当前位置:文档之家› 提高黄原胶热稳定性的发酵实践

提高黄原胶热稳定性的发酵实践

提高黄原胶热稳定性的发酵实践
提高黄原胶热稳定性的发酵实践

压杆的稳定性验算

建筑力学行动导向教学案例教案提纲

模块七压杆稳定性 7.1压杆稳定的概念 为了说明问题,取如图 7-2 (a)所示的等直细长杆,在其两端施加轴向压力 F ,使杆在直 线状态下处于平衡,此时,如果给杆以微小的侧向干扰力, 使杆发生微小的弯曲,然后撤去干扰 力,贝9当杆承受的轴向压力数值不同时, 其结果也截然不同。当杆承受的轴向压力数值 F 小于某 数值 F cr 时,在撤去干扰力以后, 杆能自动恢复到原有的直线平衡状态而保持平衡, (a)、(b)所示,这种原有的直线平衡状态称为稳定的平衡; 压力F 小于匚 时,杆件就能够保持稳定的平衡,这种性能称为压杆具有稳定性;而当压 F cr 杆所受的轴向压力 F 等于或者大于 F cr 时,杆件就不能保持稳定的平衡而失稳。 压杆经常被应用于各种工程实际中,例如脚手架立杆和基坑支护的支撑杆,均承受压力, 此时必须考虑其稳定性,以免引起压杆失稳破坏。 7.2临界力和临界应力 7.2.1细长压杆临界力计算公式一一欧拉公式 从上面的讨论可知,压杆在临界力作用下,其直线状态的平衡将由稳定的平衡转变为不稳 定的平衡,此时,即使撤去侧向干扰力,压杆仍然将保持在微弯状态下的平衡。当然,如果压力 超过这个临界力,弯曲变形将明显增大。 所以,使压杆 在微弯状态下保持平衡的最小的轴向压力, 即为压杆的临界压力。下面介绍不同约束条件下压杆的临界力计算公式。 一、两端铰支细长杆的临界力计 算公式一一欧拉公式设两端铰支长度 为z 的细长杆,在轴向压力/ cr 的作 用下保持微弯平衡状态,如图 7-3所示。杆在小变形时其挠曲线近似微分方程为: 图7-2 到某一数值匚时,即使撤去干扰力,杆仍然处于微弯形 F cr 状,不能自动恢复到原有的直线平衡状态,如图 7-2 (c)、 (d)所示,则原有的直线平衡状态为 不稳定的平衡。如果力 F 继续增大,则杆继续弯曲, 产生显著的变形,甚至发生突然破坏。 上述现象表明,在轴向压力 F 由小逐渐增大的过程中,压 杆由稳定的平衡转变为不稳定的平衡,这种现象称为压杆 丧失稳定性或者压杆失稳。显然压杆是否失稳取决于轴向 压力的数值,压杆由直线状态的稳定的平衡过渡到不稳定 的平衡时所对应的轴向压力,称为压杆的临界压力或临界 力,用表示 / cr 当压杆所受的轴向 图7-2 如图7-2 图 7-1 F 逐渐增大 当杆承受的轴向压力数值 图7-1

第八章 压杆稳定

第八章 压杆稳定 在某些特殊情况下(特别是杆件受压时),尽管杆件满足强度及刚度设计要求,但是,由于受力状态的改变,使得杆件仍然处于不安全状态,这种情形就是稳定的范畴。 §8.1压杆稳定的概念 物体保持静止或匀速直线状态称平衡状态。工程中的平衡状态主要指静止的平衡状态。杆件受到压力后,保持静止的平衡状态可能是稳定的,也可能是不稳定的。平衡状态的稳定性定义为:杆件在荷载作用下处于一定的位置(初始平衡位置)保持的平衡状态称(初始平衡状态),受到微小外界扰动使其偏离初始平衡位置,若外界扰动除去后仍能回到初始平衡位置,则称杆件的初始平衡状态是稳定的平衡状态;若外界扰动除去后不能回到初始平衡位置,且偏离初始平衡位置越来越远,则称杆件的初始平衡状态是不稳定的平衡状态;若外界扰动除去后不能回到初始平衡位置,但仍能停留在新的平衡位置,则称杆件的初始平衡状态是临界平衡状态,也称随遇平衡状态。压杆稳定问题就是指受压杆件处于静止的平衡状态的稳定性问题。 图8.1 工程中实际的压杆,其轴线不可避免的存在初弯曲,即压杆未受力时,已呈微弯状态,这时可简化为具有微小弯曲的压杆模型,如图8.1(a)所示,称为初弯曲压杆。杆件所受轴向压力的作用线,实际上也不可能与杆件轴线绝对重合,即存在初偏心,这时可简化为具有小偏心矩的压杆模型,如图8.1(b)所示,称为小偏心压杆。初弯曲压杆和为小偏心压杆在轴向压力作用下除产生压缩变形外,还要产生弯曲变形。实质上是偏心受压杆件。如果小偏心压杆的偏心距极小(近似等于零)或初弯曲压杆的微小弯曲极小(近似等于零),则压杆简化 学习指导 本章分4节内容,本章的学习目标是: (1)学习掌握压杆稳定的工程概念、压杆临界力的欧拉公式、压杆稳定的工程计算及提高压杆稳定性的措施。 (2)了解工程中常见的压杆稳定现象,掌握压杆稳定工程计算的基本方法,培养工作岗位有关受压构件设计的能力。 本章重点难点为:稳定的工程概念、压杆稳定的工程计算;理解两类稳定问题的实质。 (a) (b) (c)

