当前位置:文档之家› 金相组织相图

金相组织相图

金相组织相图
金相组织相图

组织

纯铁熔点1538℃,温度变化时会发生同素异构转变。在912℃以下为体心立方,称α-Fe;912℃~1394℃之间为面心立方,称为γ-Fe;在1394℃~1538℃(熔点)之间为体心立方,称为δ-Fe。

纯铁的强度和硬度都很低,不能用作结构材料.

碳溶解于α-Fe或δ-Fe中形成的固溶体为铁素体,用α或δ表示。δ铁素体也叫高温铁素体。碳在α铁素体中最大溶解度为0.0218%,δ铁素体中最大溶解度为0.09%。碳溶解于γ铁中形成的固溶体称为奥氏体,用γ表示。碳在奥氏体中的最大溶解度为2.11%。强度硬度低,塑性韧性好。

Fe3C具有斜方结构,无同素异构转变。硬度很高,塑性几乎为零,是脆硬相。

石墨是稳定相,Fe3C是亚稳定相。但是石墨的表面能很大,形核需要克服很高的能量,所以在一般的条件下,铁碳相图中的碳是以渗碳体Fe3C形式存在的。

铁碳相图

整个相图包含三个恒温转变:包晶,共晶、共析。

(1)在HJB水平线(1495℃)发生包晶转变:LB+δH→γJ,转变产物为奥氏体。含碳量在0. 09%(H点)~0.53%(B点)的铁碳合金发生这一转变。

(2)在ECF水平线(1148℃)发生共晶转变:LC→γE + Fe3C。转变产物为奥氏体与渗碳体的机械混合物,称为莱氏体(Ld)。含碳量在2.11%(E点)~6.69%(Fe3C)的铁碳合金都发生这一转变。

(3)在PSK水平线(727℃)发生共析转变:γs→P+Fe3C。转变产物为铁素体与渗碳体的机械混合物,称为珠光体(P)。所有含碳量大于0.0218%的铁碳合金都发生这一转变。

Fe-Fe3C相图中还有四条重要的固态转变线:

(1) GS线—奥氏体中开始析出铁素体或铁素体全部转变为奥氏体的转变线,常称此

温度为A3温度。

(2) ES线—碳在奥氏体中的固溶度线,此温度常称为Acm温度。低于此温度,奥氏体中将析出渗碳体,称为二次渗碳体记作Fe3CⅡ,以区别液相中经CD线析出的一次渗碳体Fe3CⅠ。

(3) GP线—碳在铁素体(α)中的固溶度线(共析温度以上) 。随着温度降低,铁素体中含碳量升高。

(4) PQ线—碳在铁素体(α)中的固溶度线(共析温度以下)。在727℃时,铁素体含碳量为0.0218%,在600℃时仅为0.008%,温度下降时铁素体中将析出渗碳体。

注意: 液相中析出的渗碳体为一次Fe3CⅠ;奥氏体中析出的渗碳体为二次渗碳体,Fe3CⅡ;铁素体中析出的渗碳体为三次渗碳体Fe3CⅢ。

两个磁性转变的温度线:(770℃)线表示铁素体的磁性转变温度(居里温度),常称A2温度。230℃虚线表示渗碳体的磁性转变温度。

★含碳量小于0.0218%的铁碳合金则称为工业纯铁。

★含碳量在0.0218%~2.11%的铁碳合金无共晶转变,有共析转变,称为钢。

★含碳量大于2.11%的铁碳合金有共晶反应,称为铸铁。

铸铁根据其室温组织又可分为三类。

a.亚共晶铸铁:2.11%

b.共晶铸铁:C%=4.3%的铁碳合金

c.过共晶铸铁:4.3%

钢根据其室温组织又可分为三类。

a.亚共析钢:0.0218%

b.共析钢:C%=0.77%的铁碳合金

c.过共析钢:0.77%

铁碳合金在固态下出现的几种基本组织:

1、铁素体

铁素体是碳溶解在α-Fe中的间隙固溶体,体心立方晶格,其溶碳能力很小,常温下仅能溶解为0.0008%的碳,在727℃时最大的溶碳能力为0.0218%。由于铁素体含碳量很低,其性能与纯铁相似,塑性、韧性很好,伸长率45%~50%。强度、硬度较低。

2、奥氏体

奥氏体是碳溶解在γ-Fe中的间隙固溶体,面心立方晶格。其溶碳能力较大,在727℃时溶碳为0.77%,1148℃时可溶碳2.11%。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。奥氏体没有磁性。

3、渗碳体

渗碳体是铁与碳形成的金属化合物,其化学式为Fe3C。渗碳体的含碳量为6.69%,熔点为1227℃。硬度很高,塑性、韧性几乎为零,脆性很大。在铁碳合金中有不同形态的渗碳体。

4、珠光体

珠光体是奥氏体发生共析转变所形成的铁素体与渗碳体的机械混合物,其形态为铁素体和渗碳体薄层交替分布。用符号P表示,含碳量为0.77%。其力学性能介

于铁素体与渗碳体之间,决定于珠光体片层间距,即一层铁素体与一层渗碳体厚度和的平均值。

5、莱氏体

莱氏体是液态铁碳合金发生共晶转变形成的奥氏体和渗碳体的机械混合物,其含碳量为4.3%。当温度高于727℃时,莱氏体由奥氏体和渗碳体组成,用符号Ld 表示,成为莱氏体。在低于727℃时,莱氏体是由珠光体和渗碳体组成,用符号Ld’表示,称为变态莱氏体。莱氏体的基体是硬而脆的渗碳体,所以硬度高,塑性很差。

