6。 表1.1 吞吐量安排表 1.2.2 设计船型 设计代表船型的选择,首先必须考虑货物的货种、流量、流向及船舶的现有情况,其次要考虑航道、水文、波浪、进出港航道条件,同时还要考虑船舶的营运经济性等因素。根据本项目所涉及的货种,本工程的设计船型为杂货船、散货船。 根据对枣庄港滕州港区以及京杭运河枣庄段现有通行船舶情况的调查,船型标准主要按交通运输部《京杭运河运输船舶标准船型主尺度系列》有关规定,综合考虑货种、货物批量、货源稳定性、运距及航道的通达性等方面的因素,规划采用多种混合设计船型。

表1.2 设计船型尺度表 1.3 自然条件 1.3.1 地理位置 枣庄市位于山东省南部,泰沂山区的西南边缘,地跨东经116°48′30″至117°49′24″,北纬34°27′48″至35°19′12″之间。东与临沂市的苍山县接壤。南与江苏省的铜山县、邳州市为邻,西濒独山湖、昭阳湖、微山湖,北与济宁市的邹城毗连。 本工程位于枣庄市滕州市西岗镇,距离柴里矿区及其铁路专用线较近,可利用专用铁路线与柴里矿区铁路专用线相连接,交通便利。 1.3.2 气象 (1)气温 多年平均气温13.2 ℃~14.2℃ 年最高气温41.4℃ 年最低气温-21.8℃ 最热月平均温度26.9℃ 最冷月平均温度-1.8℃ (2)降水

东南大学港口规划布置课程设计

《港口规划与布置》课程设计计算说明书 交通学院港航系 二○一三年八月

目录 1设计基础资料 (3) 2 1.1 港口状况及发展规 划 (3) 3 1.2 设计船 型 (3) 4 1.3 装卸工艺及装卸能 力 (3) 5 1.4 港处自然条 件 (3) 6 1.5 施工能

力 (3) 7 1.6 主要投资项目单 价 (4) 8 1.7 其他经济参数假 设 (4) 9港口规模 (5) 9.1件杂货码头最优泊位 数······························ ······························· (6) 9.2散货码头最优泊位 数······························ ·······························

(6) 9.3泊位年通过能力验 算······························ ······························· (6) 10港口总体布置 (8) 10.1港口水域布 置······························ ······························· (8) 10.1.1码头布 置···························· ····························· (8) 10.1.1.1码头顶高 程·························· ··························· (8) 10.1.1.2码头前沿水深(底高

沉箱吊装计算书

中交第一航务工程局有限公司 沉箱吊装受力计算书 工程名称:中委合资广东石化2000吨/年重油加工工程产品码头项目部 计算内容:沉箱吊装 审核:校核:计算:

1、沉箱重心计算 图1-1沉箱断面图 图1-2沉箱平面图 表1-2沉箱材料和体积矩计算表

沉箱重量:M=ρV=2.5×198.3=495.75t 沉箱重心:Xc= 1258.95/198.3=6.35m Yc =1110.09/198.3=5.60m 2、沉箱吊装计算 1)主钢丝绳受力计算 沉箱受力简化入图: 2250 2450 F1 F2 G 图1-3隔墙受力简化图 起吊后方块处于平衡状态, 根据受力平衡可得出:F 1+F 2=1.3G ,1.3为动力荷载系数,G=4850KN.............① 根据力矩平衡可得出: 设前沿每根钢丝绳拉力为F 前,后沿每根拉力为F 后,根据力矩平衡得 2.25F 1=2.45F 2...............................................② 解由①、②式得 F 1=3290KN ;F 2=3015KN 根据吊装采用4点吊按3点吊计算可以得出单根销子单侧受力: F 前=F 1/3=1097KN ;F 后=F 2/3=1005KN 因前侧吊孔受力较大,且前后墙所用钢丝绳用同一行型号,故只对前墙钢丝绳进行验算。 钢丝绳安全系数取5,采用公称抗拉强度为1770MPa 的6×37钢丝绳。 五金手册得公称抗拉强度为1770MPa 的6×37纤维芯钢丝绳直径100mm 的在5倍安全系数下容许拉力为5840KN ,满足要求。 2)销子受力计算 销子采用Q345直径210mm 的圆钢。