黄原胶发酵及提取工艺的优化研究

黄原胶发酵及提取工艺的优化研究 张学欢张永奎 摘要黄原胶(Xanthan Gum)是由黄单胞菌属菌分泌的酸性胞外杂多糖,因其具有良好的稳定性和流变性,因而被广泛用于多种行业。本实验在前人研究成果的基础上,以提高黄原胶的产量为目的,通过单因素实验确定了:在30℃,180r/min的条件下摇床培养72h,初始碳源浓度为6%(蔗糖:淀粉=1:2),接种量为6%,;提取黄原胶时,加入2%(w/w)的硅藻土,充分震荡10min后离心30min(4000r/min),加入1%(w/v)的KNO3以及3倍体积的混醇(乙醇:异丙醇=3:1)能有效的提高提取率。在10L发酵罐中进行了小试,产胶率为3.21%。 关键词黄原胶;发酵;提取 The optimal control of the xanthan gum production and extraction Abstract:Xanthan Gum(XG) is a kind of acidic extracelluar carbohydrate by Xanthomonas campestris. This polysaccharide is used in many professions due to its characteristic. In order to improve the production rate of XG, the following studies were done. At the condition of 30 and 180r/min, The ℃ proper concentration of the carbon source is 6%,the composition of sucrose and starch is optimum carbon source and the optimum inoculum size is 10%. For the conditions of extraction XG, adding diatomite of 2%, agitation for 10 min, centrifugalization for 30min(4000r/min), adding KNO3 of 1% and alcohol for 3 times volume(ethyl alcohol: dimethyl carbinol=3:1) could improve the extraction effectively. Finally, the study in the fermentation tank were done, the viscosity of the final fermentation broth is 9320mPa?s, the production rate is 3.21%. Keywords:Xanthan gum; Fermentation; Extraction 引言 黄原胶(Xanthan gum)是由野油菜黄单胞菌或其它黄单胞菌属的菌株以碳水化合物为主要原料经发酵产生的一种胞外酸性水溶性多糖[1]。因其具有优良的理化性质[2],从本世纪50年代后期发现以来,到60年代初就开始进行商业性生产。本课题主要是在前人研究的基础上,以提高黄原胶的产量为目的,通过对培养基中碳源的组成,过程参数进行比较实验和控制的研i究,对黄原胶提取过程进行优化,并且通过在小型发酵罐中进行小试,为黄原胶的大规模工业生产提供参考,也为以后类似的研究打下一定基础。 1实验材料 1.1细菌 从龙泉驿区十陵镇菜园中采得十字花科植物油菜病变组织中筛选、诱变、驯化后得到的野油菜黄单胞菌UV。 1.2基础培养基 表1 基础培养基 Table1 Basic medium

《压杆稳定》问答题

压杆稳定 【例1】 压杆的压力一旦达到临界压力值,试问压杆是否就丧失了承受荷载的能力? 解:不是。压杆的压力达到其临界压力值,压杆开始丧失稳定,将在微弯形态下保持平衡,即丧失了在直线形态下平衡的稳定性。既能在微弯形态下保持平衡,说明压杆并不是完全丧失了承载能力,只能说压杆丧失了继续增大荷载的能力。但当压杆的压力达到临界压力后,若稍微增大荷载,压杆的弯曲挠度将趋于无限,而导致压溃,丧失了承载能力。且在杆系结构中,由于某一压杆达到临界压力,引起该杆弯曲。若在增大荷载,将引起结构各杆内力的重新分配,从而导致结构的损坏,而丧失其承载能力。因此,压杆的压力达到临界压力时,是其承受荷载的“极限”状态。 【例2】 如何判别压杆在哪个平面内失稳?图示截面形状的压杆,设两端为球铰。试问,失稳时其截面分别绕哪根轴转动? 解:(1)压杆总是在柔度大的纵向平面内失稳。 (2)因两端为球铰,各方向的μ=1,由柔度知l i μλ= (a )x y i i =,在任意方向都可能失稳。 (b ),x y i i <失稳时截面将绕x 轴转动。 (c )x y i i >,失稳时截面将绕y 轴转动。 【例3】 细长压杆的材料宜用高强度钢还是普通钢?为什么? 解:对于细长压杆,其临界压力与材料的强度指标无关,而与材料的弹性模量E 有关。由于高强度钢与普通钢的E 大致相等,而其价格贵于普通钢,故细长压杆的材料宜用普通钢。 【例4】 图示均为圆形截面的细长压杆(λ≥λp),已知各杆所用的材料及直径d 均相同,长度如图。当压力P 从零开始以相同的速率增加时,问哪个杆首先失稳?

