当前位置:文档之家› 量子物理习题解答

量子物理习题解答

量子物理习题解答
量子物理习题解答

量子物理习题解答

习题17—1 用频率为1ν的单色光照射某一金属时,测得光电子的最大初动能为E k 1;用频率为2ν的单色光照射另一种金属时,测得光电子的最大初动能为E k 2。那么[ ]

(A) 1ν一定大于2ν。 (B) 1ν一定小于2ν。

(C) 1ν一定等于2ν。 (D) 1ν可能大于也可能小于2ν。 解:根据光电效应方程,光电子的最大初动能为 A h E k -=ν

由此式可以看出,E k 不仅与入射光的频率ν有关,而且与金属的逸出功A 有关,因此我们无法判断题给的两种情况下光电子的最大初动能谁大谁小,从而也就无法判断两种情况下入射光的频率的大小关系,所以应该选择答案(D)。

习题17—2 根据玻尔的理论,氢原子中电子在n =5的轨道上的角动量与在第一激发态的角动量之比为[ ]

(A) 5/2。 (B) 5/3。 (C) 5/4。 (D) 5。 解:根据玻尔的理论,氢原子中电子的轨道上角动量满足

ηn L = n =1,2,3……

所以L 与量子数n 成正比。又因为“第一激发态”相应的量子数为n =2,因此应该选择答案(A)。

习题17—3 根据玻尔的理论,巴耳末线系中谱线最小波长与最大波长之比为[ ]

(A) 5/9。 (B) 4/9。 (C) 7/9。 (D) 2/9。 解:由巴耳末系的里德佰公式

??

?

??-==22

12

11~n R H λν n =3,4,5,…… 可知对应于最大波长m ax λ,n =3;对应于最小波长min λ,n =∞。因此有 H H R R 536312111

22max =??

? ??-=-λ; H

H R R 4

2111

2min =

??

?

??=-λ 所以

953654max min =?=λ

最后我们选择答案(A)。

习题17—4 根据玻尔的理论,氢原子中电子在n =4的轨道上运动的动能与在基

态的轨道上运动的动能之比为[ ]

(A) 1/4。 (B) 1/8。 (C) 1/16。 (D) 1/32。 解:根据玻尔的理论,氢原子中电子的动能、角动量和轨道半径分别为

m

P E k 22

= ;ηn P r L n == ;12r n r n =

所以电子的动能

242222

1

n

n n r n P E n k ==∝∝

与量子数n 2 成反比,因此,题给的两种情况下电子的动能之比12/42=1/16,所以

我们选择答案(C)。

习题17—5 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E k 之比k E ε为[ ]

(A) 2。 (B) 3。 (C) 4。 (D) 5。 解:由康普顿效应的能量守恒公式

2200mc h c m h +=+νν

可得

ν

νννννννε

-=-=-==

00202)(h h c m mc h E h E k k

51

2.11

11000=-=-=-=

λλλλλ 所以,应该选择答案(D)。

习题17—6 设氢原子的动能等于温度为T 的热平衡状态时的平均动能,氢原子的质量为m ,那么此氢原子的德布罗意波长为[ ] (A) mkT h 3=λ。 (B) mkT h 5=λ。

(C) h mkT 3=λ。 (D) h mkT 5=λ。 解:依题意,氢原子的动能应为

kT E k 2

3=

又因为氢原子的动量为

mkT mE P k 32==

由德布罗意公式可得氢原子的德布罗意波长为

mkT h P

h

3==λ

所以应该选择答案(A)。

习题17—7 以一定频率的单色光照射到某金属上,测出其光电流的曲线如图实线所示,然后在光强度不变的条件下增大照射光频率,测出其光电流的曲线如图虚线所示。满足题意的图是[ ]

解:根据爱因斯坦光量子假设,光强=Nh ν,在光强保持不变的情况下,ν↑ →N ↓→I s (饱和光电流)↓;另一方面,ν↑→a U ↑,综上,应该选择答案(D)。

对波长最大的谱线用1λ,n =3;对其次波长用2λ,n =4。因此有

所以应该选择答案(C)。

习题17—9 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是4×10-2nm ,则U 约为:[ ]

(A) 150V 。 (B) 330V 。 (C) 630V 。 (D) 942V 。 解:由动能定理得

m

P E eU k 22

==

把此式代入德布罗意公式有

meU

h P

h 2==

λ

所以

U I O (D) I U O (B) U O I (A) U O I (C) 习题17―7图

V 942)

