当前位置:文档之家› 4913全极型霍尔开关

4913全极型霍尔开关

4913全极型霍尔开关
4913全极型霍尔开关

4913 Hall-effect sensor is a temperature stable, stress-resistant , micro-power switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of omni-polar magnetic fields for operation. is rated for operation between the ambient temperatures –40℃ and + 85℃ for the E temperature range. The four package styles available provide magnetically optimized solutions for most applications. Package types is an SOT-23(1.1 mm nominal height )

The package type is in a lead Halogen Free version was verified by third party Lab.

Features and Benefits

● CMOS Hall IC Technology ● Solid-State Reliability

● Micro power consumption for battery-powered applications

● Omni polar, output switches with absolute value of North or South pole from magnet ● Operation down to 2.5 V and Max at 3.5V .

● High Sensitivity for direct reed switch replacement applications ● Multi Small Size option

● Custom sensitivity selection is available in optional package. ● Pb Free/Green chip is qualified by third party lab.

Applications

● Solid state switch

● Handheld Wireless Handset Awake Switch ( Flip Cell/PHS Phone/Note Book/Flip

Video Set)

● Lid close sensor for battery powered devices

● Magnet proximity sensor for reed switch replacement in low duty cycle applications

4913 4913

Functional Diagram

Note : Static sensitive device; please observe ESD precautions. Reverse V DD protection is not included. For reverse voltage protection, a 100Ω resistor in series with V DD is recommended.

C1:10nF C2:100pF R1:100K Ω

Typical Application circuit

C1

Vcc

Absolute Maximum Ratings At (Ta=25℃)

Characteristics

Values Unit Supply voltage,(V DD ) 5 V Output V oltage,(V out ) 5 V Reverse voltage, (V DD ) (V OU T ) -0.3 V Magnetic flux density Unlimited

Gauss Output current(I OUT )

2 mA

Operating temperature range, (Ta ) -40 to +85 ℃ Storage temperature range, (Ts ) -55 to +150

℃ Maximum Junction Temp,(Tj ) 150

Thermal Resistance

(θJA ) 543 ℃/W (θJC )

410 ℃/W Package Power Dissipation, (P D )

230 mW

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-

rated conditions for extended periods may affect device reliability.

Electrical Specifications

DC Operating Parameters T A =+25℃, V DD =3.0V

Parameters

Test Conditions

Min

Typ

Max

Units

Supply Voltage,(V DD ) Operating 2.5 3.5 V Supply Current,(I DD ) Awake State 2.5 4.0 mA Sleep State 8.0 12 μA Average 10 16 μA Output Leakage Current,(I off ) Output off 1 uA Output Low Voltage,(V sat ) I OUT =1mA 0.3 V Awake mode time,(T aw ) Operating 70 uS Sleep mode time,(T SL ) Operating 70 mS Duty Cycle,(D,C )

0.1

% Operate Point, (B OPS ) S pole to branded side, B > BOP , V out On 6 60 Gauss (B OPN ) N pole to branded side, B > BOP , V out On -60 -6 Release Point (B RPS ) S pole to branded side, B < BRP, V out Off 5 59 Gauss (B RPN )

N pole to branded side, B < BRP, V out Off -60

-5 Hysteresis,(B HYS )

|BOPx - BRPx|

7

Gauss

4913

SO Package Hall Plate Chip Location

(Top View) (Bottom view)

12

3

NOTES:

1. PINOUT (See Top View at left :) Pin 1 V DD

Pin 2 Output

Pin 3 GND

2. Controlling dimension: mm

3. Lead thickness after solder plating

will be 0.254mm maximum

Location

3

4913

开关电源原理分类与布线规则

开关电源原理及分类 1、12V/5V两路输出开关电源. (1)原理图设计(参考PI软件给出的解决方案)(拓扑图) 采用反激式。 主回路—开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式及非隔离式两大类型。 1。非隔离式电路的类型: 非隔离——输入端及输出端电气相通,没有隔离. 1。1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)及输入端、输出端、电感器L、负载RL四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck拓扑型开关电源就是属于串联式的开关电源 c:\iknow\docshare\data\cur_work\

上图是在图1-1—a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R 提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路. 在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL 由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D 的负极流出,最后回到反电动势eL的负极。 对于图1-2,如果不看控制开关T和输入电压Ui,它是一个典型的反г型滤波电路,它的作用是把脉动直流电压通过平滑滤波输出其平均值。串联式开关电源输出电压uo的平均值Ua为: 1.2. 并联式结构 并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)及输出端负载成并联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压及电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。