1.6a P P 1.3a a P 解:方法一:用公式P lj = π2 EI /(μl )2 计算,由于分子相同,则μl 越大,P lj 越小,杆件越先失稳。 方法二:运用公式P lj =σlj A =π2 EA /λ2 ,分子相同,而λ=μl /i ,i 相同,故μl 越大,λ越大,P lj 越小,杆件越先失稳。 综上可知,杆件是否先失稳,取决于μl 。 图中,杆A :μl =2×a =2 a 杆B :μl =1×1.3a =1.3a 杆C :μl =0.7×1.6a =1.12a 由(μl )A >(μl )B >(μl )C 可知,杆A 首先失稳。 【例5】 松木制成的受压柱,矩形横截面为b ×h =100mm ×180mm ,弹性模量E =10GPa , λP =110,杆长l =7m 。在xz 平面内失稳时(绕y 轴转动),杆端约束为两端固定(图a ),在xy 平面内失稳时(绕z 轴转动),杆端约束为两端铰支(图b )。求木柱的临界应力和临界力。

黄原胶的生产

黄原胶(Xanthan Gum)的特性、生产及应用 许多微生物都分泌胞外多糖,它们或附着在细胞表面,或以不定型粘质的形式存在于胞外介质中,这些胞外多糖对于生物体间信号传递、分子识别、保护己体免受攻击、构造舒适的体外环境等方面都发挥着重要的作用。这些分泌的多糖结构各异,其中一些有着优良的理化性质,已为人类广泛应用。对于仍不为人类所知的绝大多数多糖,人们试图通过相关的多糖结构问的相互比较,推断出构效关系,从而人为地主动修饰、构造多糖,以满足应用的需要。其中,黄原胶是人类研究最为透彻、商业化应用程度最高的一种。. 1 黄原胶的结构 黄原胶(xanthan gum)是20世纪50年代美国农业部的北方研究室(Northern Re. gional Research Laboratories,NRRL)从野油菜黄单孢菌(Xanthomonas campestris)NRRLB一1459发现了分泌的中性水溶性多糖,又称为汉生胶。黄原胶由五糖单位重复构成,如图1,主链与纤维素相同,即由以13—1,4糖苷键相连的葡萄糖构成,三个相连的单糖组成其侧链:甘露糖一葡萄糖一甘露糖。与主链相连的甘露糖通常由乙酰基修饰,侧链末端的甘露糖与丙酮酸发生缩醛反应从而被修饰,而中间的葡萄糖则被氧化为葡萄糖醛酸,分子量一般在2×10。~2×10 D之间。黄原胶除拥有规则的一级结构外,还拥有二级结构,经x一射线衍射和电子显微镜测定,黄原胶分子问靠氢键作用而形成规则的螺旋结构。双螺旋结构之间依靠微弱的作用力而形成网状立体结构,这是黄原胶的三级结构,它在水溶液中以液晶形式存 在¨。 2 黄原胶的性质 黄原胶的外观为淡褐黄色粉末状固体,亲水性很强,没有任何的毒副作用,美国FDA于1969年批准可将其作为不限量的食品添加剂,1980年,欧洲经济共同体也批准将其作为食品乳化剂和稳定剂。由其二级结构决定,黄原胶具有很强的耐酸、碱、盐、热等特性。黄原胶最显著的特性是其控制液体流变性质的能力,它即便在低浓度时也可形成高粘度的、典型的非牛顿溶液,具有明显的假塑性(即随着剪切速率的增大,其表观粘度迅速降低)。溶液粘度的影响因素还包括溶质浓度、温度(既包括黄原胶的溶解温度,又包括测量 时的溶液温度)、盐浓度、pH值等,现分别简述之。 2.1 温度的影响黄原胶溶液的粘度既受测量时溶液温度的影响,也受溶解温度的影响。如下图2a所示,像大多数溶液一样,(在同平剪切力下测定)黄原胶溶液的粘度随溶液的温度(T )的升高而降低,且此变化过 程在10"C~80T:完全可逆。

工程力学第11章-压杆的稳定性问题答案

工程力学第11章-压杆的稳定性问题答案

工程力学(静力学与材料力学)习题详细解答(教师用书) (第11 章) 范钦珊唐静静 2006-12-18

2 第 11 章 压杆的稳定性问题 11-1 关于钢制细长压杆承受轴向压力达到临界载荷之后,还能不能继续承载有如下四 种答案,试判断哪一种是正确的。 (A )不能。因为载荷达到临界值时屈曲位移将无限制地增加; (B )能。因为压杆一直到折断时为止都有承载能力; (C )能。只要横截面上的最大正应力不超过比例极限; 正确答案是 C 。 (D )不能。因为超过临界载荷后,变形不再是弹性的。 11-2 今有两根材料、横截面尺寸及支承情况均相同的压杆.仅知长压杆的长度是短压 杆的长度的两倍。试问在什么条件下短压杆临界力是长压杆临界力的 4 倍?为什么? 解:只有当二压杆的柔度 λ ≥ λ 时,才有题中结论。这是因为,欧拉公式 F = π EI , 只有在弹性范围才成立。这便要求 P λ ≥ λP 。 Pcr (μl ) 2 11-3 图示四根压杆的材料及横截面(直径为 d 的圆截面)均相同,试判断哪一根最容易 失稳,哪一根最不容易失稳。

