当前位置:文档之家› 增深剂应用性能研究

增深剂应用性能研究

增深剂应用性能研究
增深剂应用性能研究

高性能混凝土配合比设计及路用性能研究

高性能混凝土配合比设计及路用性能研究 发表时间:2016-11-08T10:21:08.737Z 来源:《低碳地产》2016年7月第14期作者:胡兴琼[导读] 高性能混凝土在建筑工程中发挥不可替代的作用,也是使用最为广泛的建筑材料。 中交路桥华南工程有限公司广东佛山 528000 【摘要】高性能混凝土在建筑工程中发挥不可替代的作用,也是使用最为广泛的建筑材料。但是必须严格控制混凝土的配合比,才能真正实现高性能。本文从配合比设计和路用性能两个方面对路面高性能混凝土配合比设计进行研究,旨在优化混凝土的配合比设计参数,实现混凝土高耐久性,并兼顾工作性与强度的设计目标,提高混凝土路面性能,供参考。 【关键词】高性能混凝土;配合比;参数优化设计;试验设计近年来随着建设领域的大规模发展,混凝土材料的性能也日益提高。高性能混凝土是一种新型高技术混凝土 ,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,其高性能包括:良好的工作性能,稳定的力学性能,较高的体积稳定性和高耐久性,也因此得到了土木工程界的广泛应用及关注。鉴于科学合理的进行配合比设计是保证混凝土工作性、强度及后期耐久性的关键前提,因此,关于路用高性能混凝土配合比设计参数的研究具有很重要的价值。下面,笔者将结合试验研究,就高性能混凝土配合比优化设计展开探讨。 1 正交试验设计 高性能混凝土配合比设计的关键设计参数为:水胶比、矿掺比、浆集比、砂率、外加剂掺量。部分应用中为了提高抗折性能,在拌合物中掺加聚合物,如聚丙烯等。路面用混凝土的关键性能技术指标包括:抗折强度、抗压强度、抗冻性及抗渗性能等。目前施工现场多采用复合型高效减水剂,不同外加剂的成分及性能差异较大,针对单一品种外加剂的研究具有很大局限性,对施工实践的指导意义也不强。本文选取水胶比、矿掺比、浆体百分率及砂率进行正交试验设计,通过试验探寻配合比设计参数对路面用高性能混凝土抗折强度、抗折弹性模量、抗冻耐久性指数、氯离子扩散系数及抗渗性能的影响规律。其中,水胶比和矿掺比设计为5个水平,砂率和桨集比为6个水平,共进行49组试验(数据略)。关键配合比设计参数的取值范围如表1所示。 2 试验结果分析 本文采用SPSS软件,对各个设计参数与混凝土性能间的关系进行主效应分析,并进行方差齐性检验。具体分析结果如下: (1)根据试验结果,以氯离子扩散系数为因变量的主体间效应检验结果如表2所示。 不同配合比设计参数对DRCM的具体影响规律如图1~图4所示。

甜味剂的应用现状及发展前景

甜味剂的应用现状及发展前景 摘要: 甜味剂对世界的食品有着重要的影响,从1900年产量的8百万吨到1970年的7千万吨[10].本文介绍了目前国内外常用的甜味剂基本性质和应用情况,概述了符合人体健康的功能性甜味剂的特点和好处。阐述了功能性甜味剂既能够满足人们对甜食的偏爱又不会引起副作用,并能增强人体的免疫力,对肝病、糖尿病具有一定的辅助治疗作用。因此功能性甜味剂将成为市场主要甜味剂品种之一。 关键词: 甜味剂; 应用现状; 发展前景 Abstract : Sweetness is one the most important taste sensation for humans and for many animal species as well .There is scarcely any area of food habits today tha does not in some way invole the sweet taste.The importance of sweetness is reflected in the world production of sugar,which rose from 8 million tons in 1900 to 70 million tons in 1970[10] .No other agricultural product has show a similar increase in production during the same period.The sweetness of individual sweetnener is usually measured in model systems and compared to that of sucrose.Some sweetening agents and their main application and characteristic are introduced at home and abroad. There is contain Cane suger , Sodium soccharin , Sodium cyclamate, Aspartame, Trichlorosucrose, Stevioside, Acesulfame k and so on.Features and advantages of functional sweetening agents conforming with human heath are summarized. Functional sweeteningagent can satisfy people’favor to sweet , but can’t result in side effect. Functional sweetening agent can strengthen immuneto disease and have supplementary treatment for disease of liver and diabetes. So functional sweetening agent will be one ofmain sweetening agents. Key words : Sweetening agents; application; c urrent situation; prospect; 1 前言 甜味剂[2] 是指能赋于食品甜味的调味剂,他的使用可以追溯到史前蜂蜜的发现。科学研究已经表明,人类对甜味剂的需求是先天的, 而不是后天对环境要求的一种客观反应。甜味剂对食品、饮料风格的调整起关键作用。甜味剂对世界的食品有重要的影响,从1900年产量的8百万吨到1970年的7千万吨[10].随着人们对健康的要求越来越高对甜味剂的要求也越来越苛刻,希望甜味剂的能量尽可能低甚至能量值为零,口感好,价位比较合适。五、六十年代以前的近一个世纪, 食品工业中所用的甜味剂多半是蔗糖和来自石油化工产品的糖精。五、六十年代以后, 在美国、欧洲及日本等国相继出现了甜蜜素、二肽甜味剂、甜蛋白、乙酰磺胺酸钾以及阿力甜等甜味剂[7]。由于人们对低热量减肥食品的需求日益高涨, 使得高甜度甜味剂在毒性、生产方法及应用研究等方面继续深入, 人们已经开始对能产生甜味的分子结构进行研究, 以期发现新的超高甜度甜味剂。甜味剂的种类很多, 本文就一些常用和新型的甜味剂的特点和应用情况以及甜味剂的发展趋势作一概述。 2 国内外常使用的甜味剂 2. 1 蔗糖( Cane suger) 蔗糖是从植物中提取的天然甜味剂,是一种非还原性二糖,由α2D2吡喃葡萄糖基和β2D 呋喃果糖及经分子内糖苷键连接而成,蔗糖安全性高、价格低廉、味质好且符合人们传统的饮食习惯,将长期是最主要的甜味剂品种之一。但由于受耕地的限制,蔗糖的产量不