纯金属在凝固时,其理论凝固温度(Tm)不变。当液态金属中的实际温度低于Tm 时,就引起过冷,这种过冷称为热过冷。在合金的凝固过程中,由于液相中溶质的分布发生变化而改变了凝固温度,这可由相图中的液相线来确定,因此,将界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷,称为成分过冷。成分过冷能否产生及其程度取决于液―固界面前沿液体中的溶质质量浓度分布和实际温度分布这两个因素。

成分过冷是合金凝固有别于纯金属凝固的主要特征。

偏析是指化学成分的不均匀性。

只有当合金在凝固时体积收缩,并在铸件中心有孔隙时才能形成反偏析。

比重偏析通常产生在结晶的早期,由于初生相与溶液之间密度相差悬殊,轻者上浮,重者下沉,从而导致上下成分不均匀,这称为比重偏析。

显微偏析可分为胞状偏析、枝晶偏析和晶界偏析3种。

马氏体含碳量与硬度的关系

贝氏体转变使样品表面产生浮凸,在上贝氏体形成时可观察到群集的条状浮凸,而下贝氏体则是多向分布的针状浮凸。

上贝氏体是由平行的铁素体板条(含较高密度的位错)及分布于板条间或板条内的渗碳体所组成的,渗碳体的分布方向基本上是平行于铁素体条的生长主轴。

下贝氏体中碳化物经测定主要为六方点阵的ε-碳化物,是一种亚稳相。当等温时间延长时,ε-碳化物就逐渐转变成稳定的渗碳体相。

钢中贝氏体是铁素体和碳化物组成的两相组织,随转变温度改变和化学成分不同。偏晶转变:一个液相L1分解为一个固相和另一成分的液相L2的恒温转变。

合晶转变:由两个成分不同的液相L1和L2相互作用形成一个固相的转变。

熔晶转变:由一个固相恒温分解成一个液相和另一个固相的转变。

共析转变:一定成分的固相在恒温下生成另外两个一定成分的固相的转变。

包析转变:两个一定成分的固相,在恒温下转变为一个新的固相的转变。

二元系各类恒温转变图型

判断合金的热处理可能性:

1、没有固态相变的合金只能进行消除枝晶偏析的扩散退火,不能进行热处理

2、具有同素异构转变的合金可通过再结晶退火和正火热处理细化晶粒

3、具有溶解度变化的合金可通过时效处理强化合金

4、具有共析转变的合金,先加热形成固溶体相,然后快冷,则共析转变被抑制而发生性质不同的非平衡转变,或者性能不同的组织。

奥氏体的组织通常是由等轴状的多边形晶粒所组成,晶内常可出现相变孪晶。

** 所谓针状铁素体,其实质是粒状贝氏体、贝氏体铁素体或是粒状贝氏体与贝氏体铁素体组成的复相组织。\

最大0.0218% 铁素体F 碳在a-Fe中的间隙固溶体强度、硬度低,塑性、韧性好

最大2.11% 奥氏体A 碳在r-Fe中的间隙固溶体硬度低、塑性好

最大6.69%

渗碳体Fe3C Fe与C的金属化合物硬而脆

基本相定义力学性能容碳量

Ar1 –冷却时,奥氏体向珠光体转变的开始温度。

AC3 –加热时,先共析铁素体全部转变为奥氏体的终止温度。

Ar3 –冷却时,奥氏体开始析出先共析铁素体的温度。

Accm –加热时,二次渗碳体全部融入奥氏体的终止温度。

Arcm –冷却时,奥氏体开始析出二次渗碳体的温度。

通常把加热时的临界温度加注下标“C”,冷却时的临界温度加注下标为“r”

铁素体为均匀明亮的多边形晶粒。

.渗碳体不会被硝酸酒精溶液腐蚀,所以在显微镜下显示白亮颜色。

珠光体在高倍显微镜下可以看到是条状渗碳体分布于铁素体机体上,在低倍显微镜下呈片层状特征。

纵向取样,沿着钢材的锻轧方向进行取样。主要检验内容:非金属夹杂物的变形程度、晶粒畸变程度、塑性变形程度等。

横向取样,在垂直于钢材锻轧方向取样。主要检验内容:金属材料从表层到中心的组织、显微组织状态、晶粒度级别、碳化物网、表层缺陷深度、氧化层深度、脱碳层深度及热处理镀层厚度等。

缺陷或失效分析取样,应包括零件的缺陷部分在内。例如,包括零件断裂时的断口或取裂纹的横截面,取样时应注意

不能使缺陷处在磨制时被损伤或者消失。

常见金相组织

定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格 特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。

定义:碳与合金元素溶解在a-Fe中的固溶体 特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

定义:碳与铁形成的一种化合物 特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。 ?在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状 ?过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状 ?铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状

定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物 特征:珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。 ?在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。 ?在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。 ?在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体

钢铁中常见的金相组织

钢铁中常见的金相组织区别简析 钢铁中常见的金相组织 1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,

金相式样的制备及显微组织观察

金相式样的制备及显微组织观察
一、实验目的 1、 初步掌握金相试样的制备方法。
2、了解金相显微镜的成象原理及基本结构,熟悉金相显微镜的使用方法。 二、实验原理
金相显微分析是研究金属内部组织最重要的方法之一。用光学显微镜观察和研究金 属内部组织的步骤,首先是制备所取试样的表面,然后选用合适的浸蚀剂试样表面,并 用金相显微镜观察和研究试样表面组织。 试样表面比较粗糙时,由于对人射光产生漫反射,无法用显微镜观察其内部组织, 因此要对试样表面加工,通常采用磨光和抛光的方法(抛光和磨光仪器参见图 1-2), 从而得到光亮如镜的试样表面。 这个表面在显微镜下只能看到白亮的一片而看不到其组 织细节, 因此必须采用合适的浸蚀剂对试样的表面进行浸蚀, 使试样表面有选择性地溶 解掉某些部分(如晶界),从而呈现微小的凹凸不平(图 1-1),这些凹凸不平在光学 显微镜的景深范围内可以显示出式样的组织形貌、大小和分布。