《港航工程与规划》课程设计

《港航工程与规划》课程设计 【摘要】建设本集装箱码头工程,符合国务院关于《长江三角洲、珠江三角洲、渤海湾三区域沿海港口建设规划(2004年-2010年)》,是适应港口集装箱吞吐量快速增长、提高港口国际竞争力、促进区域经济协调发展的需要,是建设上海国际航运中心、尽快形成我国合理集装箱运输体系和适应集装箱船舶大型化发展的需要,是适应长江三角洲地区城市一体化发展趋势的要求。 【关键字】集装箱;码头;布局;规划; 课程设计要求:通过分析本案例中集装箱码头工程的自然条件和国内外集装箱码头建设情况及发展趋势,对工程总平面布置进行优化研究,力图把集装箱码头工程设计成高效、系统最优的高品质岛屿式的国际一流港口。 一、总体指导思想 本集装箱码头工程平面布置在遵循紧凑合理、环保、车流和工艺流程通畅等原则的前提下,根据本工程建设场区地形、地物的具体情况,应力求最大程度上保留工程区北侧、东侧既有民用建筑、码头和水利设施,减少动迁量,降低工程建设投资。因此,平面布置考虑对应于码头的布置将陆域布置在排水河以南(并预留其拓宽的需要)、南侧山体以北、规划环岛公路以西地域。 在前述码头、陆域大体布置的前提下,综合考虑港区吞吐量需求、公路运输及其发展需要等因素,提出总平面布置方案如下: 在经济合理的前提下,结合工程区近岸水深条件,将码头尽量布置在较外海水深处,减小两端泊位受湾口两侧岬角处复杂的地形和水流的影响,减小水下挖泥及挖泥对岬角水域环境的影响,减小营运期的码头水深维护;陆域集装箱大门分开布置,减小港区进出口车流的相互影响,提高港区今后泊位分码头公司独立经营管理的适应性。

根据测流资料,5个集装箱泊位顺岸连续布置在海湾-18m等深线附近,距离湾顶既有岸堤约530m,码头前沿线走向为N150°30′,岸线总长1774m,由北向南布置3个70000DWT和2个100000DWT泊位;船舶回旋水域布置在泊位的正前方,直径为870m,泊位区和港池水域设计底标高均为-17.0m,泊位区只有南端局部水深稍浅,疏浚工程量约0.5万m3;码头拟采用高桩梁板结构型式,码头面标高为7.5m,码头和后方陆域以引桥相通。码头平台(前沿作业)宽度为55m,采用30m跨距的岸桥装卸作业,岸桥后轨后侧为21.5m宽的集装箱船舶舱盖板堆放区。工作船码头及其场区(码头建设期兼作施工用地)拟改造北侧现有的客货码头区,改造后工作船码头总长200m。 根据规划和海湾口地形、水深等条件,综合考虑引桥、护岸的建设及形成陆域等经济因素,陆域布置北起北侧排水河南至南侧山体、东起规划环岛公路西至既有大堤海侧-2~-5m水深附近拟建的大堤。本工程东西向陆域纵深约960~1100m,陆域南侧需要进行部分开山形成较为规整的堆场陆域边界,陆域南北长约2072m,项目红线占地总面积约243万m2(含北侧拟改造的既有码头区,而不含码头前沿和引桥面积,下同)。陆域堆场和码头以引桥相通,引桥与码头和陆域均为正交相连,长度均为182m。本工程陆域范围内大都为盐田、农田或围塘,需要由吹填海砂和南侧开山回填形成,陆域回填总量约790万m3。陆域布置沿纵深方向大体分为两大区块,较前方588.4m范围布置为堆场堆箱区块,平行于码头方向以道路分隔为7个箱区块,后方区块主要布置为辅助生产、生活区及一些堆箱区。前方堆箱区布置了17排重箱箱区和2~3排空箱箱区。结合集装箱大门分开布置的方式及其位置(见下一段),后方陆域区块大门以内布置了停车场、集装箱调箱门区、公路拆装箱库、部分空箱和修箱、机修、污水处理等辅助生产建筑物,在最南侧山坳处布置了特殊品箱区。本工程堆场重箱区本阶段考虑采用23.47m跨距的轮胎式龙门起重机作业,空箱区采用空箱堆高机作业,特殊品箱区采用正面吊作业,堆场面积约111.5万m2,在重箱堆场内布置了4个前方变配电所。结合有利地形,在陆域西南角布置了大件箱区、#2场桥维修车间及其场地。 为使港区集疏运便捷、通畅,减小港区进出口车流的相互影响,拟将集装箱进口大门和出口大门分别正对堆场第2、5条纵向路布置在后方陆域区块内,大门外道路和环岛公路相接,进而通达跨海大桥。港外集疏运车辆行车路线为环岛公路、进口大门、港区送(取)箱、出口大门、环岛公路,整个行进车流为逆时针方向,与码头区装卸车流顺时针方向相协调。集装箱进口大门布置了12闸道(含2个超高车道),大门前留有约210×70m车辆等候进闸的缓冲停车段,车辆进入大门后停在港内停车场内(可停集装箱拖挂车110多辆)等候指令、进入堆场作业。出口大门布置闸道数为9道,在出口大门南侧也布置了出港车辆缓冲停车场。堆场内道路宽为25m或30m,道路转弯半径均为18m,呈环网布置。

大型桁架模板受力计算(版)