几种常用纠错码的性能分析及应用研究

目录 设计总说明 ............................................................... I Introduction ........................................................... III 1 绪论 (1) 2 纠错码的基本概念 (3) 2.1数字通信系统 (3) 2.1.1 数字通信系统的组成 (3) 2.1.2 信道模型 (4) 2.2差错控制系统和纠错码分类 (7) 2.2.1 差错控制系统的分类 (7) 2.2.2 纠错码的分类 (9) 3 线性分组码 (11) 3.1线性分组码的基本概念 (11) 3.2线性分组码的编码 (11) 3.2.1 生成矩阵 (11) 3.2.2 校验矩阵 (15) 3.2.3 编码的实现 (15) 3.3线性分组码的译码 (16) 3.3.1 线性分组码的纠检错能力 (17) 3.3.2 伴随式解码 (1) 4 循环码 (20) 4.1循环码的一般概念 (20) 4.1.1 循环码的定义 (20) 4.1.2 循环码的生成多项式 (20) 4.2循环码的编码 (20) 4.3循环码的译码 (22) 4.4 BCH码 (24) 4.4.1BCH的编码算法 (24)

4.4.2 BCH的译码算法 (25) 4.5 RS码 (26) 4.5.1 RS编码算法 (26) 4.5.2RS的译码 (26) 5 卷积码 (28) 5.1卷积码的表示 (28) 5.2卷积码的编码原理 (29) 5.3卷积码的译码 (29) 6 纠错码在移动通信中的应用 (32) 6.1移动通信的概述 (32) 6.2移动通信中的差错控制 (32) 6.2.1 移动通信中的差错控制 (32) 6.2.2 移动通信中常用的纠错方式 (33) 6.2.3 编码方法 (34) 6.3移动通信中纠错码的应用和发展 (34) 6.3.1 模拟移动通信系统中数字信令的BCH编码 (34) 6.3.2 GSM的FEC编码 (35) 6.3.3 DMA系统(IS-95)中的FEC编码 (35) 6.3.4.3G中的Turbo码 (36) 7 MATLAB简介及卷积码的仿真 (37) 7.1MATLAB (37) 7.2MATLAB在通信仿真中的应用 (37) 7.3卷积码的仿真 (38) 8 总结 (37) 参考文献................................................ 错误!未定义书签。 附录 (44) 致谢 (46)

增稠剂在化妆品中的应用

增稠剂在化妆品中的应用 1增稠剂分述能够作为增稠剂的物质很多,从相对分子质量看有低分子增 稠剂,也有高分子增稠剂;从功能团来看有电解质类、醇类、酰胺类、羧酸类 和酯类等等。下面按化妆品原料的分类方法对增稠剂进行分类,表l列出了目 前使用的增稠剂。1.1低分子增稠剂1.1.1无机盐类用无机盐来做增稠剂的体 系一般是表面活性剂水溶液体系,最常用的无机盐增稠剂是氯化钠,增稠效果 明显。表面活性剂在水溶液中形成胶束,电解质的存在使胶束的缔合数增加, 导致球形胶束向棒状胶束转化,使运动阻力增大,从而使体系的黏稠度增加。 但当电解质过量时会影响胶束结构,降低运动阻力,从而使体系黏稠度降低, 这就是所说的"盐析"。因此电解质加入量一般质量分数为1%-2%,而且和其他 类型的增稠剂共同作用,使体系更加稳定。1.1.2脂肪醇、脂肪酸类脂肪醇、 脂肪酸是带极性的有机物,有文章把它们看成为非离子表面活性剂,因为它们 既有亲油基团,又有亲水基团。少量的该类有机物的存在对表面活性剂的表面 张力、omc及其他性质有显著影响,其作用大小是随碳链加长而增大,一般来 说呈线,陛变化关系。其作用原理是脂肪醇、脂肪酸能插入(参加)表面活性剂 胶团,促进胶团的形成,同时由于该极性有机物与表面活性剂的分子间有强烈 的相互作用(碳氢链间的疏水作用加极性头间的氢键结合),使两分子在表面上 定向排列得很紧密,大大改变了表面活性剂胶束性质,达到增稠的效果。1.1.3表面活性剂类1.1.3.1烷醇酰胺类最常用的是椰油二乙醇酰胺。烷醇酰胺能与 电解质相容共同进行增稠并且能达到最佳效果。烷醇酰胺增稠的机理是与阴离 子表面活性剂胶束相互作用,形成非牛顿流体。各种不同的烷醇酰胺在性能上 有很大差异,而且单独使用与复配使用其效果也不同,有文章报道了不同烷醇 酰胺的增稠及泡沫性能。近来报道烷醇酰胺制成化妆品时有产生致癌物质亚硝 胺的潜在危害。烷醇酰胺的杂质中有游离胺,它是亚硝胺的潜在来源。目前个 人护理品工业对是否在化妆品中禁用烷醇酰胺还没有官方意见。1.1.3.2醚类 在以脂肪醇聚氧乙烯醚硫酸盐(AES)为主活性物的配方中,一般仅用无机盐即能调成合适的黏度。研究表明这是由于AES中含有未硫酸化的脂肪醇乙氧基化物,对表面活性剂溶液的增稠作出了显著的贡献。深入研究发现:对平均乙氧基化 度约为3EO或10EO时起最佳作用。另外脂肪醇乙氧基化物的增稠效果与其产物中所含未反应的醇及同系物的分布宽窄有很大关系。同系物的分布较宽时产品