图 1-1 金相组织的显示
图 1-2
磨光抛光
1、 金相显微镜的结构和使用 金相显微镜通常由光学系统、照明系统和机械系统三大部分组成。有的显微镜还附 有摄影装置,现以 XJB-1 型台式金相显微镜为型台式金相显微镜为例加以说明。 XJB-1 型金相显微镜的光学系统如图 1-2 所示,由灯泡发出的光线经聚光透镜组及 反光镜聚集到孔径光栏, 再经过聚光镜聚集到物镜的后焦面, 最后通过物镜平行照射到 式样的表面。从式样表面反射回来的光线经物镜组和辅助透镜,由半反射镜转向,经过 辅助透镜及棱镜形成一个倒立的放大实象, 该象再经过目镜放大, 就成为在目镜视场中 能看到的放大映象。
照明系统:在底座内装有一低压灯泡作为光源,聚光镜、 孔径光栏及反光镜等均安置在圆形底座上,视场光栏及另 一聚光镜则安在支架上,它们组成显微镜的照明系统,使 式样表面获得充分均匀的照明。 显微镜调焦装置:在显微镜的两侧有粗调焦手轮,粗调手

实验三 碳钢的热处理组织 实验四 金相显微试样制备

实验三碳钢的热处理及组织、性能分析 一:实验目的 (1)观察和研究碳钢经不同形式热处理后显微组织的特点。 (2)了解热处理工艺对碳钢硬度的影响。 二:实验说明 碳钢经热处理后的组织可以是接近平衡状态(如退火、正火)的组织,也可以是不平衡组织(如淬火组织)。因此在研究热处理后的组织时,不但要用铁碳相图,还要用钢的C曲线来分析。图1为共析碳钢的C曲线,图2为45钢连续冷却的CCT 曲线。 图1 共析碳钢的c曲线图2 45钢的CCT曲线 曲线能说明在不同冷却条件下过冷奥氏体在不同温度范围内发生不同类型的转变过程及能得到哪些组织。 1.碳钢的退火和正火组织 亚共析碳钢(如40、45钢等)一般采用完全退火,经退火后可得接近于平衡状态的组织,其组织形态特征已在实验l中加以分析和观察(图3)过共析碳素工具钢(如T10、T12钢等)则采用球化退火,T12钢经球化退火后,组织中的二次渗碳体和珠光体中的渗碳体都呈球状(或粒状),图中均匀分散的细小粒状组织就是粒状渗碳体。 2.钢的淬火组织 含碳质量分数相当于亚共析成分的奥氏体淬火后得到马氏体。马氏体组织为板条状或针状,20钢经淬火后将得到板条状马氏体。在光学显微镜下,其形态呈现为一束束相互平行的细条状马氏体群。在一个奥氏体晶粒内可有几束不同取向的马氏体群,每束条与条之间以小角度晶界分开,束与束之间具有较大的位向差,如图4所示。

图3 T12 钢球化退火组织图4 低碳马氏体组织 45钢经正常淬火后将得到细针状马氏体和板条状马氏体的混合组织,如图5所示。由于马氏体针非常细小,故在显微镜下不易分清。 45钢加热至860℃后油淬,得到的组织将是马氏体和部分托氏体(或混有少量的上贝氏体),如图6所示。碳质量分数相当于共析成分的奥氏体等温淬火后得到贝氏体,如T8钢在550~350℃及350℃~ Ms温度范围内等温淬火,过冷奥氏体将分别转变为上贝氏体和下贝氏体。上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的片层状组织,当转变量不多时,在光学显微镜下可看到成束的铁素体在奥氏体晶界内伸展,具有羽毛状特性,如图7所示。 图5 45钢正常淬火组织图6 45钢油淬组织图7 上贝氏体组织特征下贝氏体是在片状铁素体内部沉淀有碳化物的组织。由于易受浸蚀,所以在显微镜下呈黑色针状特征,如图8所示。 在观察上、下贝氏体组织时,应注意为显示贝氏体组织形态,试样的处理条件一般是在等温度下保持不长的时间后即在水中冷却因此只形成部分贝氏体,显微组织中呈白亮色的基体部分为淬火马氏体组织。 含碳质量分数相当于过共析成分的奥氏体淬火后除得到针状马氏体外,还有较多的残余奥氏体。T12碳钢在正常温度淬火后将得到细小针状马氏体加部分未溶人奥氏体中的球形渗碳体和少量残余奥氏体,如图4.9所示。但是当把此钢加热到较高温度淬火时,显微镜组织中出现粗大针状马氏体,并在马氏体针之间看到亮白色的残余奥氏体,如图10所示。

关于金相组织的基本知识

关于金相组织的基本知识

首先金相人员进行试样组织分析时候,必须了解铁碳相图Fe-C(Fe-Fe?C)的意义和特点,以及点、线、区的之间意义;大家可以参考资料铁碳相图的原理和知识基础。 图中ABCD为液相线,AHJECF为固相线; 相图中有五个单相区,它们是:ABCD以上--液相区(用L符号表示); AHNA--固溶体区(用θ表示) NJESGN—奥氏体区(用A或表示)