习题11-3 解:计算各杆之柔度:λ= μl ,各杆之i 相同 i

3 3 (a ) λa = 5l i (μ = 1) (b ) λb (c ) λ = 4.9l i = 4.5l (μ = 0.7) (μ = 0.5) c (d ) λd i = 4l i (μ = 2) 可见 λa > λb > λc > λd ,故(a )最容易失稳,(d )最 不容易失稳。 11-4 三根圆截面压杆的直径均为 d =160mm ,材料均为 A3 钢,E =200GPa ,σs = 240MPa 。已知杆的两端均为铰支,长度分别为 l 1、l 2 及 l 3,且 l 1=2l 2=4l 3 =5m 。试求各杆的临 界力。 解: i = d / 4 = 160 / 4 = 40mm , μ = 1 λ = μl 1 1 i = 5 ×10 40 = 1.25 3 λ = μl 2 2 i μl λ = 3 3 i = 2.5 ×10 40 = 1.25 ×10 40 = 62.5 = 31.5

黄原胶生产工艺1

黄原胶生产工艺 黄原胶是由D 一葡萄糖、D 一甘露糖、D 一葡萄糖醛酸、乙酸和丙酮酸组成“五糖重复单元”, 结构聚合体, 分子摩尔比为28 : 3 : 2 : 17: 0 .5 1 一0. 63 。黄原胶分子一级结构由p 一1, 4 键连接的D 一葡萄糖基主链与三糖单位侧链组成, 其侧链由D 一甘露糖和D 一葡萄糖醛酸交替连接而成。黄原胶分子侧末端含有丙酮酸, 其含量对黄原胶性能有很大影响, 在不同溶氧条件下发酵所得黄原胶, 其丙酮酸含量有明显差异。一般,溶氧速率小, 其丙酮酸含量低 生产工艺 工艺流程为: 菌种摇瓶扩大培养发酵罐发酵提取干燥粉碎成品包装 1. 1 生产菌株 黄原胶生产菌株为黄单抱菌属几个种, 目前工业化生产用菌株主要是甘蓝黑腐病黄单孢杆菌(亦名野油菜黄单胞菌) , 直杆状,宽0. 4 林n l ~ 0. 7 林m ,有单个鞭毛, 可移动,革兰氏阴性, 好氧。19 61 年Je an e S 等首先从甘蓝黑腐病斑中分离出甘蓝黑腐病黄单抱杆菌, 赵大建等在19 8 6 年也得到编号为N . K 一01 甘蓝黑腐病黄单抱杆菌。此外, 菜豆黄单胞菌、锦葵黄单胞菌和胡萝卜黄单胞菌亦可作为发酵菌种。 1. 2 培养基组成及优化 1.2.1 培养基 固体培养基:蔗糖2g,蛋白胨0.5g,酵母粉0.2g,琼脂2g,水100mL。 种子培养基:蔗糖2g,蛋白胨0.5g,酵母粉0.2g,水100mL。 发酵培养液:蔗糖5g,蛋白胨0.5g,0.3g,碳酸钙0.3g,磷酸二氢钾0.5g,硫酸镁0.25g,硫酸亚铁0.025g,柠檬酸0.025g,水100mL。 1.3 试验方法 1.3.1 平皿培养 取Φ9cm的培养皿,倒入25mL固体培养基,30℃培养4d~8d。 1.3.2 啤酒糟处理 啤酒糟(取自江苏食品职业技术学院啤酒实训中心)用自来水洗涤2次,烘干

压杆稳定计算.

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。 图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干