GB 2760-2014中可使用的食品增稠剂

中文名称英文名称CNS号INS号功能 丙二醇propylene glycol 18.004 1520 稳定剂和凝固剂、抗结剂、消泡剂、乳化剂、水分保持剂、增稠剂 刺云实胶tara gum 20.041 417 增稠剂醋酸酯淀粉starch acetate 20.039 1420 增稠剂 淀粉磷酸酯钠sodium starch phosphate 20.013 —增稠剂 D-甘露糖醇D-mannitol 19.017 421 甜味剂、乳化剂、膨松剂、稳定剂、增稠剂 瓜尔胶guar gum 20.025 412 增稠剂 果胶pectins 20.006 440 乳化剂、稳定剂、增稠剂 海萝胶funoran (gloiopeltis furcata) 20.040 —增稠剂 海藻酸丙二醇酯propylene glycol alginate 20.010 405 增稠剂、乳化 剂、稳定剂 海藻酸钠(又名褐藻 酸钠) sodium alginate 20.004 401 增稠剂 槐豆胶(又名刺槐豆 胶) carob bean gum 20.023 410 增稠剂β-环状糊精beta-cyclodextrin 20.024 459 增稠剂 黄原胶(又名汉生胶)xanthan gum 20.009 415 稳定剂、增稠 剂 甲壳素(又名几丁质)chitin 20.018 — 增稠剂、稳定 剂

聚甘油脂肪酸酯 polyglycerol esters of fatty acids (polyglycerol fatty acid esters) 10.022 475 乳化剂、稳定 剂、增稠剂、抗结 剂 聚葡萄糖polydextrose 20.022 1200 增稠剂、膨松剂、水分保持剂、 稳定剂 决明胶cassia gum 20.045 427 增稠剂 卡拉胶carrageenan 20.007 407 乳化剂、稳定剂、增稠剂 可得然胶curdlan 20.042 424 稳定剂和凝固剂、增稠剂 可溶性大豆多糖 soluble soybean polysaccharide 20.044 — 增稠剂、乳化 剂、被膜剂、抗结 剂 磷酸化二淀粉磷酸酯 phosphated distarch phosphate 20.017 1413 增稠剂 硫酸钙(又名石膏)calcium sulfate 18.001 516 稳定剂和凝固剂、增稠剂、酸度调节剂 氯化钙calcium chloride 18.002 509 稳定剂和凝固剂、增稠剂 罗望子多糖胶 tamarind polysaccharide gum 20.011 —增稠剂 麦芽糖醇和麦芽糖醇液maltitol and maltitol syrup 19.005, 19.022 965(i),965(ii) 甜味剂、稳定 剂、水分保持剂、 乳化剂、膨松剂、 增稠剂 普鲁兰多糖pullulan 14.011 1204 被膜剂、增稠剂 羟丙基二淀粉磷酸酯 hydroxypropyl distarch phosphate 20.016 1442 增稠剂

增稠剂介绍

增稠剂 简介: 增稠剂是一种流变助剂,不仅可以使涂料增稠,防止施工中出现流挂现象,而且能赋予涂料优异的机械性能和贮存稳定性。对于黏度较低的水性涂料来说,是非常重要的一类助剂。 增稠剂有水性和油性之分。尤其是水相增稠剂应用更为普遍。增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。特别对于胶黏剂和密封剂的制造、储存、使用都很重要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。 分类: 增稠剂的品种很多,主要有无机增稠剂(以膨润土为主)和有机增稠剂(纤维素类、碱溶胀型丙烯酸乳液类、缔合型聚氨酯类等)。但其中用量最大的还是羟乙基纤维素、缔合型聚氨酯、碱溶胀丙烯酸乳液3类产品。 1. 纤维素类 纤维素类增稠剂(HEC)及憎水改性纤维素型增稠剂(HMHEC)是涂料中用得最为广泛的增稠剂种类。纤维素及其他的多糖类增稠剂常以粉状形式存在,应用时常和颜料一起研磨成颜料浆。当后添加时,纤维素和其他无机粉状增稠剂会给涂料带来更多的问题。以液体形式供货的HEC和HMHEC产品为涂料的生产带来了方便。 2. 缔合型聚氨酯 第二类经常用于水性涂料的增稠剂为非离子缔合型的聚合物,最常见的为憎水改性的乙氧基化聚氨酯及相似的含脲、脲-氨酯及醚键的氧化乙烯/氧化丙烯。非离子缔合型的增稠剂通常以水/共溶剂溶液或水溶液的形式存在。因此当其用于涂料时较难分散,且需较长的时间才能使其得以充分发挥作用。 3. 碱溶胀丙烯酸乳液 碱溶胀丙烯酸乳液用于水性涂料的增稠剂为碱可溶或溶胀的乳液,有2种基本类型:传统的丙烯酸酯类(ASE)和憎水改性缔合型聚丙烯酸酯类(HASE)。此类增稠剂需加适