GPQG—铁素体区(用F表示) DFKZ—渗碳体区(用Fe3C或Cm表示) 相图中有七个两相区,分别是:L+γ,L+δ,L+Fe3C,γ+δ,γ+α,γ+Fe3C,α+Fe3C 鉄碳相图中的特性点; A点 1538℃w(C) 0% 纯铁的熔点; B点1495℃w(C)0.53% 包晶转变时液态合金的成分; C点 1148℃w(C) 0.43% 共晶点; D 点 1227℃w(C)6.69% 渗碳体的熔点; E点 1148℃w(C) 2.11% 碳在γ-Fe中的最大溶解度;G点 912℃w(C) 0% α-Fe<=>γ-Fe转变温度; H点 1495℃w(C) 0.09% 碳在γ-Fe中的最大溶解度;J点 1495 w(C)包晶点; K点 727 ℃w(C) 6.69% 渗碳体的成分; M 点 700 w(C) 0%纯铁的磁性转变点; N点 1394 ℃w(C) 0% γ-Fe<=>δ-Fe的转变温度;P点 727℃w(C)0.0218% 碳在α-Fe中的最大溶解度; S点 727℃w(C) 0.77% 共析点; Q点 600℃w(C) 0.0057% 600℃时碳在α-Fe中的溶解度; 相图中还有两条磁性转变线:MO线(770℃)为铁素体的磁性转变线; 230℃虚线为渗碳体的磁性转变线。 Fe-Fe3C相图上有3条水平线,即HJB-包晶转变线;ECF-共晶转变线;PSK-共析转变线 HJB-包晶线:在1495℃恒温下,碳的质量分数为0.53%的液相与碳的质量分数为0.09%的的δ铁素体发生包晶反应,形成碳的质量分数为0.17%的奥氏体,其反应式为:LB+δh<=>γj 共晶转变线(ECF线):发生在1148℃的恒温中,由碳的质量分数为4.3%的液相转变为碳的质量分数 2.11%的奥氏体和渗碳体[w(C)=6.69%]所组成的混合物,称为莱氏体,用Ld表示;反应式为:Ld<=>γE+Fe3C。

碳钢热处理后的组织(金相分析)

碳钢热处理后的组织(金相分析) 发布时间:2009-5-30 13:46:34 关闭该页 一、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。

2、共析钢连续冷却时的显微组织 为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 图1 图2 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先

析出线,如图2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。 当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3); 图3 托氏体+马氏体

金相显微组织下的一些缺陷及图片说明

抛光3系铝合金时,抛光后金相观察到一些黑点,请问那些黑点会是什么?脏东西?夹杂? 磨了好久都磨不掉!
7楼: Originally posted by geoge at 2011-11-23 18:03:19: 抛光3系铝合金时,抛光后金相观察到一些黑点,请问那些黑点会是什么?脏东西?夹 杂?磨了好久都磨不掉! 黑点有多种可能性:1、疏松的孔洞,这种黑点是因为反射光在孔洞里面,就是黑色;2、 抛光膏沾黏在金属表面,很细小,形状太同一方向的“小尾巴” ;3、抛光时抛光布上面的纤 维造成的压痕,也会带有小尾巴!3、如果这种黑点不是布满在视野范围内的,偶尔有几个 小黑点甚至是比较大的黑点,那就是夹杂了! !以上是经验,仅供参考。
对于铝合金试样,楼主的制备方法也就只能做成这个样子了。要想看清楚铝合金的晶界,必 须要电解抛光+阳极制膜+偏光显微镜观察。
材料是 7075 铝合金 正常温度铝熔体凝固过程,平时组织如图 1,可以看到晶界比较清晰,晶粒内部有很多析出 相; 而温度更高热铝熔体凝固后的金相组织如图 2, 其性能 (尤其是延伸率) 比起前者大大降低, 晶界看起来比较暗。 是否可以看出是发生过烧了呢?还只是腐蚀染色的问题。那么性能的降低可能是什么原因, 谢谢 腐蚀剂是混合酸。


在金相观察中有些问题困扰我很久了,希望大家帮忙哦 1、相关参考书中说,7 系列铝合金微观组织是枝晶网络组织,那么枝晶网络结构和晶粒有 什么关系?我在腐蚀后好像只能看到枝晶, 那么晶粒就是枝晶网络结构包裹的区域吗?另外 枝晶间距如何测量? 还是以我的照片为例吧, 我死活看不出来那部分是晶粒。 。 。 是腐蚀的问题吗?希望高手帮忙 标

金相组织分析 可下载 可修改 优质文档

实验三碳钢的非平衡组织及常用金属材料 显微组织观察 实验目的概述实验内容实验方法实验报告思 考题 一、实验目的 1. 观察碳钢经不同热处理后的显微组织。 2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。 3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。 4. 了解上述材料的组织特征、性能特点及其主要应用。 TOP 二、概述 1. 碳钢热处理后的显微组织 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。在缓慢冷时(相当于炉冷,见图2-3中的V1)应得到100%的珠光体;当冷却速度增大到V2。时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至V4、V5,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体。其中与C曲线鼻尖相切的冷却速度(V4)称为淬火的临界冷却速度。 转变类型组织名称形成温度范围/℃显微组织特征硬度(HRC) 珠光体型相 变珠光体 (P) >650 在400~500X金相显微镜下可以观察到 铁索体和渗碳体的片层状组织 ~20 (HBl80~200)索氏体 (S) 600~650 在800一]000X以上的显微镜下才能分 清片层状特征,在低倍下片层模糊不清 25~35 屈氏体 (T) 550~600 用光学显微镜观察时呈黑色团状组织, 只有在电子显徽镜(5000~15000X)下 才能看出片层状 35—40 贝氏体型相 变上贝氏体 (B上) 350~550 在金相显微镜下呈暗灰色的羽毛状特 征 40—48 下贝氏体 (BT) 230~350在金相显微镜下呈黑色针叶状特征48~58