黄原胶介绍

水溶性优良增稠剂-黄原胶 黄原胶是一种微生物多糖,亦称黄单胞多糖,也称汉生胶。黄原胶是国际上新近发展起来的一种新型发酵产品。英文名称为Xanthan Gum商品名有Kelzan(工业级,美国)、Keltrol (食品级,美国)、Xc-Polymer(石油用)等。黄原胶是以淀粉为主要原料,经微生物发酵及一系列生化过程,最终得到的一种生物高聚物。其主要成分为葡萄糖、甘露糖、葡萄糖醛酸等。分子量达数百万。它具有突出的高粘性和水溶性,独特的流变学特性,优良的温度稳定性和PH稳定性,令人满意的兼容性。 1. 黄原胶的结构 黄原胶分子由D-葡萄糖、D-甘露糖、D-葡萄糖醛酸、乙酸和丙酮酸构成的“五糖重复单元”结构聚合体,分子量在2×106~20×106之间[2],所含乙酸和丙酮酸的比例取决于菌株和后发酵条件。黄原胶聚合物骨架结构类似于纤维素,但是黄原胶的独特性质在于每隔一个单元上存在的由甘露糖醋酸盐、终端甘露糖单元以及两者之间的一个葡萄糖醛酸盐组成的三糖侧链。侧链上的葡萄糖醛酸和丙酮酸群赋予了黄原胶负电荷。带负电荷的侧链之间以及侧链与聚合物骨架之间的相互作用决定了黄原胶溶液的优良性质。黄原胶高级结构是侧链和主链间通过氢键维系形成螺旋和多重螺旋。黄原胶的二级结构是侧链绕主链骨架反向缠绕,通过氢键维系形成棒状双螺旋结构。黄原胶的三级结构是棒状双螺旋结构间靠微弱的非极性共价键结合形成的螺旋复合体。 在低离子强度或高温溶液中,由于带负电荷侧链间的彼此相互排斥作用,黄原胶链形成一种盘旋结构。然而即使电解质浓度的少量增加也会减少侧链间的静电排斥,使得侧链和氢键盘绕在聚合物骨架上,聚合物链伸展成为相对僵硬的螺旋状杆。随着电解质浓度的增加,这种杆状结构在高温和高浓度的状态下也能稳定存在。在离子强度高于0.15mol/L 时,此结构可维持至100℃而不受影响。 一般水溶性聚合物骨架被化学药品或酶攻击、切断后,会丧失其增稠能力。而在黄原胶溶液中,聚合物骨架周围缠绕的侧链使它免于被攻击,所以黄原胶对化学药品和酶攻击的降解具有良好的抵抗性。 2.黄原胶的性能 黄原胶是一种类白色或浅黄色的粉末,是目前国际上集增稠、悬浮、乳化、稳定于一体,性能较为优越的生物胶[3]。分子侧链末端含有丙酮酸基团的多少,对其性能有很大影响[4]。黄原胶具有长链高分子的一般性能,但它比一般高分子含有更多的官能团,在特定条件下会显示独特性能。它在水溶液中呈多聚阴离子且构象是多样的,不同条件下表现出不同的特性,具有独特的理化性质。具体表现为: 2.1 悬浮性和乳化性 黄原胶因为具有显著的增加体系粘度和形成弱凝胶结构的特点而经常被使用于食品或其它产品,以提高O/W乳状液的稳定性。但麻建国[5]等的研究发现,只有黄原胶的添加量达到一定量后,才能得到预定的稳定作用。在黄原胶质量分数小于0.001%时,试验体系的稳定性变化不大;质量分数在0.01~0.02%时样品底部富水层出现,但体系无明显分层;质量分数大于0.02%时,乳状液很快分层。只有当质量分数超过0.25%时,黄原胶才能起到提高体系稳定性的作用。 2.2 水溶性 黄原胶在水中能快速溶解,有很好的水溶性。特别是在冷水中也能溶解,可省去繁杂的加热过程,使用方便。 2.3 流变性

黄原胶的发酵和提取

黄原胶的发酵和提取 牛佐朕 (组别:周三组指导教师:魏东盛日期:2014.11.19) [摘要]:利用野油菜黄单胞菌(Xanthomonas campestris)可以产生胞外荚膜多糖的性质,通过种子培养基的培养,种子培养基提取液接种到发酵培养基培养72h,并用乙醇提纯制得黄原胶,求得多糖产率,了解微生物多糖在工业上的制法以及用途。 [关键词] 黄原胶,发酵,提纯 正文: 1.前言: 黄原胶应用范围很广,目前世界上食品工业应用占60%,石油及其它工业占40%。黄原胶在食品工业中是理想的增稠剂、乳化剂、成型剂,在某些苟刻条件下(如pH3— 9,温度80—130℃),它的性能基本稳定,比明胶、CMC、海藻胶、果胶等优越。黄原胶另一个大市场是石油工业,黄原胶在增粘、增稠、抗盐、抗污染能力远比其它聚台物强,尤其在海洋、海滩、高卤层和永冻土层钻井,黄原胶用于泥浆处理、完井液和三次采油等方面效果显著,对加快钻井速度、防止油井坍塌、保护油气田、防止井喷、大幅度提高采油率等方面都有明显的作用。黄原胶在其它行业中也有广大的市场。用它作为釉浆悬浮剂和粘结剂.被称为陶瓷工业的重大技术革新。对于具有如此重要作用的黄原胶,我国黄原胶的还存在许多影响和制约因素。本文着重阐述了黄原胶对于食品的应用、黄原胶的生产工艺及黄原胶生产工艺中影响因素的控制。 多糖是多个单糖分子经脱水缩合形成的结构复杂、高分子量的糖类物质,广泛分布与自然界中。多糖也出现在微生物中——G+和G-细胞壁的主要成分肽聚糖就是细菌的细胞质合成运送至细胞膜外,构成细胞壁的多糖物质。 黄原胶是用黄单孢菌经微生物发酵制取的生物细胞外粘多糖,具有良好的增粘性、假塑性、耐酸碱性和抗高温性,能耐高浓度盐,具有乳化和均匀悬浮颗粒等性能。用微生物发酵的方法生产黄原胶在国内外有着广泛的前景,并且越来越引起人们的重视。