104(106.11011.92)1063.6(22

1119312

3422≈???????==----λme h U 因此,应该选择答案(D)。

习题17—10 氩(Z =18)原子基态的电子组态是:[ ]

(A) 1S 22S 83P 8 (B) 1S 22S 22P 63d 8

(C) 1S 22S 22P 63S 23P 6 (D) 1S 22S 22P 63S 23P 43d 2

解:对(A)示组态,既违反泡利不相容原理,也违反能量最小原理,是一个不可能的组态;对(B)示组态和(D)示组态均违反能量最小原理,也都是不可能组态。因此,只有(C)示组态是正确组态。所以应该选择答案(C)。

习题17—11 在气体放电中,用能量为12.1eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是:[ ]

(A)

12.1eV ,10.2eV 和3.4eV 。 (B) 12.1eV 。 (C) 12.1eV ,10.2eV 和1.9eV 。 (D) 10.2eV 。

可以解得

n =3

从能级跃迁示意图可知,应该有种频率不

同的光子发出,它们的能量分别为

所以,应该选择答案(C)。

习题17—12 设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其

中确定粒子动量的精确度最高的波函数是哪个图?

n =3 n =2 n =1 能级跃迁图

(A) (B) (C) (D)

习题17―12图

解:题给的波函数图线可以反映出粒子的“波性”,显然图(A)所反映出的“波性”是最强的,其相应的粒子位置的不确定量x ?是最大的。根据海森堡不确定关系η≥???x P x ,这时粒子动量的不确定量x P ?应该是最小的,即确定粒子动量的精确度是最高的,所以应该选择答案(A)。

习题17—13 下列四组量子数:

(1) n =3,l =2,m l =0,m s =1/2 (2) n =3,l =3,m l =1,m s =1/2 (3) n =3,l =1,m l =-1,m s =-1/2 (4) n =3,l =0,m l =0,m s =-1/2 其中可以描述原子中电子状态的:

(A) 只有(1)和(3) (B) 只有(2)和(4)

(C) 只有(1)、(3)和(4) (D) 只有(2)、(3)和(4) 解:因为当主量子数n 确定之后,副量子数l 和磁量子数m l 的取值是有限制的:l =0,1,2,…,n -1;m l =0,±1,±2,…,±l ,而自旋磁量子数m s 的取值则只能是1/2或-1/2。用上述限制条件检查题给的四组量子数可以发现,只有(2)违反了l 取值的限制,是不可能组态外,其余三组量子数均为允许组态。因此,应该选择答案(C)。

习题17—14 在氢原子发射的巴耳末线系中有一频率为6.15×1014Hz 的谱线,它是氢原子从能级E n = eV 跃迁到能级E k = eV 而发出的。

解:根据频率选择定则有

12

22211

E n

E E h n ??

? ??-=-=ν 把E 1=-13.6eV=-2.176×10﹣18J ,h =6.63×10﹣34 J?s ,ν=6.15×1014Hz 代入上式可以解得n =4。 85.0166.134214-=-==

E E eV , 4.346.1322

12

-=-==E E eV

习题17—15 设大量氢原子处于n =4的激发态,它们跃迁时发出一簇光谱线,

这簇光谱线最多可能有 条,其中最短波长的是 m 。

解:画出能级跃迁示意图,容易知道这簇光谱线最多可能有6条。其中最短波长满足

14E E hc h -==λ

ν

n n =3 n n 题解17―15图

∴ 8

19

834141075.910

6.1)]6.13(85.0[1031063.6---?=??---???=-=E E hc λm

习题17—16 分别以频率为1ν和2ν的单色光照射某一光电管。若21νν>(均大于红限频率0ν),则当两种频率的入射光的光强相同时,所产生的光电子的最大初

动能E 1 E 2;为阻止光电子到达阳极,所加的遏止电压a U 2a ;所产生的饱和光电流1S I 2S I (用>或=或<填入)。

解:根据爱因斯坦光电效应方程,光电子的最大初动能为

A h E k -=ν

因为21νν>,所以21k k E E >;又因为a k U e E =,有e A e h U a -=ν,所以>1a U 2a U ;由于光强=Nh ν,光强相同,ν大,则打到光电阴级上的光子数N 就少,饱和光电流1S I 就小,所以21S S I I <。