霍尔元件分类及其特性

二:霍尔传感器 由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。 霍尔传感器也称为霍尔集成电路,其外形较小,如下图所示,是其中一种型号的 外形图 三:霍尔传感器的分类 霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种: 1.线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组 成,它输出模拟量。 2.开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

配合差分放大器使用霍尔元件产生的电势差很小,一般在毫伏量级,所以在使用时要进行一定的放大处理(如下图) 配合触发器用在上述电路的基础上,再添加一个施密特触发器用作阈值检测,则可以使霍尔器件输出数字信号,结构图如下: 集成场效应管在上述电路的基础上添加一个场效应管,可以

增强霍尔开关的驱动能力(可以直接驱动LED、继电器等) 四:霍尔传感器的特性 1.线性型霍尔传感器的特性 2.开关型霍尔传感器的特性 如图4所示,其中BOP为工 作点“开”的磁感应强度,BRP 为释放点“关”的磁感应强度当 外加的磁感应强度。超过动作点 Bop时,传感器输出低电平,当磁感应强度降到动作点Bop以下时,传感器输出电平不变,一直要降到释放点BRP时,传感器才由低电平跃变为高电平。Bop 与BRP之间的滞后使开关动作更为可靠。

A3144是开关霍尔传感器 五:开关型霍尔传感器 开关型霍尔传感器主要用于测转数、转速、风速、流速、接近开关、关门告知器、报警器、自动控制电路等。 1.测转速或转数 如图所示,在非磁性材料的圆盘边上粘一块磁钢,霍尔传感器放在靠近圆盘边缘处,圆盘旋转一周,霍尔传感器就输出一个脉冲,从而可测出转数(计数器),若接入频率计,便可测出转速。

霍尔开关分类

霍尔开关分类 霍尔开关,相信很多第一次听到这个词的朋友都不知道是什么意思,究竟是用来做什么的,为了让大家可以认识和了解霍尔开关,今天小编就给大家详细的介绍一下什么是霍尔开关,霍尔开关的特点,以及霍尔开关有哪些分类。 什么是霍尔开关 当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U,其表达式为U=Kk·I·B/d。其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场的磁感应强度,d是薄片的厚度。霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。 霍尔开关的特点 霍尔开关具有无触点、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。霍尔开关可应用于接近开关,压力开关,里程表等,作为一种新型的电器配件。 霍尔开关的分类 1、单极霍尔效应开关(数字输出)。单极霍尔效应开关具有磁性工作阈值。如果霍尔单元承受的磁通密度大于工作阈值,那么输出晶体管将开启;当磁通密度降至低于工作阈值时,晶体管会关闭。滞后是两个阈值之间的差额。即使存在外部机械振动及电气噪音,此内置滞后页可实现输出的净切换。单极霍尔效应的数字输出可适应各种逻辑系统。这些器件非常适合与简单的磁棒或磁杆一同使用。单极性霍尔开关它的正反面会各指定一个磁极感应才会有作用,在具体应用当中应该注意磁铁的磁极的安装,反了就会造成单极性不感应输出。 2、双极霍尔效应开关(数字输出)。双极性霍尔具体又分双极性不带锁存型霍尔开关和双极性锁存型霍尔开关。双极霍尔效应开关通常在南极磁场强度足够的情况下打开,并在北极磁场强度足够的情况下关闭,但如果磁场被移除,则是随机输出,有可能是打开,也有可能是关闭。双极锁存型霍尔效应开关通常在南极磁场强度足够的情况下打开,并在北极磁场强度足够的情况下关闭,但如果磁场被移除,不会更改输出状态。这些霍尔效应开关可使用南北交变磁场、多极环磁铁进行磁驱动。 3、双极锁存型霍尔效应开关(数字输出)。当置于n极(或s极)时开启,磁场移除后继续保持开启;而只有当置于s极(或n极)时才会关闭,磁场移除后继续保持其开启或关闭状态,直到下次磁场改变。这种保持上次状态的特性即锁存特性,这种类型的霍尔效益开关即双极锁存型霍尔效应开关。 4、全极霍尔效应开关(数字输出)。与其他霍尔效应开关不同,只要存在强度足够大的北极或南极磁场,这些器件就能打开;而在没有磁场的时候,输出会关闭。 5、线性霍尔效应传感器IC(模拟输出)。线性霍尔效应传感器IC 的电压输出会精确跟踪磁通密度的变化。在静态(无磁场)时,从理论上讲,输出应等于在工作电压及工作温度范围内的电源电压的一半。增加南极磁场将增加来自其静态电压的电压。相反,增加北极磁场将增加来自其静态电压的电压。这些部件可测量电流的角、接近性、运动及磁通量。它们能够以磁力驱动的方式反映机械事件。 6、微功耗型霍尔效应开关(数字输出)。随着手机、笔记本电脑、DV等便携式设备的普及,对霍尔IC的功耗提出要求,由此产生了一大类新的霍尔IC。它是数字霍尔IC按功耗单独分出的一类,其内部采用休眠机制降低功耗,平均功耗可以达到uA级。它也可按功能分为单级型霍尔IC、锁定型霍尔IC、和全级霍尔IC三类。这类一般用于电池长期供电的系统。 今天经过小编的介绍之后,相信大家对霍尔开关有了初步的认识和了解,知道霍尔开关是