甜味剂是一类十分重要的食品添加剂

甜味剂是一类十分重要的食品添加剂,在应用中需要满足食品生产的四项要求--安全标准的要求、口感品质的要求、符合工艺的要求、成本低廉的要求。随着消费水平的提高,吃的更营养、吃的更健康逐步成为消费者关心的重点。低脂肪低热量的食品添加剂将成为主要发展趋势,另外由于近期砂糖价格持续走高也加剧了甜味剂市场的升温。现有的各种单体甜味剂,由于都有各自的优点和缺陷,无论哪种单体甜味剂,都不能同时满足安全、口感、工艺、成本四项要求。只有对单体甜味剂各自的优点进行利用和发挥,对其缺点进行弥补和改造,用科学合理的方法进行复配和改造,才能接近和达到同时满足四项要求的目标。 ? 1. 复配甜味剂的功能目的 由于每一种甜味剂的口感和质感与蔗糖都有区别,且用量大时往往产生不良风味和后味,用复合甜味剂就克服这些不良之处。甜味剂经复合后有协同增效作用,不仅可以消除苦味涩味,同时也提高甜度。利用二种以上单体甜味剂和其它物质产生增效作用,提高甜度,矫正和提升口感风味。根据各种不同食品的安全标准,选择允许使用的甜味剂。根据各种不同食品工艺,选择和改造成符合工艺要求的甜味剂。 ? 2. 主要甜味剂的甜度 甜味剂的评定可粗略分为四个方面:甜度数值的评价:细微差别测试;评定者对甜味敏感度的测试及描述性分析。另外心理物理学家还发展了许多方法用于感官评价和消费者的测试,必须注意的是这些方法具有不同的测试目的,选用时应给予注意。甜味剂替代蔗糖时,大多数是在等甜度条件下进行替换。参见[表1] 表1 相对甜度对比表(蔗糖=1)[1]

*系两种文献值 3. 影响甜味强度的因素 甜味剂甜度受很多因素的影响,主要包括浓度、粒度、温度、介质和构型等;同时,将不同甜味剂混合使用,有时会互相提高甜度,这称为协同增效作用。

增稠剂

目录 摘要 (1) 前言 (1) 1.增稠剂 (1) 2.食品增稠剂的来源 (2) 2.1 天然增稠剂 (2) 2.2 人工合成增稠剂 (2) 3. 增稠剂在食品中的作用 (2) 3.1 稳定作用 (2) 3.2 增稠作用 (3) 3.3 改善食品的凝胶性,防止“起霜” (3) 3.4 保水作用 (3) 3.5 成膜作用 (3) 4. 影响增稠剂作用效果的因素 (3) 4.1 结构及相对分子质量对黏度的影响 (3) 4.2 PH值对黏度的影响 (3) 4.3 温度对黏度的影响 (4) 4.4 增稠剂的协同效应 (4) 5. 增稠剂食品中应用 (4) 5.1 肉制品加工中的应用 (4) 5.2 面制品中的应用 (4) 5.3 果冻、饮品等中的应用 (5) 5.4 在其他食品中的应用 (5) 6. 食品增稠剂的应用发展前景 (5) 参考文献 (7)

增稠剂在食品中的应用 摘要:增稠剂在食品加工中应用广泛,是一类可以提高食品的粘稠度或形成凝胶,从而改变食品的物理性状,赋予食品黏润、爽滑的口感,并兼有乳化、稳定或使呈悬浮状态作用的食品添加剂。增稠剂在食品中添加量较低,却能有效的改善的食品的品质和性能。其化学成分除明胶、酪蛋白酸钠等蛋白质外,还有自然界中广泛存在的天然多糖及其衍生物,以及人工合成的增稠剂。本文介绍了增稠剂特性、食品增稠剂的来源、添加到食品中的作用、在食品中的应用以今后的发展前景。 关键词:黏润、悬浮状、凝胶、衍生物 前言 增稠剂是通过在溶液中形成网状结构或具有较多亲水基团的胶体对保持食品的色香味结构和食品的稳定性发挥极其重要的作用,起作用大小取决于增稠剂分子本身的结构及其流变学特性。不同分子结构的增稠剂即使在其他理化参数一致,相同浓度的条件下黏度也可能有较大的差别。 1.增稠剂 增稠剂又称胶凝是一种流变助剂,在日常工作和生活经常接触的到,广泛用于食品、涂料、胶黏剂、化妆品、洗涤剂、印染、橡胶、医药等领域。其中用于食品时又称糊料或食品胶。增稠剂大多属于亲水性高分子化合物,一般都采用物理吸水膨胀化学反应两种原理起到增稠增粘的效果。增稠剂分子中含有许多亲水基团,例如羟基、羧基、氨基和羧酸根等,能与水分子发生水化作用。通常,食品增稠剂都是高分子亲水的胶体物质,大部分是从天然动植物中提取或加工而成。 追溯增稠剂的历史,最早的渊源就在食品。在很早以前,我国便有人在烹调菜肴时用淀粉来勾芡,使得菜肴的汤汁更为浓厚、黏稠,这其实就是最早的“增稠剂”。现代,仍然有些国家,把淀粉划归为食品添加剂中的增稠剂。GB 2760- 2011食品添加剂使用卫生标准明确规定了39种允许限量使用的增稠剂,允许添加增稠剂的食品种类大致有乳与乳制品、脂肪、油和乳化脂肪制品、冷冻饮品、