中交第一航务工程局第五工程有限公司 模板受力计算书 (胸墙模板) 单位工程:锦州港第二港池集装箱码头二期工程计算内容:胸墙模板计算 编制单位:主管:计算: 审批单位:主管:校核:

锦州港第二港池集装箱码头二期工程 胸墙模板计算书 一、设计依据 1.中交第一航务工程勘察设计院图纸 2.《水运工程质量检验标准》JTS257-2008 3.《水运工程混凝土施工规范》JTJ268-96 4. 《组合钢模板技术规范》(GB50214-2001) 5. 《组合钢模板施工手册》 6. 《建筑施工计算手册》 7. 《港口工程模板参考图集》 二、设计说明 1、模板说明 在胸墙各片模板中,1#模板位于码头前沿侧,浇筑胸墙高度为3.15m,承受的侧压力最大,同时胸墙外伸部分的重量也由三角托架来承受,因此选取1#模板来进行计算。 1#模板大小尺寸为17.9m(长)×3.15m(高)。采用横连杆、竖桁架结构形式大型钢模板 面板结构采用安装公司统一的定型模板,板面为5mm钢板制作,背后为50×5竖肋。 内外横连杆采用单[10制作,间距为75cm; 桁架宽度为650cm,最大水平间距75cm,上弦杆采用背扣双[6.3,下弦杆为双∠50×50×5,腹杆为方管50×5。 2、计算项目 本模板计算的项目 ⑴模板面板及小肋 ⑵模板横连杆的验算。 ⑶模板竖桁架的验算。 ⑷模板支立的各杆件的验算。

模板计算 1、混凝土侧压力计算 混凝土对模板的最大侧压力: Pmax = 8K S +24K t V 1/2=8×2.0+24×1.33×0.57? =40.1kN/m 2 式中: Pmax ——混凝土对模板的最大侧压力 Ks ——外加剂影响系数,取2.0 Kt ——温度校正系数 10℃时取Kt =1.33 V ——混凝土浇筑速度50m 3 /h ,取0.57m/h 砼坍落度取100mm ==倾倒侧P P P max 40.1+6×1.4=48.5 kN/m 2取50KN/ m 2 其中倾倒P 为倾倒砼所产生的水平动力荷载,取6kN/㎡×1.4=8.4kN/㎡。 2、板面和小肋验算 ⑴板面强度验算 取1mm 宽板条作为计算单元,计算单元均布荷载 q=0.05×1=0.05 N/mm q 5mm 钢板参数:I=bh 3/12=300×5×5×5/12=3125mm 4 ω= bh 2/6=300×5×5/6=1250mm 3 q=0.05×300=15 N/mm σ=M/ω=0.078 ql 2/ω=0.078×15×3002/1250=85 N/mm 2<[σ]=215 N/mm 2 f max =K f ×Fl 4 /B 0=0.00247×0.05×3004 /2358059=0.43mm <300/500=0.6mm , 钢板满足要求 其中K f 为挠度计算系数,取0.00247 B 0为板的刚度,B0=Eh 3x /12(1-γ2)=2.06×105×53/12(1-0.32)=2358059 γ钢板的泊松系数,取0.3 h 为钢板厚度,h=5mm

港口航道与海岸工程开题报告

毕业设计(论文)开题报告 课题名称:黄田港新建两万吨煤炭泊位工程--高桩方案学院:船舶与建筑工程学院 专业:港口航道与海岸工程 年级: A09港航 指导教师:霍忠 学生姓名:蔡浩 学号: 09030413 起迄日期: 2012.12——2013.01 2013年1月5

毕业论文(设计)开题报告 一.课题研究的目的 本工程为黄田港新建两万吨煤炭泊位工程,黄田港地处江苏省江阴市。江阴地处江尾海头,境内35公里长江深水岸线被专家称为黄金水道。随着江阴市的经济发展,黄田港,需要扩大规模,新建两万吨煤炭泊位。 二.课题依据 此设计的依据: (1)所学教材:港口水工建筑物,画法几何,钢筋混凝土结构设计,材料力学,结构力学,土力学,地基处理等; (2)国家现行有关规范和标准:混凝土结构设计规范。 三.意义 通过实际工程项目进行研究设计,理论联系实际,通过对项目的设计研究,进一步运用和理解学习到的知识,更熟练的掌握所学的知识。为以后在实际工作中积累相应的知识和经验。 四.国内外研究现状、水平和发展趋势: 1、高桩码头的发展概况 高桩码头经历了承台式、桁架式、无梁板式和梁板式四个阶段。 承台式结构是一种较古老的高桩结构型式,码头桩台为现浇混凝土或钢筋馄凝土结构,这种结构具有良好的整体性和耐久性,但现浇混凝土工作量大,要求的施工水位低。桩多而密,桩基施工较为麻烦,造价较高,并只在岸坡地质条件好、水位差较大、地面荷载较集中的情况下才考虑这种结构型式。 桁架式高桩码头整体性好;刚度大。但由于上部结构高度过大,当水位较大时需要多层系缆,目前主要适用于水位差较大的需多层系缆的内河港口。 无梁板式高桩码头上部结构简单,施工迅速,造价也低。但由于面板为双向受力构件位置要求高,给靠船构件的设计增加了困难,仅适用于水位差不大,集中荷载较小的中小型码头。 梁板式结构主要由面板、纵梁、横梁、桩帽和靠船构件组成。比较节省材料;装配程度高,结构高度比桁架式小,施工速度快;横梁位置低,靠船构件的悬臂长度比无梁板式