常见金相组织名词解释

常见金相组织名词解释——全面的特征描述,想不明白都难。 奥氏体 定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格 特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。 铁素体

定义:碳与合金元素溶解在a-Fe中的固溶体 特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体

定义:碳与铁形成的一种化合物 特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。 ?在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状 ?过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状 ?铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 珠光体

定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物 特征:珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。 ?在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。 ?在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。 ?在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体 上贝氏体

金相组织照片全

1、组织成分:35钢(C-0.35%、Mn-0.8%)盘条;热处理状态:球化退火; 金相组织:铁素体+颗粒状渗碳体;腐蚀剂:3%硝酸酒精浸蚀。 2:组织成分:82B(C-0.82%、Mn-0.8%、Cr-0.2%)盘条心部偏析;热处理状态:热轧态;金相组织:珠光体+网状渗碳体;腐蚀剂:3%硝酸酒精浸蚀。

3:组织成分:35CrMo(C-0.35%、Cr-0.9%、Mo-0.2%)盘条;热处理状态:热轧态;金相组织:珠光体+铁素体;腐蚀剂:3%硝酸酒精浸蚀。

4:组织成分:低碳微合金板(C-0.06%、Nb、Mo、V微量);热处理状态:热轧态; 金相组织:铁素体+粒状贝氏体;腐蚀剂:3%硝酸酒精浸蚀。 5:组织成分:低碳微合金板(C-0.04%、Mo、Nb、V、Ni、Cu微量);热处理状态:热轧态; 金相组织:板条贝氏体铁素体+粒状贝氏体;腐蚀剂:3%硝酸酒精浸蚀。 板条贝氏体铁素体低碳钢(含碳量小于0.15%)典型的贝氏体组织,由带有高位错密度的板条铁素体晶体组成,若干铁素体板条平行排列构成板条束,一个奥氏体晶粒可形成很多板条束,板条界为小角度晶界,板条束界面则为大角度晶界,鉴于其板条的特征,故称板条铁素体。板条间可能有条状分布的MA岛。板条F的鉴别要依靠TEM,由于低角度晶界难以显示,光镜下板条F束常成为无特征的F晶粒。然而,经适当的深侵蚀,在光镜下仍能观察到依稀可见的板条轮廓,在扫描电镜下它的特征更为清晰。特别是当板条间有MA小岛分布时,平行排列的板条F特征显示得更为清晰可靠,所以,根据经验在光镜下鉴别针状F是可能的。 粒状贝氏体与板条贝氏体铁素体相比形成温度稍高,组织形态稍有不同。相同的是基体上都带有板条的轮廓,说明铁素体的形成在一定程度上也是依靠切变机制,此外都有弥散的岛状组织分布于铁素体基体上。不同的是,粒状贝氏体中小岛更接近于粒状或等轴形状。

金相组织分析

实验三碳钢的非平衡组织及常用金属材料显微组织观察 实验目的概述实验内容实验方法实验报告思考题 一、实验目的 1. 观察碳钢经不同热处理后的显微组织。 2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。 3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。 4. 了解上述材料的组织特征、性能特点及其主要应用。 TOP 二、概述 1. 碳钢热处理后的显微组织 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。 在缓慢冷时(相当于炉冷,见图2-3中的V 1)应得到100%的珠光体;当冷却速度增大到V 2 。时(相当于空冷), 得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马 氏体;当冷却速度增大至V 4、V 5 ,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后, 瞬时转变成马氏体。其中与C曲线鼻尖相切的冷却速度(V 4 )称为淬火的临界冷却速度。

亚共析钢的C 曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,当奥氏体缓慢冷却时(相当于炉冷,如图2-3中V 1:),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即V 3>V 2>V ,时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。因此,V 1的组织为铁素体+珠光体;V 2的组织为铁素体+索氏体; V 3,的组织为铁素体+屈氏体。当冷却速度为V 4,时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3-3);当冷却速度V 5,超过临界冷却速度时,钢全部 转变为马氏体组织(如图3-6,3-7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 ① 珠光体(P ) 珠光体的组织形态主要有两种:片状珠光体和颗粒状珠光体。片状珠光体由一片片相互交错排列的铁素体和渗碳体所组成形成珠光体的先行条件是事先形成均匀的奥氏体,而后缓慢冷却在A1以下附近温度形成。片状珠光体似手指纹的层状结构,它是一层铁素体和一层渗碳体的机械混合物(见图3-1)。颗粒状珠光体是在铁素体的基体上分布着细小颗粒状的渗碳体的球化组织(见图3-2)。 图3-1片状珠光体500×4%硝酸酒精 图3-2 颗粒状珠光体500×4%硝酸酒精 ② 索氏体(s) 是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨(见图3-3)。 ③ 屈氏体(T) 也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3-4)。 图3-3 索氏体500×4%硝酸酒精 图3-4 屈氏体+马氏体500×4%硝酸酒精