甜味剂应用

有关食品中甜味剂应用的调查有关食品中甜味剂应用的调查为了解各种甜味剂在饮料和甜食中的应用情况,从而深入理解甜味剂的原理、效果、营养价值和在食品中应用的现状。暑假期间到学院路超市发超时进行了有关饮料中添加的甜味剂的调查。产品调查记录产品调查记录: ::: 表1含有不同甜味剂的甜味产品的数目和比例 调查产品类别产品数目占同类产品的百分率 调查产品总数84 含有蔗糖的产品数目 6071.4 含有果葡糖浆的产品数目12 含有葡萄糖浆的产品数目0 含有其他糖浆的产品数目0 含有蜂蜜的产品数目6 含有xx的产品数目0 含有xx的产品数目6 含有木糖醇的产品数目9 含有其他糖醇的产品数目2 含有低聚糖的产品数目60 含有甘草糖或甜菊糖的数目0 含有甜蜜素的产品数目4

含有xx的产品数目19 含有甜蜜素的产品数目4 含有糖精的产品数目0 含有其他合成甜味剂的产品4 表2含有多种甜味剂的甜味产品的数目和比例调查产品类别产品数目 调查产品总数84 含有1种甜味剂的产品数目35 含有2种甜味剂的产品数目26 含有3种甜味剂的产品数目11 含有4种或更多甜味剂的产品数目1 添加含能量甜味剂的产品总数64 添加糖醇类甜味剂的产品总数10 添加低聚糖甜味剂的产品总数60 添加糖浆类甜味剂的产品总数12 添加天然甜味甙类的产品总数1 添加合成甜味剂的产品总数 2014.300 7.10 7.1 10.7

2.4 71.40 4.8 22.6 4.80 4.8 在同类产品中的比例 41.7 31.0 13.1 1.2 76.2 11.9 71.4 14.3 7.2 23 产品名称添加甜味剂的名称是否标为低糖食品是否标为无糖食品雪碧碳酸饮料果葡糖浆,白砂糖 七喜碳酸饮料白砂糖 芬达果味汽水果葡糖浆,白砂糖 美年达果味汽水白砂糖

增稠剂介绍

第20章增稠剂(Thickening agents) 20.1 概述 20.1.1 食品增稠剂的定义 食品增稠剂通常指能溶解于水中,并在一定条件下充分水化形成黏稠、滑腻溶液的大分子物质,又称食品胶。它是在食品工业中有广泛用途的一类重要的食品添加剂,被用于充当胶凝剂,增稠剂,乳化剂,成膜剂,泡沫稳定剂,润滑剂等。增稠剂在食品中添加量通常为千分之几,但却能有效地改善食品的品质和性能。其化学成分除明胶、酪朊酸钠等为蛋白质外,其它大多是天然多糖及其衍生物,广泛分布于自然界。 20.1.2食品增稠剂的分类 迄今世界上用于食品工业的食品增稠剂已有40余种,根据其来源,可分为五大类。 (1)由海藻制取的增稠剂海藻胶是从海藻中提取的一类食品胶,.地球上各海域水温变化及盐含量不同。海洋中藻品种多达15000多种,分为红藻、褐藻、蓝藻和绿藻四大类。重要的商品海藻胶主要来自褐藻。不同的海藻品种所含的亲水胶体其结构,成分各不相同,功能、性质及用途也不尽相同。 (2)由植物种子、植物溶出液制取的增稠剂由植物及其种子制取的增稠剂,在许多情况下,其中的水溶性多糖类似于植物受到刺激后的渗出液。它们是经过精细的专门技术而制得的,包括选择、种植和布局。种子收集和处理都具有一套科学方法。正如动植物渗出液一样,这样增稠剂都是多糖酸的盐。其分子结构复杂,常用的这类增稠剂有瓜尔胶、卡拉胶、海藻胶等。 (3)由微生物代谢生成的增稠剂真菌或细菌与淀粉类物质作用产生的另一类用途广泛的食品增稠剂,如黄原胶等,这是将淀粉全部分解成单糖,紧接着这些单糖又发生缩聚反应再缩合成新的分子。这种新分子的大分子链具有以下的特点:每一个葡萄糖残基除了四个碳原子仍保留原有的结构之外,部分或全部地发生羧基部位的部分氧化,大分子或链的交联,羟基上的氧原子被新的化学基取代等反应。由不同植物表皮损伤的渗出液制得的增稠剂的功能是人工合成产品所达不到的,其成分是一种由葡萄糖和其他单糖缩合的多糖衍生物,在它们的多羟基分子中,穿插一定数量对其性质有一定影响的氧化基团,这些氧化基团,在许多情况下,羟基占很大的比例。这些羟基常以钙、镁或钾盐的形式存在,而不以自由羟基的形式存在。阿拉伯胶、黄原胶均属于此类增稠剂。 (4)由动物性原料制取的增稠剂这类增稠剂是从动物的皮、骨、筋、乳等提取的。其主要成分是蛋白质。品种有明胶、酪蛋白等。 (5)以纤维素、淀粉等天然物质制成的糖类衍生物这类增稠剂按其加工工艺可以分为两类:以纤维素、淀粉等为原料,在酸、碱、盐等化学原料作用下经过水解、缩合、化学修饰等工艺制得。其代表的品种有羧甲基纤维素钠、变性淀粉、藻酸丙二醇酯等。 20.2 海藻胶 由于海藻胶在增稠性、稳定性、胶凝性、保形性、薄膜成形性等方面具有显著的优点,加上其独特的保健功能,使之在食品工业中得到了广泛的应用,成为产销量最大的增稠剂之一。本节重点介绍海藻酸及其盐、琼脂、卡拉胶的组成结构、理化性质及其在食品工业中的应用。 20.2.1海藻酸钠(Sodium Algimate ) 别名:褐藻酸钠、藻胶。化学结构:海藻酸和海藻酸盐是直链糖醛酸聚糖。由两种分子