全极性霍尔传感器开关

全极性霍尔传感器开关 介绍:根据数字输出,霍尔效应集成器件可以分为四种:单极性开关,双极性开关,全极性开关和锁存型开关。本文主要来阐述全极性开关。 全极性霍尔开关又被称作全极性开关,是一种在强的南磁场和强的北磁场下均工作的,数字量输出的锁存型开关。这简化了产品的应用,因为对于全极性器件而言,可以不考虑磁铁的极性来进行安装。一个拥有足够强磁性的单极磁铁可以令器件工作。器件导通之后,全极性器件将一直保持导通状态,直到磁场被移走,器件才恢复关断的状态。器件锁存住变化之后的状态,一直保持关断,直到一个新的足够强的磁场再一次到来。 一个用来检测车辆换挡杆位置的应用,如图1.换挡杆引用一个磁铁(紫色的缸)。黑盒子组成的黑色的线是一个全极性开关器件组成的阵列。当驾驶员移动换挡杆,磁铁便会在阵列当中移动。靠近磁铁的器件会打开处于导通状态,但是更多远离磁铁的器件是不受影响的,是关断的。无论是磁铁的南极或北极都可以面向霍尔器件,霍尔器件的商标面朝向磁铁。

图1 一个全极性开关的应用。超小型的霍尔开关, 换挡的时候,磁铁(紫色)向在他们之间移动 磁场开关点的定义: B为磁场强度,用来表示霍尔器件的开关点,单位是GS(高斯),或者T(特斯拉),转换关系是1GS=0.1mT。 B磁场强度有南极和北极之分,所以有必要记住它的代数关系,北极磁场为负数,南极磁场为正数。该关系可以比较南极北极磁场的代数关系,磁场的相对强度是由B的绝对值表示,符号表示极性。例如:一个-100GS(北极)磁场和一个100GS(南极)磁场的强度是相同的,但是极性相反。-100GS的强度要高于-50GS。 ? BOP –磁场工作点;使霍尔器件打开的磁场强度。器件输出的参数取决于器件的电学设计。 ? BRP –磁场释放点;使霍尔器件关断的磁场强度。器件输出的参数取决于器件的电学设计。 ?BHYS –磁开关点滞回窗口。霍尔元件的传输功能利用开关点之间的这个差值来过滤掉在应用中可能由于机械振动或电磁噪声引

接近开关原理及接线图

电容/电感/霍尔式接近开关的工作原理 1、电感式接近开关工作原理 电感式接近开关属于一种有开关量输出的位置传感器,它由LC高频振荡器和放大处理电路组成,利用金属物体在接近这个能产生电磁场的振荡感应头时,使物体内部产生涡流。这个涡流反作用于接近开关,使接近开关振荡能力衰减,内部电路的参数发生变化,由此识别出有无金属物体接近,进而控制开关的通或断。这种接近开关所能检测的物体必须是金属物体。工作流程方框图及接线图如下所示:

2、电容式接近开关工作原理 电容式接近开关亦属于一种具有开关量输出的位置传感器,它的测量头通常是构成电容器的一个极板,而另一个极板是物体的本身,当物体移向接近开关时,物体和接近开关的介电常数发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通和关断。这种接近开关的检测物体,并不限于金属导体,也可以是绝缘的液体或粉状物体,在检测较低介电常数ε的物体时,可以顺时针调节多圈电位器(位于开关后部)来增加感应灵敏度,一般调节电位器使电容式的接近开关在0.7-0.8Sn的位置动作。工作流程方框图及接线图如下所示:

3、霍尔式接近开关工作原理 当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U, 其表达式为U=K·I·B/d其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。 由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。我门销售的霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。 霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。输出端一般采用晶体管输出,和接近开关类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。 霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。霍尔开关可应用于接近开关,压力开关,里程表等,作为一种新型的电器配件。 霍尔开关的功能类似干簧管磁控开关,但是比它寿命长,响应快无磨损,而且安装时要注意磁铁的极性,磁铁极性装反无法工作。 内部原理图及输入/输出的转移特性和接线图如下所示:

实验十九 开关式霍尔传感器测转速实验

实验十九开关式霍尔传感器测转速实验 一、实验目的:了解开关式霍尔传感器测转速的应用。 二、基本原理:开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特电路整形成矩形波(开关信号)输出的传感器。开关式霍尔传感器测转速的原理框图19—1所示。当被测圆盘上装上6只磁性体时,圆盘每转一周磁场就变化6次,开关式霍尔传感器就同频率f相应变化输出,再经转速表显示转速n。 图19—1开关式霍尔传感器测转速原理框图 三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、+5V直流稳压电源、电压表、频率\转速表;霍尔转速传感器、转动源。 四、实验步骤: 1、根据图19—2将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm。 2、将主机箱中的转速调节电源0~24V旋钮调到最小(逆时针方向转到底)后接入电压表(电压表量程切换开关打到20V档);其它接线按图19—2所示连接(注意霍尔转速传感器的三根引线的序号);将频频\转速表的开关按到转速档。 3、检查接线无误后合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变直流电机电枢电压),观察电机转动及转速表的显示情况。

图19—2 霍尔转速传感器实验安装、接线示意图 4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定后读取数据);画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。实验完毕,关闭电源。 n(转/ 406286108132157179203225250分) V(mv)2003004635006017037999019991104 电机的V-n(电机电枢电压与电机转速的关系)特性曲线 五、思考题: 利用开关式霍尔传感器测转速时被测对象要满足什么条件? 被测物能够阻挡或透过或反射霍尔信号,般都是一个发射头一个接收头若发射接收安装在同侧,则被测物必须能反射该信号,发射接收安装在对侧,则被测物必须能阻挡透过该信

开关电源的分类及运用

开关电源的分类及运用 1.开关电源的分类 开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。 1.1DC/DC变换 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton (通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类: (1)Buck电路降压斩波器,其输出平均电压Uo小于输入电压Ui,极性相同。 (2)Boost电路升压斩波器,其输出平均电压Uo大于输入电压Ui,极性相同。 (3)Buck-Boost电路降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路降压或升压斩波器,其输出平均电压Uo大于或小于输入电压UI,极性相反,电容传输。 当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制

造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm3,效率为(80-90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),是整个电路效率提高到90%。 1.2AC/DC变换 AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为整流,功率流由负载返回电源的称为有源逆变。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作消耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。 AC/DC变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为,单项、三相、多相。按电路工作象限又可分为一象限、二象限、三象限、四象限。

集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场

实验报告 班级: 姓名: 学号: 一、实验名称 集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场 二、实验目的 1、掌握霍尔效应原理测量磁场; 2、测量单匝载流原线圈和亥姆霍兹线圈轴线上的磁场分布。 三、实验仪器 亥姆霍兹线圈磁场测定仪、包括圆线圈和亥姆霍兹线圈平台(包括两个圆线圈、固定夹、不锈钢直尺等)、高灵敏度毫特计和数字式直流稳压电源。 四、实验原理 1、圆线圈的磁场 根据毕奥—萨伐尔定律,载流线圈在轴线上某点的磁感应强度为: NI x R R B 2 322 20) (2+= μ 式中I 为通过线圈的电流强度,R 为线圈平均半径,x 为圆心到该点的距离,N 为线圈的匝数,A m T /1047 0??=-πμ,为真空磁导率。因此,圆心处的磁感应强度为 NI R B 20 μ= 2、亥姆霍兹线圈的磁场 亥姆霍兹线圈:两个半径和匝数完全相同的线圈,其轴向距离等于线圈的半径。 这种线圈的特点是当线圈串联连接并通以稳定的直流电后,就可在线圈中心区域内产生较为均匀性较好的磁场,因而成为磁测量等物理实验的重要组成部件,与永久磁铁相比,亥姆霍兹线圈所产生的磁场在一定范围内具有一定的均匀性,且产生的磁场具有一定的可调性,可以产生极微弱的磁场直至数百高斯的磁场,同时在不通电的情况下不会产生环境磁场。 亥姆霍兹线圈如图所示,是一对彼此平行且连通的共轴圆形线圈,两线圈内电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的半径R 。 设z 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,根据毕奥—萨伐尔定律及磁