压杆稳定小结

压杆稳定小结 1、 压杆稳定的概念 稳定平衡是指干扰撤去后可恢复的原有平衡;反之则为不稳定平衡。 压杆稳定性是指压杆保持或恢复原有平衡状态的能力。 压杆的临界压力是指压杆由稳定平衡转变为不稳定平衡时所受轴向压力的界限值,用cr F 来表示。 2、 细长中心受压直杆的临界力 在线弹性和小变形条件下,根据压杆的挠曲线近似微分方程,结合压杆的边界条件,可推导得到使压杆处于微弯状态平衡的最小压力值,即压杆的临界压力欧拉公式可写成统一的形式: 2 2 ) (l EI F cr μπ= 式中μ为长度因数。几种常见细长压杆的临界力可见,杆端约束越强,杆的长度因数越小。l μ为相当长度,可理解为压杆的挠曲线两个拐点之间的直线距离。 (d) (d)表13-1 (d) 表13-1

3、 压杆的临界应力总图 (1) 压杆的临界应力 压杆在临界力作用下,其横截面上的平均应力称为压杆的临界应力, cr cr F A σ= (2) 欧拉公式的适用范围 线弹性范围,()22cr cr p 22 F EI E A l A ππσσλμ===≤ 即 p λλ≥ = 时,欧拉公式才能适用。通常称p λλ≥的压杆为大柔度压杆或细长压杆。 (3) 压杆的柔度(或长细比) i l μλ= 是一无量纲的量。一般情况下,由于杆端约束(μ)或惯性半径(i )的不同,压杆在不同的纵向平面内具有不同的柔度值,压杆失稳首先发生在柔度最大的纵向平面内。

(4) 临界应力总图 压杆的临界应力随柔度λ变化的λσ-cr 图称为临界应力总图。 大柔度杆p λλ≥,临界应力低于比例极限,可按欧拉公式计算,2 2 λπσE cr = ; 中柔度杆p s λλλ≤≤,临界应力超过比例极限,可按经验公式计算,如直线公式: λσb a cr -=,其中a 、b 为与材料有关的常数。或钢结构设计中采用的抛物线公式,以及折减弹性模量理论进行计算; 小柔度杆s λλ≤(或b λ),临界应力达极限应力:塑性材料s cr σσ=,脆性材料 cr b σσ=,属于强度问题。 其中,p p E σπλ2=,s s a b σλ-=为材料常数,仅与压杆的材料有关。 4、 压杆的稳定计算 (1) 压杆的稳定条件 采用稳定安全因数法,压杆的稳定条件为: []st st n n ≥ 或 []st st cr F n F F =≤ ][ 或 []st st cr n σσσ=≤][ 式中,[]st n 为规定的稳定安全因素。st n 为工作安全因数,由下式确定: 图13-12

黄原胶-稳定剂、增稠剂

2. 添加剂的通用名称、功能分类, 用量和使用范围 一、通用名称 中文名称:黄原胶 英文名称:Xanthan Gum 二、功能分类 稳定剂、增稠剂 三、使用量 最大使用量9 g/kg 说明:欧盟批准的黄原胶在特殊医学用途婴儿及幼儿配方食品中的最大使用量为1.2g/L,按照雅培水解乳蛋白婴儿配方奶粉的标准冲调倍数7.5:1折算,即9 g/kg。 四、使用范围 特殊医学用途婴儿配方食品

3.证明技术上确有必要和使用效果的 资料或者文件

前言 欧洲食品科学委员会(Scientific Committee on Food,SCF)在1997年关于《Opinion on Certain Additives for Use in Foods for Infants and Young Children in Good Health and in Foods for Special Medical Purposes for Infants and Young Children》中指出:“委员会意识到,由于下面原因,相对于批准于正常的婴幼儿食品中的添加剂,特殊医学用途婴幼儿配方食品的性质决定了其需要的添加剂种类可能更广,添加量可能更高。委员会还认识到,由于历史原因,长期以来不同厂商在其特殊医学用途婴幼儿配方食品中开发使用的不同添加剂,可能仍然具有相同的功能……特殊医学用途婴幼儿配方食品包含种类繁多的产品,有液态、粉末状和半固态等多种形态,每一种特定配方有其独特的技术要求。特殊医学用途婴幼儿配方食品一般由“元素”类型(配方含有游离氨基酸,葡萄糖浆或麦芽糊精以及低含量的脂肪)或者“半元素”类型(配方含水解蛋白,麦芽糊精以及脂肪)成分以及维生素、矿物质和微量元素组成。脂肪和淀粉的使用往往也与在正常婴幼儿中使用的不同。” 因此,特殊医学用途婴儿配方食品由于产品配方及工艺的特殊性,其添加剂的使用的的技术要求与正常婴幼儿食品的差别很大。特殊医学用途婴儿配方食品中需要使用那些批准于正常婴幼儿食品的添加剂之外其他添加剂。 1.选择黄原胶作为增稠剂的依据: ?首先,特殊医学用途婴儿配方食品缺少乳化稳定成分,需要添加黄原胶作为增稠剂: a. 维持产品物系稳定,防止冲调复溶后产品中油溶性营养素浮至顶层氧 化,低水溶性成分如膳食纤维的沉淀,以避免营养素摄入不均;