港口码头的沉箱及预制块体施工技术研究

港口码头的沉箱及预制块体施工技术研究 发表时间:2018-11-02T14:48:28.667Z 来源:《建筑学研究前沿》2018年第20期作者:王文 [导读] 本文分析港口码头结构特点,重点研究港口码头的沉箱及预制块体施工技术。 中交四航局第二工程有限公司广东广州 050000 摘要:经济全球化促进了经济的飞速发展,尤其是海洋运输行业,因为海洋运输行业的飞速发展,对港口码头的建设也相应有了更高的建设要求,作为海洋行业的装卸平台,港口码头在海洋运输行业中,有着十分重要的地位。正是因为码头具有普通建筑所不具备的特殊功能,因此,在码头建设的过程中,和普通建设工程具有着相当大的差别,码头建筑具有更为特殊的技术要求标准以及建筑工程质量要求,在码头建筑施工的过程中,因为施工环境相对特殊,在港口码头施工的过程中,不仅仅需要特别注意施工技术工艺水平的发挥,还需要时刻关注建筑细节,确保港口码头的施工质量。对此,本文分析港口码头结构特点,重点研究港口码头的沉箱及预制块体施工技术。 关键词:港口码头;沉箱施工;预制块体施工 1港口码头结构特点分析 港口码头作为河运的重要载体,做好港口码头的建设应当严把质量关。港口码头的结构特点决定了其有一部分是分布在水下的,而在水下部分的建设过程中会受到复杂水流等因素的影响,致使港口码头建设中所面临的不确定因素大为增加。港口码头的结构特点决定了港口码头建设过程中所面临着施工难度大、施工标准要求高等的特点。在港口码头的建设过程中根据其特点可以将其分为主体和附属两大结构部分,而主体结构部分在一些特殊性质的码头中又分为码头上、下结构两大部分。在港口码头的施工过程中需要根据各部结构特点及施工中所面临的问题采取针对性的措施,提高港口码头的建设质量。 2港口码头的沉箱施工技术要点 2.1基床抛石施工 (1)安设导标,进行准确定位。港口码头施工时,需布设导标和定位船,重点把控抛石、夯实、补夯等环节的施工质量。导标设立有两点:基床中心导标和顶面坡肩边导标,抛石处需布设定位船,确定定位船的位置处无回淤情况,或控制回淤厚度≤30cm。(2)试抛:基床抛石施工前期需开展试抛工作,并合理把控块石漂流和水深、水流速等因素的关系,结合施工场地地质环境条件和水流情况准确定位抛石船。抛石施工时,需实时进行探水、对标工作,并认真记录抛石过程,结合实际场地情况选取最佳抛石方法,粗抛、细抛或两者结合等,抛石原则是宁低勿高,需预留10%夯沉量。抛石作业完成后,需开展平面图和断面图的绘制工作。(3)基床夯实:基床夯实前期,需由专业潜水员完成基床粗平调整,控制误差为±15cm,基床粗平后可开展夯实工作。夯实过程中,需结合基床厚度以分层分段方式进行基床夯实,控制每层厚度基本一致,测量人员需实时做好对标、探水工作,并于打夯平面准确绘制打夯点。基床夯实施工方式是纵横向均邻接压半锤,夯实次数为2遍。为避免因倒锤发生而引起基床局部漏夯、隆起等问题,夯实后需开展反复检测工作,借助水准仪进行夯实测量,控制平均沉降量≤30mm,若沉降量>30mm,需再次进行夯实,直至满足设计要求。(4)补夯:待完成夯实作业后,当补抛块石面积>1/3,构件底面积或连续面积>30m2,且块石厚度>0.5m时,需进行补夯作业。 2.2沉箱施工要点 2.2.1沉箱安设定位 沉箱在安设时,需借助全站仪和GPS完成沉箱标高的坐标的准确定位,结合沉箱的吃水深度选取最佳潮位,利用施工船舶的顶推和卷扬机完成沉箱的运送,准确移位到安设位置,并于已安设沉箱和待安设沉箱的接缝位置悬挂4个手动葫芦,按照缝隙需求适当修正沉箱间的木方结构。 2.2.2手拉葫芦的安放 本工程在安装沉箱时,使用了4个起重量为10t的手拉护理,各个手拉葫芦钩之间的可以调整的距离为0.96~3.96m。为了可以更好地对沉箱峰宽和前沿线距离进行控制,本工程设计使用钢丝绳对临近沉箱的手拉葫芦和吊鼻进行连接,然后由安装人员手动对4个手拉葫芦钩间距离进行调整,最佳间隔距离应保持在2.5m。 2.2.3沉箱就位 因为工程施工过程中沉箱的纵向高差会对顶面缝宽造成影响。所以要根据实际高差合理的新选择闸板,并控制好缝宽尺寸。本工程在施工时,使用经纬仪来对沉箱前沿线进行控制,并对手拉葫芦的间隔距离进行手动调整,保证沉箱可以前后进行移动,直至沉箱可以安放到确定位置。 2.2.4沉箱的注水施工 待沉箱运送到指定位置后,完成基本准备后,开启水泵或加水阀,对沉箱进行注水而使其平衡下沉。整个下沉过程中,需实时对沉箱位置、水平度进行测量、校验、调整,当沉箱底部距离基床面达到0.2m时,暂停注水不间断测量校核、调整沉箱位置及水平度,至沉箱底与基床面约0.2m时,暂停注水,利用全站仪和GPS完成沉箱标高和坐标的准确定位,确保其满足设计要求后,继续注水直至沉箱完全坐落于基床面上,待测量复核全部达标后,关闭水泵或加水阀。 2.2.5沉箱的回填施工 作为沉箱施工的最后一步,沉箱回填主要是为了保证沉箱的稳定性。条件允许时,沉箱安设后暂停1~2个低潮位,再次测量校验沉箱坐标和标高,达标后开始沉箱回填,要控制沉箱回填砂的均匀性,利用水冲法使箱内振冲达中密状态。 3港口码头的预制块体施工技术要点 安装预制块体也是一项重要的工艺操作,主要包括以下几方面内容: (1)测量安装。确定栅栏板、扭王字块安装基线,并要参照设计安装具体位置与陆上控制点进行安装,控制安装位置与高程可使用全站仪,为了使安装作业更加高效、准确进行,取得更显著的安装效果,可以在低平潮时进行,以减少外界环境对安装造成的干扰。 (2)安装栅栏板。栅栏板的安装要在垫层块石抛埋并成型以后进行,可以使用50t的汽车吊陆上安装,对于A、B型的栅栏板,需要由潜水员的配合完成吊装作业,然后对水下栅栏板位置进行调整,可以避免吊装偏差过大。同时,配合使用25t的轮胎吊与平板车将栅栏运输