场叠加原理可以从理论上计算出亥姆霍兹线圈轴上任意一点的磁感应强度为 ? ?????-++++???='--232 2232220]z 2([]z 2([21))R R R R R I N B μ 而在亥姆霍兹线圈上中心O 处的磁感应强度' B 为 R I N B ??= 02 3 ' 058μ 当线圈通有某一电流时,两线圈磁场合成如图 可看出,两线圈之间轴线上磁感应强度在相当大的范围内是均匀的。 3、测量亥姆霍兹线圈磁场的方法——霍尔效应法 直接测量,设备简单,操作容易,适用于弱磁场和非均匀磁场的测量,霍尔探头经定标后可直接显示磁感应强度值。 五、实验步骤 1、载流圆线圈和亥姆霍兹线圈轴线上各点磁感应强度的测量 (1)先按要求将各导线连接好,直流稳压电源中数字电流表已串接在电源的一个输出端,测量电流I=100 mA 时,单线圈a 轴线上各点磁感应强度a B ,每隔1.00 cm 测量一个数据。实验中,随时观察毫特斯拉计探头是否沿线圈轴线移动。每测量一个数据,必须先在直流电源输出电路断开(I=0)调零后,才测量和记录数据。将测得数据填入表1中。 (2)用理论公式计算圆线圈中轴线上各点的磁感应强度,将计算结果填入表1中并与实验测量结果进行比较。 (3)在轴线上某点转动毫特斯拉计探头,观察一下该点磁感应强度测量值的变化规律,并判断该点磁感应强度的方向。 (4)将线圈a 和线圈b 之间的距离d 调整到d=10.00 cm ,这时,组成一个亥姆霍兹线圈。取电流值I=100 mA ,分别测量两线圈单独通电时,轴线上各点的磁感应强度值a B 和b B ,然后将亥姆霍兹线圈在通同样电流I=100mA ,在轴线上的磁感应强度值b a B +,将测量结果填入表2中。证明在轴线上的点b a b a B B B +=+,即载流亥姆霍兹线圈轴线上任一点磁感应强度是两个载流单线圈在该点上产生的磁感应强度之和。 (5)分别把亥姆霍兹线圈间距调整为2 R d = 和R d 2=,与步骤(4)类似,测量在电流为I=100mA 时轴线上各点的磁感应强度值,将测量结果分别填入表3和表4中。 (6)作间距2 R d = ,R d =,R d 2=时,两个线圈轴线上磁感应强度B 与位置z 之间关系图,即B-z 图,验证磁场叠加原理。 2、载流圆线圈通过轴线平行面上的磁感应线分布的描绘 2 R 2 R R R B

霍尔式接近开关原理、术语解释、应用注意事项

霍尔式接近开关原理、术语解释、应用注意事项 1.原理 当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U,其表达式为:U=K·I·B/d,其中 K 为霍尔系数,I 为薄片中通过的电流,B 为外加磁场(洛伦慈力 Lorrentz)的磁感应强度,d 是薄片的厚度。由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比。霍尔接近开关就属于这种有源磁/电转换器件,它是在霍尔效应原理的基础上,利用先进的集成封装和组装工艺制作而成,它可方便地把磁输入信号转换成实际应用中的电

信号,同时又具备工业场合实际应用易操作和可靠性的要求。霍尔接近开关的输入端是以磁感应强度 B 来表征的,当 B 值达到一定的程度(如 B1)时,开关内部的触发器翻转,霍尔接近开关的输出电平状态也随之翻转。输出端一般采用晶体管输出,和电感式接近开关类似的有:NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出几种类型。 霍尔接近开关是磁性接近开关中的一种,具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌制作成一体化结构,所以能在各类恶劣环境下可靠地工作。它可应用于接近开关、压力开关、里程表等,它是一种新型的电器配件。霍尔式开关比电感式开关响应频率高,它用磁钢触发,电感式用导磁金属触发,霍尔式开关感应距离除了与传感器本身性能有关外,还与所选磁钢磁场强度有关 2.霍尔接近开关术语解释 ① 磁感应强度:霍尔接近开关在工作时,它所要求磁钢具有的磁场强度的大小。一般磁感应强度值B 为 0.02~0.05 特斯拉。 ② 响应频率:按规定在 1 秒的时间间隔内,允许霍尔开关动作循环的次数。

开关电源的分类及应用

开关电源的分类及应用 1引言 随着电力电子技术的告诉发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。 2开关电源的分类 人们的开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、

小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。 2.1 DC/DC变换 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路有以下几类: (1) Buck电路——降压斩波器,其输出平均电压Uo小于输入电压Ui,极性相同。 (2) Boost电路——升压斩波器,其输出平均电压Uo大于输入电压Ui,极性相同。 (3) Buck-Boost电路——降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,极性相反,电感传输。 (4) Cuk电路——降压或升压斩波器,其输出平均电压Uo 大于或小于输入电压UI, 极性相反,电容传输。 当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W