习题17—17 设描述微观粒子运动的波函数为),(t r ρ

ψ,则*ψψ表示 。),(t r ρ

ψ须满足的条件是 ;其归一化条件是 。

解:*ψψ表示:t 时刻、在位置r ρ

附近、单位体积内发现粒子的几率;),(t r ρψ须满足的条件是:单值、连续、有限;其归一化条件是

1=???*

V

dxdydz ψψ

习题17—18 根据量子力学理论,氢原子中电子的角动量在外磁场方向上的投影为ηl z m L =,当角量子数l =2时,L z 的可能取值为 。

解:因为这时磁量子数m l =0,±1,±2五种可能的取值,所以L z 的可能取值亦为五种:0,η±,η2±。

习题17—19 锂(Z =3)原子中含有三个电子,电子的量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知其中一个电子的量子态为(1,0,0,1/2),则其余两个电子的量子态分别为 和 。

解:在1s 态还可以有一个电子,其量子态为(1,0,0,-1/2)。剩下的一个电子只能处于2s 态,其量子态应为(2,0,0,1/2)或(2,0,0,-1/2)。

习题17—20 原子内电子的量子态由n 、l 、m l 和m s 四个量子数表征。当n 、l 、m l 一定时,不同的量子态的数目为 ;当n 、l 一定时,不同的量子态的数目为 ;当n 一定时,不同的量子态的数目为 。

解:当n 、l 、m l 一定时,只有自旋磁量子数m s 的两种可能的取值,这时不同的量子态的数目为2;当n 、l 一定时,应该有磁量子数m l 的0,±1,±2,…,±l 的2l +1种可能取值,再加上自旋磁量子数m s 的两种可能的取值,这时不同

的量子态的数目应该为2(2l +1);当n 一定时,不同的量子态的数目即为该壳层最多所能容纳的电子数,即为2n 2。

习题17—21 试证:如果确定一个低速运动的粒子的位置时,其不确定量等于这粒子的德布罗意波长,则同时确定这粒子的速度时,其不确定量等于这粒子的速度(不确定关系式h P x ≥???)。

解:∵ P h x ==?λ

∴ v x h v 00m P m P ==?=?=? ∴ v v =?

习题17—22 已知粒子在无限深势阱中运动,其波函数为:

a

x a x n πsin 2)(=

Φ (0

a

x

a x n π22

sin

1)(=Φ 把上式对x 求导数并令其导数等于零得

0cos sin 21)(2

=???=

Φa

a x a x a dx x d n π

ππ 02sin

=a x π, ππn a

x =2 ∴ na x 2

1

= n =1,2

这里n ≠3,4,5,…,是由于这时x >a ,已超出题给范围。若取得最大值而不是最小值还须满足下式

()()[]

02cos 22sin )(3222

2

2<==Φa x a

dx a x a d dx x d n ππππ

即要求

02cos

x

π 这个要求限制了n 的取值,使得n 不能取2,因为若n =2 ,则x =a ,这时上式将得不到满足。所以,n 只能等于1。最后我们看到:在x =a /2处(附近)发现粒子的几率最大。

习题17—23 一维无限深势阱中粒子的定态波函数为a

x n a n πsin 2=

Φ。求: (1) 粒子处于基态时,在x =0到x =a /3之间找到粒子的几率;

(2) 粒子处于n =2的状态时,在x =0到x =a /3之间找到粒子的几率。

解:(1) 粒子处于基态时,n =1,这时发现粒子的几率密度为2

1Φ,在x ─x +dx 隔内发现粒子的几率为dx 2

1Φ,因此,在x =0到x =a /3之间找到粒子的几率为

23

2

12sin 4122sin 2a a a a x a x dx a x a dx ???

???-==Φ?

?

ππππ 195.043

31234162=-=?????????-=

π

ππ (2) 同理,粒子处于n =2的状态时,在x =0到x =a /3之间找到粒子的几率为

3

23

2

24sin 4112sin 2a a a a x a x dx a x a dx ???

???-==Φ?

?