xxx码头毕业设计开题报告

xxxxxxx 2014届毕业生毕业设计(论文)题目:xx港5万吨级高桩码头设计 院(系)别土木工程学院 专业港航专业 班级港口 学号 xxxxxxxxxxx 姓名 xxxxxx 指导教师 xxxxxxx 二○一四年六月

xxxxxxxxx 2014届毕业生毕业设计(论文) 任务书 题目:xxxxxxxxxx5万吨级高桩码头设计 专业:港口航道与海岸工程 班级:xxxxxxxxx 学号:xxxxxxxxx 姓名:xxxxxxx 指导教师:xxxxxxx 完成日期:2014年xx 月xxxxx 日

设计任务书 设计任务与内容 1、根据设计的原则标准,对港口的进行总体布置,包括码头的选址,航道设计及码头整体尺寸的确定等; 2、根据地址情况、水文条件、使用要求、确定码头的结构形式; 3、进行码头结构方案比选。选择高桩板梁式码头,进行结构内力计算。包括完成码头的结构的布置(确定桩数、桩长、桩径、配筋并进行相关计算),完成结构配筋及必要的验算,完成计算书; 4、进行码头相关图纸的绘制。 设计完成后要提交的材料 1、计算说明部分: 1)设计资料、自然条件 2)黄骅港一期5万吨级高桩码头平面布置 3)码头结构方案设计 4)码头结构基本力学计算 5)码头结构的桩基设计 6)码头结构的桩基施工工艺要点 2、图纸部分: 1)黄骅港一期5万吨级高桩码头总平面布置图 2)黄骅港一期5万吨级高桩码头结构立面图 3)黄骅港一期5万吨级高桩码头结构断面图 4)黄骅港一期5万吨级高桩码头纵梁配筋详图 5)黄骅港一期5万吨级高桩码头横梁配筋详图 6)黄骅港一期5万吨级高桩码头结构桩基配筋详图 专业负责人签章: 年月日 发题时间:2014年月日完成时间:2014年月日

东南大学港口规划布置课程设计

东南大学港口规划布置课 程设计 This model paper was revised by the Standardization Office on December 10, 2020