金相组织相图

组织 纯铁熔点1538℃,温度变化时会发生同素异构转变。在912℃以下为体心立方,称α-Fe;912℃~1394℃之间为面心立方,称为γ-Fe;在1394℃~1538℃(熔点)之间为体心立方,称为δ-Fe。 纯铁的强度和硬度都很低,不能用作结构材料. 碳溶解于α-Fe或δ-Fe中形成的固溶体为铁素体,用α或δ表示。δ铁素体也叫高温铁素体。碳在α铁素体中最大溶解度为0.0218%,δ铁素体中最大溶解度为0.09%。 碳溶解于γ铁中形成的固溶体称为奥氏体,用γ表示。碳在奥氏体中的最大溶解度为2.11%。强度硬度低,塑性韧性好。 Fe3C具有斜方结构,无同素异构转变。硬度很高,塑性几乎为零,是脆硬相。 石墨是稳定相,Fe3C是亚稳定相。但是石墨的表面能很大,形核需要克服很高的能量,所以在一般的条件下,铁碳相图中的碳是以渗碳体Fe3C形式存在的。 铁碳相图

整个相图包含三个恒温转变:包晶,共晶、共析。 (1)在HJB水平线(1495℃)发生包晶转变:LB+δH→γJ,转变产物为奥氏体。含碳量在0. 09%(H点)~0.53%(B点)的铁碳合金发生这一转变。 (2)在ECF水平线(1148℃)发生共晶转变:LC→γE + Fe3C。转变产物为奥氏体与渗碳体的机械混合物,称为莱氏体(Ld)。含碳量在2.11%(E点)~6.69%(Fe3C)的铁碳合金都发生这一转变。 (3)在PSK水平线(727℃)发生共析转变:γs→P+Fe3C。转变产物为铁素体与渗碳体的机械混合物,称为珠光体(P)。所有含碳量大于0.0218%的铁碳合金都发生这一转变。 Fe-Fe3C相图中还有四条重要的固态转变线:

常见金相组织要点

1 工业纯铁退火铁素体白色等轴多边形晶粒为铁素体,深色线为晶界。 2 20钢退火低碳钢平衡组织白色晶粒为铁素体,深色块状为珠光体,高倍可 见珠光体中的层状结构。 3 45钢退火中碳钢平衡组织同上,但珠光体增多。 4 65钢退火高碳钢平衡组织占大部分的深色组织为珠光体,白色为铁素体。 5 T8钢退火共析钢平衡组织组织全部为层状珠光体,它是铁素体和渗碳体的 共析组织。 6 T12钢退火过共析钢平衡组织基体为层状珠光体,晶界上的白色为二次渗碳 体。 7 亚共晶白口铁铸态变态莱氏体+珠光体基体为黑白相间分布的变态莱氏 体,黑色树枝状为初晶奥氏体转变成的珠光体。 8 共晶白口铁铸态变态莱氏体白色为渗碳体(包括共晶渗碳体和二次渗碳 体),黑色圆粒及条状为珠光体。 9 过共晶白口铁铸态变态莱氏体+渗碳体基体为黑白相间分布的变态莱氏 体,白色板条状为一渗碳体 10 T8钢正火索氏体索氏体是细珠光体,片层间距小 11 T8钢快冷正火屈氏体屈氏体为极细珠光体,光学显微镜下难以分辨其层状 结构,灰白色块状、针状为淬火马氏体。 12 65Mn 等温淬火上贝氏体羽毛球为上贝氏体,基体为索氏体或淬火马氏体 和残余奥氏体。 13 65Mn 等温淬火下贝氏体黑色针状为下贝氏体,白色基体为淬火马氏体和 残余奥氏体。 14 20钢淬火低碳马氏体成束的板条状为低碳马氏体 15 T12 淬火高碳马氏体深色针片状组织为马氏体,白色为残余奥氏体 16 45钢淬火中碳马氏体黑色针叶状互成120度夹角的针状马氏体,其余为板 条状马氏体 17 T10钢球化退火球化体基体为铁素体,白色颗粒状为渗碳体。 18 T12 正火正火组织白色呈针状、细网络状分布的为渗碳体,其余为片层状 珠光体。 19 15钢渗碳后退火渗碳组织表层为过共析组织(网状渗碳体+珠光体),由表 向内含碳量逐渐减少,铁素体增多。 20 45钢渗硼渗硼组织表层为硼化物层(呈锯齿状)和过渡层,心部为45钢基 体组织。 21 40Cr 软氮化软氮化组织表层为白亮色的氮化合物和含氮的扩散层,心部为 40Cr基体组织 22 高速钢铸态共晶莱氏体+屈氏体+马氏体骨骼状组织为共晶莱氏体,基体

常用金相组织图片总结

一汽车钢板弹簧金相组织分级图(×500) 图1 回火屈氏体 (1级) 图 2 回火屈氏体+少量贝氏体(2级) 图3 回火屈氏体+少量铁素体 (3级) 图4 回火屈氏体+少量贝氏体+少量铁素体(4级) 图5 回火屈氏体+铁素体+屈氏体(5级) 二马氏体组织 a板条状马氏体 B针状马氏体 c片状马氏体加残余奥氏体

三莱氏体 四粒状贝氏体 五索氏体

汽车钢板弹簧金相组织及缺陷组织——黎方英 1、原材料金相组织及缺陷组织分析 材料:60Si2Mn 钢.处理情况:热轧状原材料. 组织分析:图1 a) ,金相组织为铁素体和片层珠光体.正常原材料组织. 图1 b) ,弹簧扁钢表面的脱碳. 图1 c) ,d) ,金相组织为带状铁素体和珠光体. 严重带状组织一般热处理工艺难以消除. 图1 e) ,弹簧扁钢表面的划痕,原材料表面缺陷. 图1 f) ,弹簧扁钢表面的碎裂,原材料表面缺陷的废品. a)500× b)100× c)100× d)100× e)100× f)100× 图1 原材料金相组织及缺陷组织分析