海草材料性能分析及应用研究

N E W B U I L D I N G M A T E R I A L S 0引言在中国与丹麦现存着最为典型的传统海草房民居,皆采 用干海草(主要是大叶藻)来苫盖屋顶,以石块砌筑墙体。在我 国主要分布于胶东半岛的威海、烟台、青岛等沿海地带,目前 以荣成沿海村镇分布最为广泛。在建筑材料发展日新月异的 今天,海草房依然是胶东半岛村民的居住首选,已被列为省级 非物质文化遗产。而丹麦依索岛上的海草房更被宣布为北日 德兰半岛的七大奇迹之一。海草房(见图1)的独特外形与绿 色性能被逐渐关注,并引发在当代生活方式下建筑如何利用 海草的研究。 图1丹麦兰依索岛和中国胶东半岛海草房1海草房保温隔热性能测试胶东半岛海草房草顶厚达1m ,石墙厚达45cm ,气候边界的厚度提高了房屋的热稳定性。为确定海草房相较瓦房的保温性能,分别选择在夏、冬两季对山东省荣成市宁津镇某海 草房与瓦房的室内温度变化进行测试与比较。 基金项目:山东省高校科研计划项目(J18RB255); 东南大学城市与建筑遗产保护教育部重点实验室资助项目 (KLUAHC1802) 收稿日期:2018-11-12;修订日期:2019-01-22 作者简介:杨俊,女,1983年生,山东烟台人,讲师。通讯作者:钱玉 莲,地址:山东省烟台市场莱山区清泉路30号,E-mail :yj8023@126. com 。海草材料性能分析及应用研究 摘要:海洋赋予了海草在建筑材料中独特的生物特性,也构成我国胶东半岛与丹麦兰依索岛海草房成为生态民居的主要原因。结合国内外海草植物领域的研究成果,利用跨学科研究平台,通过材料实验设计与建筑构造模拟,证实海草的生物特性与海草苫匠的技艺造就了海草房冬暖夏凉、耐燃耐久的优良性能,并结合丹麦当代的海草应用,提出海草材料利用的前景。 关键词:海草;生态民居;材料实验;构造模拟;当代利用 中图分类号:TU531.6文献标识码:A 文章编号:1001-702X (2019)04-0091-04 Experimental analysis and utilization of seaweed materials YANG Jun ,QIAN Yulian (Yantai University ,Yantai 264005,China ) Abstract :The ocean endows seagrass with unique biological characteristics in building materials ,which is also the main rea - son why seagrass houses in Laniso Island ,Denmark and Jiaodong Peninsula in China have become ecological dwellings.Based on the research results in the field of seaweed plants at home and abroad ,and on the platform of interdisciplinary research ,through material experimental design and architectural structure simulation ,this paper confirms that the biological characteristics of seaweed and the skills of seaweed craftsmen have created the excellent properties of seaweed houses ,which are warm in winter ,cool in sum -mer ,fire-resistant and https://www.doczj.com/doc/f313090363.html,bining with the contemporary application of seaweed in Denmark ,it proposed prospect of sea -grass material utilization.Key words :seagrass ,ecological residence ,material experiment ,structural simulation ,contemporary utilization 杨俊,钱玉莲 (烟台大学,山东烟台264005 ) 全国中文核心期刊中国科技核心期刊 91··

增稠剂在食品中的应用之欧阳光明创编

增稠剂在食品中的应用 欧阳光明(2021.03.07) 摘要:增稠剂在食品加工中应用广泛,本文介绍了增稠剂特性、食品增稠剂的来源、添加到食品中的作用、在食品中的应用以今后的发展前景。 1增稠剂 增稠剂又称胶凝是一种流变助剂,在日常工作和生活经常接触的到,广泛用于食品、涂料、胶黏剂、化妆品、洗涤剂、印染、橡胶、医药等领域。其中用于食品时又称糊料或食品胶。增稠剂大多属于亲水性高分子化合物,一般都采用物理吸水膨胀化学反应两种原理起到增稠增粘的效果。增稠剂分子中含有许多亲水基团,例如羟基、羧基、氨基和羧酸根等,能与水分子发生水化作用。通常,食品增稠剂都是高分子亲水的胶体物质,大部分是从天然动植物中提取或加工而成。 追溯增稠剂的历史,最早的渊源就在食品。在很早以前,我国便有人在烹调菜肴时用淀粉来勾芡,使得菜肴的汤汁更为浓厚、黏稠,这其实就是最早的“增稠剂”。现代,仍然有些国家,把淀粉划归为食品添加剂中的增稠剂。GB 2760- 2011食品添加剂使用卫生标准明确规定了39种允许限量使用的增稠剂,允许添加增稠剂的食品种类大致有乳与乳制品、脂肪、油和乳化脂肪制品、冷冻饮品、水果制品、糖果类、淀粉制品、糕点类、肉与肉制品、水产品