《港口规划与布置》课程设计计算说明书 交通学院港航系 二○一三年八月

目录 1设计基础资 料 (3) 2港口状况及发展规 划 (3) 3设计船 型 (3) 4装卸工艺及装卸能 力 (3) 5港处自然条 件 (3)

6施工能 力 (3) 7主要投资项目单 价 (4) 8其他经济参数假 设 (4) 9港口规 模 (5) 9.1件杂货码头最优泊位 数······························ ······························· (6)

9.2散货码头最优泊位 数······························ ······························· (6) 9.3泊位年通过能力验 算······························ ······························· (6) 10港口总体布 置 (8) 10.1港口水域布 置······························ ······························· (8) 10.1.1码头布 置···························· ····························· (8)

10.1.1.1码头顶高 程 (8) 10.1.1.2码头前沿水深(底高 程) (8) 10.1.1.3港池宽 度 (9) 10.1.1.4航道水深(底高程)和宽 度 (9) 10.1.1.5回旋水 域 (9)

高桩梁板式集装箱码头结构设计

高桩梁板式集装箱码头 结构设计

摘要 港口码头毕业设计主要以码头主要尺度确定、平面布置、结构选型、码头主要结构和构件的设计计算和码头整体稳定性验算为主要内容。通过查阅相关设计手册、书籍、系列规范和参考已经修建工程设计资料进行结构选型、码头型式确定。工程依据资料选取了高桩码头为设计方向。高桩码头不仅符合本次设计的工程条件,而且是常见的码头结构型式,在长江流域多采用这种形式。同时,高桩码头对以后码头向深海方向发展研究有很多帮助。确定主要方向之后便进行工程设计,包括船舶作用力、面板计算、纵梁设计、横梁设计、桩基验算、靠船构件计算和码头整体稳定性计算等内容,其中部分内容运用相关软件如易工软件进行计算或验算。通过对码头主要构件的选型以及计算,以熟悉高桩码头结构设计和高桩码头优缺点,为以后工作、学习做扎实铺垫。此次设计顺利完成了设计任务,最后绘制了码头平面布置图、码头主要结构施工图、指定构件的配筋图。 关键字:高桩码头;纵梁;横向排架;大直径管桩

Abstract The engineering design of the No.5 dock of port mainly determines the major scale, layout, structure, selection, the design calculations of the main structure and components of port and the overall stability calculation . Through accessing to relevant design manuals, books, family norms and reference datas that has been constructed for structural engineering design , we can work out the proper type for the terminal. Projects were selected based on data for the design direction of high-pile wharf. High-pile pier is not only proper for the conditions of this design project, and is a common terminal structure type, in the Yangtze River area. Meanwhile, the high-pile pier can render a service in the filed of deep sea terminal in the future. After having determined the main direction of project design, we can calculate most parts including the ship force, panel calculation, longitudinal beam design, beam design, pile foundation checking, calculation and the terminal by ship components and the overall stability. Part of the calculation of content, we can make use of the work-related software such as Easy software for calculation or checking calculation. Through the selection and calculation of the main components of the terminal, we can become familiar with high-pile wharf and with high-pile wharf’ advan tages and disadvantages, as to make a foundation for future work and study.We succeed in finishing the design task, and finally draw the terminal floor plan, the main structure of terminal construction plans, specifying components of reinforcement plan. Keywords: High-pile pier; longeron; transverse; large diameter pile

港口及通航建筑物课程设计任务书

“港口航道工程学”课程设计指导书 某港口沉箱码头初步设计 指导教师张劲松田兴参 武汉大学 水利水电学院 2011年1月5日 一、设计目的和要求 本课程设计的目的,是通过对某市和尚岛港区沉箱码头部分水工结构的设计,

进一步掌握所学《港口航道工程学》这门课程的主要内容,并初步学会运用有关专业课、技术基础课的理论去解决实际工程问题,训练编写设计说明书、绘制港口水工建筑物图纸的能力和技巧,以及培养正确的设计思想,熟悉有关的设计规范等。 由于时间关系,本设计是在已有勘测规划及部分设计成果的基础上进行的。每个学生必须独立完成和提交所规定的设计成果。说明书应概念明确,简明扼要,计算成果应正确无误,图纸应规范。 二、设计内容 1、确定码头的等级; 2、确定码头的结构形式并拟定其断面尺寸; 3、确定码头的作用荷载; 4、对码头进行稳定性验算。 三、设计成果 1、设计说明书(包括计算部分)一份; 2、码头结构布置剖面图一张(3号图)。 四、设计资料 某市地处辽东半岛最南端,三面环海,气候温和,交通方便,是我国东北的一颗明珠,也是我国的重要港口和旅游城市,工业和旅游业十分发达。 但是,多年来该市一直处于缺煤少电状态,已严重影响了工业生产和人民生活,该市是围绕着老港口发展起来的城市,位于市中心的某些货场(如煤场)等已严重威胁着该市的安全。同时,由于国民经济的蓬勃发展,吞吐量的急骤增加,船舶的停泊时间长,造成政治、经济上不应有的影响和损失。 为缓和本地区能源供应紧张,解决该市缺煤少电状况,并使这些货物有专用装卸码头和库场,国家计委批准兴建和尚岛港区,并列入国家重点工程项目。 (一)概况 1、地理位置 和尚岛港区位于本市海湾北端的红土堆子湾。背靠市第四发电厂,与市经济开发区隔海相望,交通方便,有公路与该市至沈阳公路相接,铁路接东北干线,可达全国各地。港区距市内陆路25公里,水路8海里。 2、自然条件 该港区属海洋型气候,平均气温10.2℃,7~8月最高,一般为25?左右,极值达34.4?,1~2月最低,一般为-5~-10℃,极值达-21℃。