2、60Si2Mn 钢板弹簧正常淬火和回火组织分析: 处理情况:图2 a) ,860 ℃加热保温后油冷淬火. 图2b) ,860 ℃加热保温后油冷淬 火,460 ℃回火. 组织分析:图2 a) ,金相组织为中等针状淬火马氏体.淬火获得马氏体,是达到强韧化的重要基础. 图2 b) ,金相组织为中等回火屈氏体. a)500× b)500× 图2 汽车钢板弹簧正常淬火组织和回火组织分析 3、淬火加热温度低形成的缺陷组织如图3 材料:50CrVA 钢. 侵蚀剂:4 %硝酸酒精溶液. 处理情况:加热保温后油冷淬火,460 ℃回火. 组织分析:图3 a) ,金相组织为回火屈氏体,未溶解的铁素体和未溶解的碳化物. 图3 b) ,金相组织为回火屈氏体,未溶解的铁素体和片状珠光体. a)500× b)500× 图3 淬火加热温度低形成的缺陷组织 4、淬火加热温度高形成的缺陷组织如图4. 材料:图4 a) 、图4 c) ,60Si2Mn 钢;图4 b) ,50CrVA 钢. 处理情况:图4 b) ,加热保温后油冷淬火;图4 a) 、图4c) ,加热保温后油冷淬火,460 ℃回火. 组织分析:图4 a) ,金相组织为回火屈氏体和上贝氏体,最大晶粒度超过1 级. 图4 b) ,金相组织为淬火马氏体和残余奥氏体. 图4 c) ,金相组织为回火屈氏体,表层有一层全脱碳铁素

材料人网-铝合金金相组织图

铝合金金相组织图 1材料:AC4CHV 组织说明:α(Al)+(α+Si)共晶+极少量Mg2Si和S(Al2CuMg)+少量长条针状β(Al9Fe2Si2)相 抛光态形貌500× β(Al9Fe2Si2)相(20%硫酸水溶液) 500× Mg2Si相(25%硝酸水溶液) 500× 2 材料:LY-12CZ 组织说明:α(Al)基体上有褐色的可溶的强化相S(Al2CuMg)和Al2Cu及不可溶的黑色的杂质相 Al6(FeMnSi),晶粒沿变形方向伸长 抛光态形貌500× 腐蚀态(混合酸水溶液)形貌 500× 3 材料:A390 组织说明:α(Al)+(α+Si)共晶+块状相的初生Si+S(Al2CuMg)及少量针状(Al-Fe-Si)等杂质Fe相 抛光态形貌500× S(Al2CuMg)相(25%硝酸水溶液) 500× Al-Fe-Si相(20%硫酸水溶液) 500×

4 材料:T B -2 M 组织说明:α(Al)+(α+Si)共晶+块状相的初生Si +鱼骨状 Mg 2Si 和蜂窝状S(Al 2CuMg)+少量细短针状 Β(Al 9Fe 2Si 2)相 抛光态形貌 500× Mg 2Si 相(25%硝酸水溶液) 500× S(Al 2CuMg)相(20%硫酸水溶液) 500× 5 材料:ADC-12 组织说明:α(Al)+(α+Si)共晶+少量Al 2Cu+少量Mg 2Si+杂质AlFeMnSi 和细针状T(Al 2FeSi 2)相 抛光态形貌 500× AlFeMnSi 相(混合酸) 500× Mg 2Si 相(20%硫酸水溶液) 500× 6 材料:YL102 组织说明:α(Al)+(α+Si)共晶+少量块状初生Si+杂质针状β(Al 9Fe 2Si 2)相和粗针状Al 3Fe 相 抛光态形貌 500× Al 3Fe 相(20%硫酸水溶液) 500× β(Al 9Fe 2Si 2)相(0.5%HF 水溶液) 500×

金相组织照片

1:铁素体+颗粒状渗碳体3%硝酸酒精浸蚀(制样质量较差,凑和着看)35钢(C0.35%-Mn0.8%)盘条;球化退火 2:珠光体+网状渗碳体;3%硝酸酒精浸蚀 82B(C0.82%-Mn0.8%-Cr0.2%)盘条心部偏析;热轧态

3:珠光体+铁素体;3%硝酸酒精浸蚀 35CrMo(C0.35%-Cr0.9%-Mo0.2%)盘条;热轧态

4:铁素体+粒状贝氏体;3%硝酸酒精浸蚀 低碳微合金板(C0.06%-Nb、Mo、V微量);热轧态

5:板条贝氏体铁素体+粒状贝氏体;3%硝酸酒精浸蚀 低碳微合金板(C0.04%-Mo、Nb、V、Ni、Cu微量);热轧态 板条贝氏体铁素体低碳钢(含碳量小于0.15%)典型的贝氏体组织,由带有高位错密度的板条铁素体晶体组成,若干铁素体板条平行排列构成板条束,一个奥氏体晶粒可形成很多板条束,板条界为小角度晶界,板条束界面则为大角度晶界,鉴于其板条的特征,故称板条铁素体。板条间可能有条状分布的MA岛。板条F的鉴别要依靠TEM,由于低角度晶界难以显示,光镜下板条F束常成为无特征的F晶粒。然而,经适当的深侵蚀,在光镜下仍能观察到依稀可见的板条轮廓,在扫描电镜下它的特征更为清晰。特别是当板条间有MA小岛分布时,平行排列的板条F特征显示得更为清晰可靠,所以,根据经验在光镜下鉴别针状F是可能的。 粒状贝氏体与板条贝氏体铁素体相比形成温度稍高,组织形态稍有不同。相同的是基体上都带有板条的轮廓,说明铁素体的形成在一定程度上也是依靠切变机制,此外都有弥散的岛状组织分布于铁素体基体上。不同的是,粒状贝氏体中小岛更接近于粒状或等轴形状。