ππππ 40.083

31234131=+=???????????? ??-?-=

π

ππ

所以 ο447198.0cos 1==-θ

ρ

《大学物理aii》作业 no08 量子力学基出 参考解答

《大学物理AII 》作业No.08量子力学基础 班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求**************************** 1、掌握物质波公式、理解实物粒子的波粒二象性特征。 2、理解概率波及波函数概念。 3、理解不确定关系,会用它进行估算;理解量子力学中的互补原理。 4、会用波函数的标准条件和归一化条件求解一维定态薛定谔方程。 5、理解薛定谔方程在一维无限深势阱、一维势垒中的应用结果、理解量子隧穿效应。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、德布罗意在爱因斯坦光子理论的启发下提出,具有一定能量E 和动量P 的实物粒子也具波动性,这种波称为(物质)波;其联系的波长λ和频率ν与粒子能量E 和动量P 的关系为(νh E =)、(λh p =)。德布罗意的假设,最先由(戴维 孙-革末)实验得到了证实。因此实物粒子与光子一样,都具有(波粒二象性)的特征。 2、玻恩提出一种对物质波物理意义的解释,他认为物质波是一种(概率波),物质波的强度能够用来描述(微观粒子在空间的概率密度分布)。 3、对物体任何性质的测量,都涉及到与物体的相互作用。对宏观世界来说,这种相互作用可以忽略不计,但是对于微观客体来说,这种作用却是不能忽略。因此对微观客体的测量存在一个不确定关系。其中位置与动量不确定关系的表达式为(2 ≥???x p x );能量与时间不确定关系的表达式为(2 ≥???t E )。 4、薛定谔将(德布罗意公式)引入经典的波函数中,得到了一种既含有能量E 、动量P ,又含有时空座标的波函数),,,,,(P E t z y x ψ,这种波函数体现了微观粒子的波粒二象的特征,因此在薛定谔建立的量子力学体系中,就将这种波函数用来描述(微观粒子的运动状态)。

经典和量子统计物理学的初步认识(高工大作业,第三部分)

西安交通大学 高等工程热力学 报告 学号:XXXXXXXXXX 姓名:XXXXX 专业:工程热物理 班级:XXXXXX 能源与动力工程学院 2015/12/26

经典和量子统计物理学的初步认识 经典统计物理学是建立在经典力学基础上的学科,而量子统计物理学是建立在量子力学基础上的学科,从经典统计到量子统计,它们之间存在着一定的区别和联系,并在一定的条件下可以相互转换。利用经典统计方法推证热力学中的能量均分定理,并结合热容量的定义求解某些系统内能及热容量时,发现其理论值与实际值存在差异,这是经典统计物理难以解决的问题,本文采用量子统计理论做出了合理的解释,从而使理论值和实际值吻合的很好。因此,可以看出经典统计的局限性是量子统计理论建立的基础,量子统计理论很好的补充了经典统计理论的不足。 1. 理想气体物态方程的经典统计推导 在普通物理的热学中,从气体的实验定律(如:玻意耳—马略特定律、查理定律及盖吕萨克定律)出发推导理想气体物态方程,而在理论物理中热力学统计利用经典统计方法仍能给出相应的理论,它是经典统计物理应用的一个典型的实例。对自由粒子而言,其自由度r=3,其坐标表示为(x ,y ,z),与之相对应的动量为(p x ,p y ,p z ),那么它的能量为: 2222x y z p 1==(p +p +p )2m 2m ε()1 将(1)式代入玻耳兹曼系统下的配分函数: 1222x y z l (p +p +p )2m l l z e e β βεωω--==∑∑()2 由于玻耳兹曼系统的特点是每个粒子可以分辨,可看成经典系统,则系统看成连续分布的,即配分函数中的求和变为积分,则有: 131...222(p +p +p )x y z 2m x y z z e dxdydzdp dp dp h β -=??()3 求解积分可得: 3 2122()z V h β =πm ()4 其中V dxdydz =???是气体的体积,根据玻耳兹曼系统广义力的统计表达式类比压强的统计表达式为: 1lnz N P V β?=?()5 将(4)式带入(5)式,求导可得理想气体的压强: NkT P V = ()6