4种霍尔开关Hall IC的介绍及原理

有四品种型的开关霍尔传感器霍尔开关hall ic:单极、双极、锁存、全极 霍尔开关的输出端是以磁感应强度B 来表征的,当B 值到达一定的水平(如B1)时,霍尔开关外部的触发器翻转,霍尔开关的输入电平形态也随之翻转。输入端普通采用晶体管输入,和接近开关相似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输入之分。 霍尔开关具有无触电、低功耗、长运用寿命、呼应频率初等特点,外部采用环氧树脂封灌成一体化,因此能在各类恶劣环境下牢靠的任务。霍尔开关可使用于接近开关,压力开关,里程表等,做为一种新型的电器配件。 单极霍尔:AH44E AH44L AH443 AH201 ATS137 AH543 S3144 S137 A3144 A04E A1101 用于无触点开关,汽车点火器,刹车电路,地位、转速检测与控制,平安报警安装,纺织控制零碎…… 双极霍尔AH513 AH3172 AH413 AH512 AH6851 AH173 AH175 S41 S732 76 277 EW732 177 EW632 用于无触点开关,电机风扇 线性霍尔:AH49E AH3503 SS495A SS496A A1321LUA A1321EUA 用于运动检测器,齿轮传感器,接近检测器,电流电压功率测量,厚度测量,电动车、汽车调速…… 全极性微功耗霍尔4913 AH3661 用于手机、水表、相机、笔记本电脑、手电筒…… 美国ALLEGRO A1104EU A1104EUA A1104LU A1104LUA A1104ELHLT 贴片23封装A1101EU A1101EUA A1101LU A1101LUA A1101ELT 贴片23封装A1102LLHLT 贴片23封装A3280LUA A1302EUA A1321LUA 美国HONEYWELL SS495A SS496A SS496B SS413A SS411A 日本AKE EW732 EW6321 EW512 HW302B HW322B (是HW302B的晋级产物)德国MELEXIS 17CA MLX90217 A1104开关型霍尔的任务原理霍尔开关hall ic 霍尔传感器的外形图和与磁场的作用关系。磁钢用来提供霍尔能感应的磁场,当霍尔元件以切割磁力线的方式绝对磁钢运动时,在霍尔输入端口就会有电压输入,因此霍尔传感器和磁钢需求配对运用。霍尔传感器检测转速表示图如下。在非磁资料的圆盘边上复制一块磁钢,霍尔传感器固定在圆盘外缘左近。圆盘每转动一圈,霍尔传感器便输入一个脉冲。经过单片机测量发生脉冲的频率,就能够得出圆盘的转速。一样道理,按照圆盘(车轮)的转速,再联合圆盘的周长就是计算出物体的位移。假如要增长测量位移的精度,能够在圆盘(车轮)上多增长几个磁钢。 电机的转速测量:1. 电动自行车速率测量;2. 智能小车位移测量等。 备注:输出电压:4.5-28V;任务电流:20mA;为常开型霍尔元件。 当没有信号发生时,能够改动一下磁钢的方向,霍尔对磁钢方向有请求。没有磁钢时输入高电平,有磁钢时输入低电平。 摘录自https://www.doczj.com/doc/f315585651.html,

霍尔位置传感器原理和应用

霍尔位置传感器原理和应用 一.霍尔位置传感器的特点: 霍尔位置传感器是一种检测物体位置的磁场传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔位置传感器以霍尔效应原理为其工作基础。 霍尔位置传感器具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔位置传感器开关型输出的具有无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。采取了各种补偿和保护措施的霍尔位置传感器的工作温度范围可达到-55℃~150℃。 按照霍尔位置传感器的功能可将它们分为:霍尔线性型传感器和霍尔开关型传感器。前者输出模拟量,后者输出数字量。 霍尔位置传感器通过它对磁场变化的测量,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制,因而有着广泛的用途。 二.霍尔位置传感器的原理: 2.1霍尔效应和霍尔元件

在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压,这个半导体薄片称为霍尔元件。霍尔元件可用多种半导体材料制作,如Ge、Si、InSb、GaAs、InAs、InAsP等等。 2.2 霍尔集成电路 霍尔集成电路是将一个霍尔元件和电压放大电路、信号处理电路集成在同一个硅芯片上,生产出单片霍尔集成电路,它又分为霍尔线性电路和霍尔开关电路。