沉箱模板计算

沉箱模板计算 1、外模板设计资料 沉箱外侧模板长,高,模板采用大型钢模板,重约。面板采用5mm厚钢板,横肋采用[8,间距;竖肋为-6×80mm扁钢,间距;立围令采用[8,围令后为桁架结构,桁架宽,间距,桁架为双[8结构,上、下均设M22对穿螺栓。现对该模板刚度、强度进行验算,并选用合适的拉条。 2、模板侧压力计算 模板的侧向压力主要是由新浇筑的砼对模板产生的侧压力P1和倾倒砼时对模板产生的水平动力荷载P2两部分组成。依据《水运工程混凝土施工规范》 (JTS202-2011)规定,采用插入式振捣器时,砼侧压力为: P1=8K S+24K t V 1/2 式中P1 ——混凝土对模板的侧压力(KN/m2) K S ——外加剂影响修正系数,不掺加外加剂时选;掺缓凝外加剂时选 K t ——温度校正系数按下表取值 V ——混凝土浇筑速度m/h 砼侧压力除了和振捣方式有关外,同时还和砼自重、浇注速度、砼的温度、外加剂的应用、砼的下灰方式有关。 温度校正系数表 力,浇筑速度取h。 故P1=8×+24××2= KN/m2 倾倒混凝土产生的水平动力荷载 P2=m2 振捣混凝土产生的混凝土侧压力 P3=m2 由于浇筑混凝土时倾倒混凝土和振捣混凝土不可能同时发生,而振捣混凝土产生的作用力大。 故验算墙身模板强度的荷载设计值 P=+= KN/m2 故验算墙身模板刚度的荷载设计值 P′== KN/m2 3、面板计算

为保证砼的外观质量,根据使用要求,大片模板的面板计算应由刚度控制。 Q235钢的抗拉许用强度[f]=215N/mm 2,抗剪许用强度[f v ]=125N/mm 2。弹性模量E=×106kg/cm 2;许用挠度[f]=2mm 。 面板区格为420×420mm ,属于双向板,当/=420/420=1时,的弯距系数K 1=, 的弯距系数K 2=, 挠度系数为K 3=, 的弯矩系数K 4=, 的弯矩系数 K 5=,计算简图为三面固定,一面简支的最不利状况。 (1)、强度验算 取1mm 宽的板条作为计算单元,荷载为 =×1 = N/mm 支座弯矩 N ·mm N ·mm 面板的截面抵抗矩 mm 3 应力为 = /W== N/mm 2 215 N/mm 2 满足要求; 跨中弯矩 N ·mm N ·mm 钢板的泊松比=,故需换算 N ·mm N ·mm 应力为 = /W== N/mm 2 215 N/mm 2 满足要求; (2)、挠度验算 计算刚度和挠度用以下公式 3 0212(1) Eh B v =-

沉箱重力式码头课程教学设计计算书

目录 第一章设计资料 ------------------------------------- 3 第二章码头标准断面设计------------------------ 5 第三章沉箱设计 ------------------------------------- 11 第四章作用标准值分类及计算----------------- 15 第五章码头标准断面各项稳定性验算------- 44

第一章设计资料 (一)自然条件 1.潮位: 极端高水位:+6.5m;设计高水位:+5.3m;极端低水位:-1.1m; 设计低水位:+1.2m;施工水位:+2.5m。 2.波浪: 拟建码头所在水域有掩护,码头前波高小于1米(不考虑波浪力作用)。 3.气象条件: 码头所在地区常风主要为北向,其次为东南向;强风向(7级以上大风)主要为北~北北西向,其次为南南东~东南向。 4.地震资料: 本地的地震设计烈度为7度。 5.地形地质条件:

码头位置处海底地势平缓,底坡平均为1/200,海底标高为-4.0~-5.0m 。根据勘探资料,码头所在地的地址资料见图1。 图一 地质资料 (二) 码头前沿设计高程: 对于有掩护码头的顶标高,按照两种标准计算: 基本标准:码头顶标高=设计高水位+超高值(1.0~1.5m )=5.30+(1.0~1.5)=6.30~6.80m 复核标准:码头顶标高=极端高水位+超高值(0~0.5m )=6.50+(0~0.5)=6.50~7.00m (三) 码头结构安全等级及用途: 码头结构安全等级为二级,件杂货码头。 (四) 材料指标: 拟建码头所需部分材料及其重度、内摩擦角的标准值可按表1选用。

沉箱码头稳定验算和内力计算

码头稳定性验算 (一)作用效应组合 持久组合一:设计高水位(永久作用)+堆货门机(主导可变作用)+波谷压力(非主导可变作用) 持久组合二:设计高水位(永久作用)+波谷压力(主导可变作用)+堆货门机(非主导可变作用) 短暂组合:设计高水位(永久作用)+波峰压力(主导可变作用) 不考虑地震作用去1 (二)码头延基床顶面的抗滑稳定性验算 根据《重力式码头设计与施工规范》(JTJ290-98)第3.6.1规定 应考虑波浪作用,堆货土压力为主导可变时:按(JTJ290-98)中公式(3.6.1-4)计算。 01 ()()E H E qH P B G E V E qV u BU d E E P G E E P f γγγψγγγγψγγ++≤ +++ 应考虑波浪作用,波浪力为主导可变时: ()()f E P E G E P E qV E Bu u V E G d qH E B P H E ψγλγγ γψγγγ γ+++≤ ++1 o 短暂组合情况,按《防波堤设计与施工规范》(JTJ298-98)公式5.2.7计算 f P G P Bu u G B p )(0λλλλ-≤ 式中:o γ——结构重要系数,一般港口取1.0; E γ——土压力分项系数;取1.35 PW γ——剩余水压力分项系数;取1.05 PR γ——系缆力分项系数;1.40 ψ——作用效应组合系数,持久组合取0.7; V H E E 、——码头建筑物在计算面以上的填料、固定设备自重等永久作用所产生的总主动土压力的水平分力和竖向分力的标准值; W P ——作用在计算面以上的总剩余水压力标准值; RH P ——系缆力水平分力的标准值; qV qH E E 、——码头面上的可变作用在计算面上产生的总主动土压力的水平分力和竖向分力的标准值; RV P ——系缆力垂直分力的标准值; G γ——结构自重力的分项系数,取1.0;

上海港高桩梁板式集装箱码头结构设计与施工组织设计

上海港2号码头工程设计 The Engineering design of the No.2 dock of Shanghai port

摘要 上海港2号码头毕业设计主要以码头主要尺度确定、平面布置、结构选型、码头主要结构和构件的设计计算和码头整体稳定性验算为主要内容。通过查阅相关设计手册、书籍、系列规范和参考已经修建工程设计资料进行结构选型、码头型式确定。工程依据资料选取了高桩码头为设计方向。高桩码头不仅符合本次设计的工程条件,而且是常见的码头结构型式,在长江流域多采用这种形式。同时,高桩码头对以后码头向深海方向发展研究有很多帮助。确定主要方向之后便进行工程设计,包括船舶作用力、面板计算、纵梁设计、横梁设计、桩基验算、靠船构件计算和码头整体稳定性计算等内容,其中部分内容运用相关软件如易工软件进行计算或验算。通过对码头主要构件的选型以及计算,以熟悉高桩码头结构设计和高桩码头优缺点,为以后工作、学习做扎实铺垫。此次设计顺利完成了设计任务,最后绘制了码头平面布置图、码头主要结构施工图、指定构件的配筋图。 关键字:高桩码头;纵梁;横向排架;大直径管桩

Abstract The engineering design of the No.2 dock of shanghai port mainly determines the major scale, layout, structure, selection, the design calculations of the main structure and components of port and the overall stability calculation . Through accessing to relevant design manuals, books, family norms and reference datas that has been constructed for structural engineering design , we can work out the proper type for the terminal. Projects were selected based on data for the design direction of high-pile wharf. High-pile pier is not only proper for the conditions of this design project, and is a common terminal structure type, in the Yangtze River area. Meanwhile, the high-pile pier can render a service in the filed of deep sea terminal in the future. After having determined the main direction of project design, we can calculate most parts including the ship force, panel calculation, longitudinal beam design, beam design, pile foundation checking, calculation and the terminal by ship components and the overall stability. Part of the calculation of content, we can make use of the work-related software such as Easy software for calculation or checking calculation. Through the selection and calculation of the main components of the terminal, we can become familiar with high-pile wharf and with high-pile wharf’ advantages and disadvantages, as to make a foundation for future work and study.We succeed in finishing the design task, and finally draw the terminal floor plan, the main structure of terminal construction plans, specifying components of reinforcement plan. Keywords: High-pile pier; longeron; transverse; large diameter pile

相关主题
文本预览
相关文档 最新文档