量子信息论简介

量子信息论简介 一、什么是量子信息论? 近20年来,量子力学除了更深入地应用于物理学本身许多分支学科之外,还迅速广泛地应用到了化学、生物学、材料科学、信息科学等领域。量子理论这种广泛,深入应用的结果、极大地促进了这些学科的发展,从根本上改变了它们的面貌,形成了众多科学技术研究热点,产生了许多崭新的学科;与此同时,量子力学本身也得到了很大的丰富和发展。 热点之一就是已经诞生、正在形成和发展中的量子信息科学———量子通信和量子计算机,简称为量子信息论。它是将量子力学应用于现有电子信息科学技术而形成的交叉学科。量子信息论不但将以住的经典信息扩充为量子信息,而且直接利用微观体系的量子状态来表达量子信息。从而进入人为操控、存储和传输量子状态的崭阶段。 近10多年来,量子信息论从诞生到迅猛发展,显示出十分广阔的科学和技术应用前景。这种崭新的交叉结合已经并正在继续大量生長出许多科学技术研究热点,并逐渐形成一片新兴广阔的研究领域,不断取得引人瞩目的輝煌成就。 量子信息论的诞生和发展,在科学方面有着深远的意义。因为它反过来极大地丰富了量子理论本身的内容,并且有助于加深对量子理论的理解,突出暴露并可能加速解决量子理论本身存在的基础性问题。借助这一新兴交叉学科的实验技术,改造量子力学基础,加速变革现有时空观念,加深对定域因果律的认识也许是可能的。 量子信息论在技术方面也有着重大影响。因为它的发展前景是量子信息技朮(QIT)产业,它是更新换代目前庞大IT产业的婴儿,是推动IT产业更新换代的动力,指引IT技朮彻底变革的方向。在这方面大量、迅猛、有效的探索性研究正在逐步导致以下各色各样的新兴分支学科的诞生:量子比特和量子存储器的构造,人造可控量子微尺度结构,量子态的各类超空间传送,量子态的制备、存诸、调控与传送,量子编码及压缩、纠错与容错,量子中继站技朮,量子网络理论,量子计算机,量子算法等等。它们必将对国际民生和金融安全技朮以及国防技朮产生深刻的影响。 目前,一方面是寻求各色各样存取量子信息的载体———量子比特和量子信息处理器。相关的实验和理论研究正在蓬勃开展。实验中的量子信息载体,不仅包括自然的微观系统,更着重于形形色色的人造可控微尺度结构———也就是人造可控量子系统。在研制可控量子比特和量子存储器件时,必须考虑它们和传送环节的光场之间的可控耦合,以保证量子信息的有效写入和取出。这里最重要的是研究光场和人造原子系综的相互作用。 第二方面是关于量子信息的传送。量子通信是量子信息论领域中首先走向实用化的研究方向。目前量子通信主要以极化光子作为信息载体,釆用纠缠光子对作为传送的量子通道。量子通信可以分为光纤量子通信和自由空间量子通信两个方向。关于光纤量子通信方面,建立光纤量子通信局域网和延长光纤量子通信鉅离的时机已经到来。而利用纠缠光子实施自由空间量子通信,其最终目标是通过卫星实现全球化量子通信。量子通信要求长程、高品质、高強度的纠缠光源。这需要掌握包括纠缠纯化、纠缠交换与纠缠焊接的量子中继器技术。同时还需要展开各类量子编码(纠错码、避错码、防错码)研究,各类量子态超空间传送方式研究,进而逐步创立完善的量子网络理论。 第三方面是关于量子计算机。目前的经典计算机受到经典物理原理限制,己经接近其处理能力的极限。而由于量子态迭加原理和量子纠缠特性,量子计算机具有经典计算机无法比拟的、快速的、高保密的计算功能,所以,有必要研究量子计算机。制造量子计算机的核心任务是造出可控多位量子比特的量子信息处理器。这里的关键是寻求能够避免退相干、易于操控和规模化的多位量子比特。这正是制约量子计算机研制进度的主要困难。1994年,计算机专家Chair C.H.Bennett宣布,量子计算机的研制己进入工程阶段。根据近10年来各国量子计算机研制己报导的有关资料预计,量子计算机技术的长远发展,最终有赖于固体方案。关于量子计算机研制进度:乐观估计是到20l0年可以在硅片技朮基础上制造出10多位可控量子比特,从而造出简单的台式计算机; 较稳健的估计是可能在下一个l0年之內; 持悲观估计的人们有个比喻:现在不必做出发展量子计算机的“哈曼顿计划”,因为现在还没有发现“核裂变”。 二、国內外量子信息专业的发展状况 2006年9月1日~4日,来自世界21个国家和地区的近200名科技人员聚集在北京友谊宾馆,参加由中国科大量子信息国家重点实验室举办的亚洲量子信息科学会议。在这次会议中首次提出量子隐形传态思想、首次提出第一个量子密钥分配协议的IBM研究机构科学家Chair C.H.Bennett接受采访时说:“量子信息现在还是个婴儿!”但鉴于量子信息科学技术的巨大发展潜力,目前已受到各国政府、科技专家和公众的广泛关注。 1、国外量子信息的研究和进展: 国际上重要的西方国家(美、英、法、加拿大、以色列、日本、瑞典、奥地利、意大利、瑞士等),特别是美国和欧盟均投入大量人力物力于量子通讯和量子计算的理论和实验研究,量子信息已成为学术界的热门课题,其发展十分迅猛,参与研究的国家、机构和人员日益增多,有关国际会议连接不断。以美国为例,加州理工大学、MIT和南加州大学联合成立了量子信息和计算研究所,其长远目标就是