霍尔传感器的原理及应用

第八章霍尔传感器 课题:霍尔传感器的原理及应用课时安排:2 课次编号:12 教材分析 难点:开关型霍尔集成电路的特性 重点:霍尔传感器的应用 教学目的和要求1、了解霍尔传感器的工作原理; 2、了解霍尔集成电路的分类; 3、掌握线性型和开关型霍尔集成电路的特性; 4、掌握霍尔传感器的应用。 采用教学方法和实施步骤:讲授、课堂互动、分析教具:各种霍尔元 件、霍尔传感器 各教学环节和内容 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出 端,正极接V cc端。在没有磁铁靠近时,OC门截止,蜂鸣 器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通, 蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例 如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 从以上演示,引入第一节霍尔效应、霍尔元件的工作原理。 第一节霍尔元件的工作原理及特性 一、工作原理 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应(Hall Effect),该电动势称为霍尔电动势(Hall EMF),上述半导体薄片称为霍尔元件(Hall Element)。用霍尔元件做成的传感器称为霍尔传感器(Hall Transducer)。

图8-1霍尔元件示意图 a)霍尔效应原理图b)薄膜型霍尔元件结构示意图c)图形符号d)外形霍尔属于四端元件: 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势E H可用下式表示 E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为 E H=K H IB cosθ(8-2) 从式(8-2)可知,霍尔电动势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电动势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电动势为同频率的交变电动势。 目前常用的霍尔元件材料是N型硅,霍尔元件的壳体可用塑料、环氧树脂等制造。 二、主要特性参数 (1)输入电阻R i恒流源作为激励源的原因:霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值从几十欧到几百欧,视不同型号的元件而定。温度升高,输入电阻变小,从而使输入电流I ab变大,最终引起霍尔电动势变大。使用恒流源可以稳定霍尔原件的激励电流。 (2)最大激励电流I m激励电流增大,霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电动势的温漂增大,因此每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安至十几毫安。 提问:霍尔原件的最大激励电流I m为宜。 A.0mA B.±0.1 mA C.±10mA D.100mA (4)最大磁感应强度B m磁感应强度超过B m时,霍尔电动势的非线性误差将明显增大,B m的数值一般小于零点几特斯拉。 提问:为保证测量精度,图8-3中的线性霍尔IC的磁感应强度不宜超过为宜。 A.0T B.±0.10T C.±0.15T D.±100Gs

集成开关型霍尔传感器在汽车发动机启动按钮中的应用

普通物理实验C 课程论文 题目集成开关型霍尔传感器在汽车发动机启动按钮中的应用 学院物理科学与技术学院电子信息工程学院专业物理学(师范) 年级2011级 学号222011315231243 姓名王黎阳 指导教师雷衍涟 论文成绩____________________________________ 答辩成绩____________________________________ 2012年12月13日

集成开关型霍尔传感器在汽车发动机启动按钮中的应用 王黎阳 西南大学物理科学与技术学院,重庆 400715 摘要:为了解决传统钥匙式按钮开关启动汽车发动机稳定性差、不方便、容易发生机械故障等问题,设计了一种利用集成开关型霍尔传感器制成的启动式按钮开关,并采用磁极正对霍尔传感器接近启动的启动方式以及单极磁场的磁输入方式,以A44E型霍尔开关为例应用于启动汽车发动机,实现了方便、快速、美观、成本低、性能稳定、可靠性高等特点。 关键词:按钮开关;集成开关型霍尔传感器;A44E型霍尔开关;汽车发动机启动; 1引言 按钮开关是一种结构简单,应用十分广泛的主令电器。在电气自动控制电路中,用于手动发出控制信号以控制接触器、继电器、电磁起动器等。按钮开关的结构种类很多,可完成启动、停止、正反转、变速以及互锁等基本控制。而在启动汽车发动机时,传统的钥匙式按钮开关操作复杂,需要钥匙这一开启工具,且容易造成机械故障。 本文运用集成开关型霍尔传感器设计了一种新型启动式按钮开关,采用磁极正对霍尔传感器接近启动的启动方式以及单极磁场的磁输入方式,并以A44E型霍尔开关为例介绍它在汽车发动机启动时的应用,以实现方便、快速、准确、安全、美观等特点。 2集成开关型霍尔传感器 2.1集成霍尔开关的工作原理 集成霍尔传感器是在制造硅集成电路的同时,在硅片上制造具有传感器功能的霍尔效应器件,因而使集成电路具有对磁场敏感的特性。集成开关型霍尔传感器是把霍尔器件的输出电压经过一定的阀值甄别处理和放大,而输出一个高电平或低电平的数字信号[1]。 如图1所示,集成霍尔开关是由稳压器A、霍尔电势发生器(即硅霍尔片)B、差分放大法器C、施密特触发器D和OC门输出E五个基本部分组成。1,2,3代表集成霍尔开关的三个引出端点。