制品、糖浆类、调味品、特殊膳食用食品、饮料类、酒类等16大类。可见增稠剂在食品工艺中地位斐然。 2食品增稠剂的来源 增稠剂在食品工程中添加量很微小,通常只占到制品总重的千分之几,但却能既有效又科学健康地改善食品体系的稳定性。食品增稠剂的化学成分大多是天然多糖或者其衍生物,在自然界分布广泛。现今可查到的用于食品工业的增稠剂来源大致可分为两类即天然增稠剂级、人工合成增稠剂。 2.1 天然增稠剂 由天然动植物提取而成的增稠剂。海藻类产生的胶及其盐类,如海藻酸、琼脂、卡拉胶等;树木渗出液形成的胶,如阿拉伯胶;植物种子制成的胶,如瓜尔胶、槐豆胶等;植物某些组织制成的胶,如淀粉、果胶、魔芋胶等;动物分泌或其组织制成的胶,如明胶、酪蛋白;微生物繁殖分泌的胶,如黄原胶、结冷胶等。 2.2 人工合成增稠剂 人工采用化学方法合成的食品增稠剂。以天然增稠剂进行改性制得的物质及纯人工合成增稠剂。如:海藻酸丙二醇酯、羟甲基纤维素钙、羟甲基纤维素钠、磷酸淀粉钠、乙醇酸淀粉钠。纯化学合成:聚丙烯酸钠、羧甲基纤维素钠等。 3增稠剂在食品中的作用 增稠剂在食品中的作用主要是为了提高食品的粘度或着形成凝胶、保持体系相对稳定性的亲水性物质,从而改变食品的物理性状、赋予食品粘润、适宜的口感,并兼有乳化、稳定或使呈悬浮状

增稠剂(胶体)的种类与应用

增稠剂(胶体)的种类与应用 增稠剂(胶体)的种类与应用 发布:多吉利:.duojili. 减小字体增大字体 增稠剂(胶体)的种类与应用 增稠剂主要有:羧甲基淀粉钠(CMS)、黄原胶、明胶、海藻酸钠、瓜尔豆胶、β-环状糊精、羧甲基纤维素(CMC) 增稠剂和胶凝剂是一类能提高食品粘度或形成凝胶的食品添加剂。在加工食品中可起供稠性、粘度、粘附力、凝胶形成能力、硬度、脆性、弹性、稳定、悬浮等作用,使食品获得良好的口感。亦常称做增粘剂、胶凝剂、乳化稳定剂等。因都属亲水性高分子化合物,可水化形成高粘度的均相液,故亦称水溶胶、亲水胶体或食用胶。 增稠剂的特性 1、在水中有一定的溶解度。 2、在水中强化溶胀,在一定温度范围内能迅速溶解或糊化。 3、水溶液有较大粘度,具有非牛顿流体的性质。 4、在一定条件下可形成凝胶和薄膜。 常用增稠剂有:琼脂、羧甲基淀粉钠(CMS)、黄原胶、明胶、海藻酸、海藻酸钠、海藻酸丙二醇酯、卡拉胶、果胶、阿拉伯胶、槐豆胶、瓜尔豆胶、羟丙基淀粉、羟乙基淀粉、糊精、环状糊精(β-CD)、羧甲基纤维素(CMC) 【CMC-钠】:羧甲基纤维素钠,

白色纤维状粉末。易分散于水中形成胶体溶液。遇二价金属离子生成盐沉淀,失去粘性。不溶于乙醇及有机溶剂。硫酸铝之类的金属盐能赋予防水性。对油脂和蜡的乳化力大。用做增稠剂、稳定剂、组织改 进剂、胶凝剂、泡沫稳定剂、水分移动控制剂。广泛用于冰淇淋、饮料、酱体、面点等食品中。因吸水后膨胀性极强,又不被消化吸收,可做减肥食品填充物。FH9与FH6都是高粘度胶体。FH9粘度还要高,并分耐酸与不耐酸两种。耐酸型主要用于高酸性制品:酸奶、高酸性饮料、发酵制品等等。其他型号还有FM6,为中粘度胶体。 【卡拉胶】:又名角叉菜胶。 一种用处较普遍的食用胶,用做增稠剂、稳定剂、悬浊剂、凝胶剂、粘结剂。一般分κ、λ、τ三种主要型号。κ型能形成易碎脆性凝胶;λ型能形成弹性凝胶;τ型不能形成凝胶。根据不同的生产需要三种不同型号的卡拉胶进行复配得到不同用处的卡拉胶。如:果酱专用(增稠但不必形成凝胶,以τ型为主);果冻专用(必须能形成弹性凝胶,以λ型为主);肉食专用(以κ型为主形成强凝胶)拌入盐类(氯化钾)增加凝胶强度、粘度。 一般添加量:肉食品、果酱、果冻等为3~8‰;酱油、饮料等为1~3‰。 【明胶】:又名食用明胶、全力丁 为白色或淡黄色半透明薄片或粉粒,含有18种氨基酸,其中7种为人体所必需。有吸水性与凝胶性,它不溶于冷水、加水后逐渐膨胀