年产1000吨黄原胶发酵工厂的设计

摘要 黄原胶是由甘蓝黑腐黄单胞菌利用碳水化合物产生的一种胞外杂多糖,它具有良好的水溶性、增粘性、假塑性和耐酸碱、耐盐及耐酶解的能力,被广泛应用于食品、石油、印染、纺织等领域。此次毕业设计的题目是年产1000 吨黄原胶发酵工厂设计。为满足生产任务的要求,通过查阅相关的文献书籍,收集黄原胶发酵生产资料,从而设计出经济合理的黄原胶发酵生产路线。随后对工艺流程中所涉及的物料和热量等进行了衡算,同时完成了对主要生产设备和辅助设备的合理选型。另外,绘制出厂区总平面布置图、发酵车间的平面布置图、发酵车间立体布置图、全厂的工艺流程图、发酵罐的结构图和精馏塔的结构图。 关键词:年产1000吨黄原胶;发酵;工厂设计

Abstract Xanthan gum is an anionic extracellular heteropolysaccharide produced by the bacterium Xanthomonas campestris XUB-11.It has good water solubility and viscosity, plasticity and increasing resistance to acid and alkali, salt and enzyme-resistant ability.Xanthan gum is widely used in petroleum, printing and dyeing, food, textile and other fields.The topic of this graduation project is an annual output of 1000 tons of xanthan gum fermentation plant design. To meet the requirements of production task, by reviewing some relevant articles and books, collecting the fermentation production of xanthan gum, thus scheme out the economic rationality of xanthan gum fermentation route. Subsequently to compute material and heat balance involved in the technological process ,and complete a reasonable selection of main production equipment and auxiliary equipment. In addition, draw the layout of the factory, chief fermentation workshop, floor plan, three-dimensional layout of the fermentation plant, whole plant process flow diagram, structure diagram of the fermentation tanks and distillation column chart. Keywords:an annual output of 1000 tons of xanthan gum; fermentation; plant design

产黄原胶发酵培养基的优化工艺研究

产黄原胶发酵培养基的优化工艺研究 杨健,姚笛,王颖,于长青,王长远,高玉荣 (黑龙江八一农垦大学食品学院,黑龙江大庆 163319) 摘要:本实验研究不同培养基成分及不同添加量的碳源、氮源等营养物质对黄原胶产量及其黏度的影响。在其他营养物质一定的情况下,利用单因素实验分别对培养基中碳源、氮源、无机盐等进行了初步筛选,得到的最佳碳源是玉米淀粉,氮源是豆饼粉,加入磷盐、镁盐、钙盐等有利于黄单胞菌的生长及其代谢产物-黄原胶的分泌。最后利用正交实验确定了碳源、氮源、碳酸钙的最佳添加量。结果表明:玉米淀粉5%,豆饼粉0.5 %,碳酸钙0.4%时,黄原胶产率可达3.44 %,黏度达19.26 mm2/s。 关键词:黄原胶;发酵;培养基;优化 文章篇号:1673-9078(2011)8-935-937 Optimization of the Fermentation Medium for Producting Xanthan Gum YANG Jian, YAO Di, WANG Ying, YU Chang-qing, WANG Chang-yuan, GAO Yu-rong (College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China) Abstract: The effects of different media composition and different amounts of carbon, nitrogen and other nutrients on the production of xanthan gum and viscosity were studied. The best carbon and nitrogen sources were corn starch and soybean powder, respectively. The addition of phosphate, magnesium and calcium enhanced the growth of Xanthomonas and the secretion of its metabolite-xanthan gum. The addition contents of carbon, nitrogen and CaCO3 were optimized by orthogonal experiment: cornstarch 5%, soybean powder 0.5%, CaCO3 0.4.%, under these conditions, Xanthan gum yield was 3.45 % and viscosity of fermentation broth was 19.26 mm2/s. Key words: xanthan gum;fermentation; culture medium; Optimization; 黄原胶(Xanthan gum)又称黄胶、汉生胶,是一种自然多糖和重要的生物高聚物,它是由五糖单位重复构成,主链与纤维素相同,即以β-1,4糖苷键相连的葡萄糖构成,三个相连的单糖组成其侧链[1,2]。黄原胶具有良好的增粘性和悬浮能力,有很高的稳定性,耐酸碱、高盐环境,抗高温、低温冷冻,易生物降解,抗污染能力强;可同多种物质(酸、碱、盐、表面活性剂、生物胶等)互配,具有令人满意的兼性,并有良好的触变性和假塑性;有良好的分散作用和乳化稳定作用[2]。黄原胶已广泛用于食品、石油、陶瓷、纺织、印染、医药、造纸、地矿、灭火、涂料、牙膏、化妆品等20多个行业,是目前世界上生产规模最大且用途极为广泛的微生物多糖[4~5]。 上世纪50年代中期美国农业部北部研究中心Jeanne等人发现了黄原胶,它的生产菌是野油菜黄单胞杆菌NRRLB-1459,此后研究发现甘蓝黑腐病黄单胞杆菌、锦葵黄单胞杆菌、胡萝卜黄单胞杆菌、木薯萎蔫病黄胞菌、美人蕉枯叶黄单胞杆菌等都能产黄原胶。我国收稿日期:2011-04-20 基金项目:黑龙江省教育厅科技研究项目(11551324) 通讯作者:姚笛(1980-),女,硕士,讲师,研究方向为食品微生物与生物技术 黄原胶研究起步于20世纪70年代末,随着黄原胶工业化生产技术日趋完善,尤其是生物技术的发展使黄原胶的发酵产率、发酵液胶浓度等指标大大提高,发酵周期大大缩短。随着人们对黄原胶功效的深入了解,寻求有利于黄单胞菌生产高产量、高黏度黄原胶的培养基,就显得尤为重要[6]。黄原胶在工业上主要是以淀粉为碳源,以鱼粉、豆饼粉为氮源,由野油菜黄单胞杆菌经好氧深层发酵而得到含黄原胶的发酵液,发酵液可通过酶降解和硅藻土吸附提纯,用超滤技术浓缩提纯发酵液,然后用乙醇析出浓缩液中的黄原胶[7]。 发酵培养基不仅影响黄原胶的产量而且对产物的质量也有一定的作用[8]。本实验目的是确定产黄原胶发酵培养基的最佳碳源、氮源、无机盐等营养因素,然后优化各项营养物质的添加量以达到对产黄原胶发酵培养基的优化,通过小规模的发酵试验,以期达到对黄原胶的大规模工业化生产提供理论参考。 1 材料与方法 1.1 实验材料 1.1.1 菌种 野油菜黄单胞杆菌(Xanthomonas campestris 10258),购自中国工业微生物菌种保藏管理中心。 935