霍尔传感器及其应用

霍尔传感器及其应用 一、霍尔传感器介绍 (一)简介 霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。 (二)霍尔传感器的工作原理 磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位差,这就是所谓的霍尔电压。 霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低,霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁感应强度。下图所示的方法是用一个转动的叶轮作为控制磁通量的开关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。这样,霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一位置,利用这一工作原理,可将霍尔集成电路片用作用点火正时传感器。霍尔效应传感器属于被动型传感器,它要有外加电源才能工作,这一特点使它能检测转速低的运转情况。

1-霍尔半导体元件2-永久磁铁3-挡隔磁力线的叶片 (三)霍尔元件 根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。 (四)优势和特点 1、霍尔传感器可以测量任意波形的电流和电压,如:直流、交流、脉冲波形等,甚至对瞬态峰值的测量。副边电流忠实地反应原边电流的波形。而普通互感器则是无法与其比拟的,它一般只适用于测量50Hz正弦波; 2、原边电路与副边电路之间有良好的电气隔离,隔离电压可达9600Vrms; 3、精度高:在工作温度区内精度优于1%,该精度适合于任何波形的测量; 4、线性度好:优于0.1%; 5、宽带宽:高带宽的电流传感器上升时间可小于1μs;但是,电压传感器带宽较窄,一般在15kHz以内,6400Vrms的高压电压传感器上升时间约500uS,带宽约700Hz。

开关电源的基本原理与分类方法

开关电源的基本原理与分类方法 开关电源是指调整功率管以开关方式进行工作的稳压电源。缩写为SPS(Switching Power Supply),开关电源的核心部分是一个直流变换器。目前开关电源向着高频、高可靠性、低功耗、低噪声、抗干扰和模 块化方向发展。开关电源现在在社会上应用越来越广泛,需求也越来越大。 电源在一个典型系统中或者在一台机器中担当十分重要的角色,电源给系统的电路提供持续、稳定的 能量,使得系统或者机器能够正常地工作。电源的好坏直接影响了系统能否正常工作。随着电源的应用和 需求越来越广泛,人们对于电源的要求也越来越高。人们对电源的效率、体积、重量、稳定性和可靠性等 方面都有了更高的要求。 开关电源正是以其效率高、体积小、重量轻、稳定性高、零负载消耗低等多方面的优势逐步取代了效 率低、又笨又重的线性电源。现在社会上出现的需要应用开关电源的仪器、机器越来越多;利用开关电源作为驱动电源的产品也层出不穷,例如LED驱动开关电源的需求量越来越多。而现代电力电子技术的发展, 特别是大功率器件IGBT和MOSFET、各类电源芯片的迅速发展,将开关电源的工作频率提高到相当高的水平,使得开关电源的转换效率不断提高。人们对于转换效率的不断要求也促使开关电源的开发技术将越来 越高。 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输 出短路保护电路等部分构成。 开关带能源的工作原理: 首先是将交流输入电源经整流滤波成脉动直流;然后通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;接着开关变压器次级感应出高频电压,经整流滤波供给负载;最后,输出 部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。 常见的开关电源的分类方法有下列几种: 1.按激励方式的不同可以划分为他激式和自激式。他激式开关电源电路中专设激励信号振荡器;自激式开关功率管兼作振荡管。该形式的开关电源电路结构简单, 元器件少, 可以做成低成本的开关电源。 2.按调制方式的不同可以划分为脉宽调制型、频率调整型和混合调整型。脉宽调制型保持振荡频率保 持不变, 通过调节脉冲宽度来改变输出电压的大小;频率调整型保持占空比保持不变(脉冲宽度保持不变) , 通过改变振荡频率来改变输出电压大小;混合调整型是脉冲宽度和振荡频率均可进行调节的开关电源。 3.按开关管电流的工作方式的不同可以划分为开关型和谐振型。开关型用开关晶体管把直流变成高频 标准方波, 其电路形式类似于他激式;谐振型用开关晶体管与LC谐振回路将直流变成标准正弦波, 其电路 形式类似于自激式开关电源。 4.按开关晶体管的类型的不同可以划分为晶体管型和可控硅型。晶体管型采用晶体管(包括场效应管) 作为开关功率管;可控硅型采用可控硅作为开关功率管。这种电路的特点是直接输入交流电压, 不需要一次整流部分。

相关主题
文本预览
相关文档 最新文档