金相组织

金相组织 金属平均晶粒度: 【001】金属平均晶粒度测定… GB 6394-2002 【010】铸造铝铜合金晶粒度测定…GB 10852-89 【019】珠光体平均晶粒度测定…GB 6394-2002 【062】金属的平均晶粒度评级…ASTM E112 【074】黑白相面积及晶粒度评级…BW 2003-01 【149】彩色试样图像平均晶粒度测定…GB 6394-2002 金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织. 金相即金相学,就是研究金属或合金内部结构的科学。不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。所谓外部条件就是指温度、加工变形、浇注情况等。所谓内在因素主要指金属或合金的化学成分。金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。 1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 奥氏体 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块

状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 铁素体 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿ac m线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到a r1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6 ~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。

不锈钢的金相组织

不锈钢的金相组织(1) 2008-02-25 09:11 (一)不同元素对不锈钢组织和相的影响 对于马氏体型铬不锈钢来说,对组织产生主要影响的元素有铬、碳和钼;对马氏体型铬镍不锈钢来说,产生主要影响的元素有镍、钼、铝、钴、氮和钛等。 马氏体型铬镍不锈钢中由于所含的铬与碳发生交互的作用,使其在高温下形成稳定的r相区和稳定的a+r相区。碳量的增加可使r相区得到扩大,但是随着铬含量的增加碳的溶解极限下降。马氏体型铬镍不锈钢中添加镍解决了马氏体型不锈钢为提高其耐蚀性以牺牲钢的硬度为代价的问题。但是其中的镍含量不易过高,否则由于镍扩大奥氏体相区和降低Ms温度而使不锈钢变成奥氏体型不锈钢,从而完全丧失淬火能力。 影响铁素体型不锈钢组织的元素主要有铬、钼、碳、氮和镍,另外有一些铁素体型不锈钢中还添加有钛、铌和铜等元素,对组织也有一定的影响。其中添加铬和钼的主要的目的是加速和促进α’相和α相的形成和沉淀,使铁素体晶粒更加粗大。 影响奥氏体型不锈钢组织的主要元素有碳、铬、镍、钼、氮、铜、硅和锰等,有时在生产易切削不锈钢时,也将硫作为添加元素。碳在奥氏体型不锈钢中是形成、稳定和扩大奥氏体区的元素。碳在奥氏体型不锈钢中是形成、稳定和扩大奥氏体区的元素,其形成奥氏体的能力远高于镍许多倍。碳在奥氏体型不锈钢中是有用元素,但同时也是有害元素,一方面由于碳作为一种间隙元素可通过固溶强化显著提高奥氏体型不锈钢的强度,同时也可提高高浓度氯化物腐蚀介质中的耐蚀能力;但另一方面由于碳在某些条件下生成Cr23C6,使得耐腐蚀性能显著下降。铬在奥氏体型不锈钢中的作用与其在铁素体型不锈钢中作用基本相同。 影响比相不锈钢组织的主要元素有镍、氮、锰、铬、钼、硅和钨等。镍在α+r双相不锈钢中能扩大r相区。有关资料指出,镍的添加还能促成形成ζ(x)相,增加脆化敏感性并有使脆化敏感温度向高温方向移动的倾向,也将使马氏体相变温度降低,改善双相不锈钢的冷加工性能。 (二)相及相变 热处理是不锈钢生产和加工过程中以及最终产品加工过程中重要的工序。对于马氏体型不锈钢,通常进行淬火—回火热处理。对于铁素体型不锈钢,需进行恢复由于加工引起的应硬化和焊接部位回火后恢复韧性的热处理,通常是高温加热后进行空冷的退火热处理。对于奥氏体型不锈钢,根据使用目的需要进行固溶处理、稳定化处理、消除应力退火和时效处理等。 通过进行热处理来控制不锈钢的金相组织时,可采用相变和恢复、再结晶等形式来实现。 相变的内涵可以说有以下3种情况,即结构的变化、组成的变化和其规律

常见金相组织名词解释

常见金相组织名词解释一一全面的特征描述,想不明白都难 奥氏体 奥氏体200X T12钢淬火后残A 500 X 20Mh订i滂篠淬火\1+残A+K 400x 定义:碳与合金元素溶解在丫-Fe中的固溶体,仍保持丫-Fe的面心立方晶格 特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。有些淬火钢 能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的 弧形。经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。当钢中加入足够多的扩大奥氏体相区的化学元素时, Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。 铁素体

铁素体200X 铁緊体500X 轧制电工纯铁铁素体500X退火态定义:碳与合金元素溶解在a-Fe中的固溶体 特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体

定义:碳与铁形成的一种化合物 特征:渗碳体不易受硝酸酒精溶液的腐蚀, 在显微镜下呈白亮色, 但受碱性苦味酸钠的 腐蚀,在显微镜下呈黑色。 渗碳体的显微组织形态很多, 在钢和铸铁中与其他相共存时呈片 状、粒状、网状或板状。 ?在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共 晶渗碳体呈骨骼状 Acm 线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片 *铁碳合金冷却到 Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳 体上或晶界处呈 不连续薄片状 珠光体 *过共析钢冷却时沿 网状渗碳体200X 粒恥碳体500 X 针状渗碳体(魏氏组织)200X 网状、粒状、三次渗碳体500X

相关主题
文本预览
相关文档 最新文档