增稠剂在食品中的作用

增稠剂在食品中的作用 稠剂在食品中的作用主要是为了提高食品的粘度或着形成凝胶、保持体系相对稳定性的亲水性物质,从而改变食品的物理性状、赋予食品粘润、适宜的口感,并兼有乳化、稳定或使呈悬浮状态作用的物质。 1、稳定作用 稳定作用指增稠剂加入到食品中,可使食品组织趋于稳定、不易变动、不易改变品质如:①在冰淇淋中有抑制冰晶生长②糖果中有防止糖结晶3在饮料、调味品和乳化香精中具乳化稳定作用;4在啤酒、汽酒中有泡沫稳定作用。 2、增稠作用 增稠剂在食品中主要是赋予食品所要求的流变特性:改变食品的质构和外观,将液体、浆状食品形成特定形态;并使其稳定、均匀,提高食品质量,以使食品具有黏滑适口的感觉。 3、凝胶作用 食品增稠剂是果冻、奶冻、果酱、软糖和人造营养食品等的胶凝剂和赋犁剂。作为食用凝胶的增稠剂,它们各具特长,彼此难以取代,琼脂是目前较好的胶凝形成剂,其凝胶坚实、硬度较高,但弹性较小。明胶凝胶坚韧而富有弹性,能承受一定的压力。海藻酸钠胶凝条件低,其热不可逆性特别适用于人造营养食品。果胶在胶凝时能释放出一种较好的香味,

适用于果味食品。 4、保水作用 保水作用则指增稠剂有强亲水作用能吸收几十倍乃至上百倍于自身质量的水分,并有持水性,这个特性可改善面团的吸水量,使产品的质量增大。 5、成膜作用 在食品表面形成非常光润的薄膜,可以防止冰冻食品、固体粉末食品表面吸湿而导致的质量下降。作被膜用的有醇溶性蛋白、明胶、琼脂、海藻酸等当前,可食用包装膜是增稠剂发展的方向之一。 6、矫味作用 对不良气味有掩蔽作用。其中环糊精效果较好,可消除食品中的异味。例如, 在豆奶中加入2-5%可显著减少豆腥味。 7、其它作用 除上述作用外,增稠剂还可作为果汁、酒和某些调味品的澄清剂,烘烤食品品质改良剂;在食品加工中还可作起泡剂和脱膜剂等。

增稠剂资料整理

增稠剂 一;增稠剂的分类 1.纤维素类 纤维素类又分为 非缔合型(HEC) 缔合型(HMHEC) 最有名的纤维素增稠剂包括: 羟乙基纤维素(Hydroxyethyl Cellulose,HEC) 羟丙基纤维素(Hydroxypropyl Cellulose,HPC) 羟丙基甲基纤维素(Hydroxypropylmethyl Cellulose,HPMC)、 甲基纤维素(Methyl Cellulose,MC)、 羧基甲基纤维素(Carboxymethyl Cellulose,CMC) 疏水性改质羟乙基纤维素(Hydrophobically Modified Hydroxyethyl Cellulose ,HMHEC) 多糖 碱溶涨类(丙烯酸类) 碱溶涨类又分为 非缔合型(ASE) 缔合型(HASE) 聚氨脂类 聚氨脂类又分为 聚氨脂类 疏水性改性非聚氨酯增稠剂 无机类 无机又分为 膨润土 凹凸棒土 气相二氧化硅 络合有机金属增稠剂 二:特性研究及作用机理 纤维素类 非缔合型纤维素增稠剂 纤维素类增稠剂的增稠机理: 是疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高粘性;而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。纤维素增稠剂增稠水相,该增稠作用不受连结料、颜料和助剂的影响。这种分子链较长、有分支,部分呈卷曲状。在其余情况下,分子链处于理想的序状态(高粘度)。随着剪切速率的增加,分了逐渐与流动方向平行,这使一个分子到另一个分子之间的滑动更为容易,即低粘度,因而,这种纤维素增稠剂表现出假塑性和结构粘度。通过高分子量的纤维素醚,可获得明显的假塑流动性能。

旧路水泥路面使用性能PQI分析与评价

旧路水泥路面使用性能PQI分析与评价 摘要:随着时间的推移和国民经济的发展,许多国道省道进入使用年限的后期,发生了许多破坏现象。本论文通过采用先进检测技术手段与仪器设备,如ARRB道路综合检测车,落锤式弯沉仪、横向力系数车,对罩面的压实度、平整度、车辙、弯沉、构造深度进行了全方位检测与评价,为实际工程提供了参考依据。 关键词:旧路水泥路面,路面使用性能,PQI分析,检测与评价 Abstract: with the passage of time and development of the national economy, many national highway in the later period of use, there have been many failure phenomenon. In this paper, through the use of advanced detection technology and equipment, such as ARRB road detection vehicle, instrument, lateral force coefficient car falling weight deflectometer, the detection and evaluation of a full range of surface coating compactness, smoothness, rutting, deflection, structural depth, provide a reference for practical engineering. Keywords: old road cement concrete pavement, pavement performance, PQI analysis, testing and evaluation 国道G324线小盈岭至马巷路段(K238+800~K249+950)长11.15km,路面结构形式为水泥混凝土路面,路面宽度为22m,双向四车道。该路段经过多次改造,目前实测交通量达21813辆/昼夜(自然数),路面出现了断板、角隅断裂、错台等不同程度的病害,导致车辆通行不畅,存在行车安全隐患,严重影响了道路使用功能和周边居民生活品质,急需改造。 1 路面调查 国道G324线小盈岭至马巷段自2001年路面大修投入运营以来,路面出现了不同程度的损害,产生了大量的面板病害。经过调查,本路段左右车道损坏差异较大,路面结构复杂,现状混凝土面板损坏主要有以下几种:裂缝、破碎板、板角断裂、错台、唧泥、接缝料损坏等。试验段现状情况如下图1至图5所示。 图1交通状况(交通量大、重车多)

相关主题
文本预览
相关文档 最新文档