!第八章压杆稳定性

15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)? 解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。 15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。 解:(a) 柔度: 230 1500.4 λ?= = 相当长度:20.30.6l m μ=?= (b) 柔度: 150 1250.4 λ?== 相当长度:10.50.5l m μ=?= (c) 柔度: 0.770 122.50.4 λ?= = 相当长度:0.70.70.49l m μ=?= (d) 柔度: 0.590 112.50.4 λ?= = 相当长度:0.50.90.45l m μ=?= (e) 柔度: 145 112.50.4 λ?== 相当长度:10.450.45l m μ=?= 由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。即:() 22 cr EJ P l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为: () 2948 2 2 2 320010 1.610640.617.6410cr EJ P l N π ππμ-??? ??= ==?

() 2948 2 2 2 320010 1.610640.4531.3010cr EJ P l N π ππμ-??? ??= ==? 15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。 解: 92.6 33827452.5 p s s a λπσλ===--=== 15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr P 。若实际作用于挺杆的最大压缩力P =2.33kN ,规定稳定安全系数W n =2~5。试校核此挺杆的稳定性。 解:(1)

第十一章压杆的稳定_工程力学

第十一章 压杆的稳定 承受轴向压力的杆,称为压杆。如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。本章研究细长压杆的稳定。 §11.1 稳定的概念 物体的平衡存在有稳定与不稳定的问题。物体的平衡受到外界干扰后,将会偏离平衡状态。若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。 上述小球是作为未完全约束的刚体讨论的。对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。如二端铰支的受压直杆,如图11.2(a )所示。当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。若轴向压力F 较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a ),平衡是稳定的;若轴向压力F 足够大,即使 (a ) 稳定平衡 图11.1 稳定平衡与不稳定平衡

微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。压杆保持稳定与发生屈曲间的力F cr 称为压杆的临界载荷或临界压力。 建筑物中的立柱、桁架结构中的受压杆、液压装置中的活塞推杆、动力装置中的气门挺杆等都是工程中常见的压杆,细长压杆的稳定是设计中必需考虑的。 §11.2 两端铰支细长压杆的临界载荷 压杆是否能保持稳定,取决于压杆的临界载荷或临界压力F cr 。当F =F cr 时,压杆处于如图11.2(b)所示的微弯平衡状态。现将二端铰支的细长压杆重画于图11.3,用静力学的方法研究其平衡问题。 一、力的平衡 取任一截面,由力的平衡方程可知,杆在任一距原点o 为x 处的弯矩为: M (x )=-Fy 二、物理方程 讨论弹性小变形情况,有线弹性应力-应变关系: (a ) 图11.2 压杆稳定概念 (b) (c) 图11.3 二端铰支的细长压杆

相关主题
文本预览
相关文档 最新文档