热力学统计物理期末复习试题 (2)

一.填空题 1.设一多元复相系有个?相,每相有个k 组元,组元之间不起化学反应。此系统平衡时必同时满足条件: T T T αβ ? == =、 P P P αβ ? == =、 (, )i i i 1,2i k α β ? μμμ== == 2.热力学第三定律的两种表述分别叫做:能特斯定律和绝对零度不能达到定律。 3.假定一系统仅由两个全同玻色粒子组成,粒子可能的量子态有4种。则系统可能的微观态数为:10。 4.均匀系的平衡条件是0 T T =且 P P =;平衡稳定性条件是 V C >且() T P V ?

清华大学大学物理习题库量子物理

清华大学大学物理习题库:量子物理 一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为??。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为??的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2??的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ??- E K (C) h ??- E K (D) h ??+ E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量?与反冲电子动能E K 之比??/ E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若?粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则?粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ]

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

量子信息学

量子信息学 20世纪前半叶,自然学科诞生了最具影响力的两门学科,量子力学和信息学。前者成为目前研究微观粒子运动规律离不开的理论基础,使人类对自然界的认识发生了里程碑的突破,它解释和预言了大量奇妙的物理现象,如微观粒子的波粒二象性、隧道效应和纠缠现象等等。利用量子力学原理,不仅解释了原子结构、化学键、超导现象、基本粒子的产生和湮灭等重要物理问题,而且也促成了现代微电子技术、激光技术和核能利用技术等的出现。而后者已明显地改变了人们的生产和生活方式,提高了工作效率和生活质量。20世纪末叶,它们交汇在一起,产生了一门新的交叉学科——量子信息学。 鉴于量子信息学研究与应用的巨大潜力,特别是关系到国家信息安全的重大问题,许多国家投入了大量人力物力开展相关方面的研究工作,促进了这一学科在诞生后的10多年时间内飞速发展。目前主要在以下几个方面开展研究。下面简单介绍两个方面。 纠缠理论的研究:在量子信息学中,量子态是信息的载体,量子信息的许多技术是建立在量子态纠缠的基础之上

的。因此,量子纠缠是量子信息学中最重要的研究课题,在理论和实验上均有重要意义。但遗憾的是,对此问题的研究还处于初级阶段。现在只有2×3量子系统纠缠的充要判断|,而对一般量子体系仅有充分性或必要性判据。对于不同纠缠态,其内部的关联程度也是不同的。如果量子态之间纠缠,那么就要掌握其纠缠的程度(即纠缠度)。纠缠度是系统各个部分之间纠缠程度的量度,理想的纠缠度应满足3个条件:①对任意量子态,纠缠度大于零;对正交直积态,纠缠度等于零;②在子系统的么正变换下纠缠度不变;③在局域操作和经典通信条件下纠缠度不能增加。对对多粒子多维纠缠态的纠缠性质研究是目前量子信息学最重要、最活跃的研究方向之一。 量子计算机设计和硬件研究:由于量子计算机具有很高的商业价值,所以研制量子计算机从一开始就是各个国家关注的一个研究重点。目前,关于量子计算机的可行性问题已经解决,IBM公司在实验室中已经研制出7位量子计算机原型系统。由于量子计算机的信息媒介是量子比特,因此对它的储存、处理、提取所使用的方法与设备和经典计算机相比是完全不同的。虽然利用核磁共振、离子阱等物理技术已实现了量子态的纠缠与储存,但总的来说量子器件实现技术还处于实验研究阶段。由于量子态储存过程中,量子系统不可

最新量子力学期末考试题解答题

最新量子力学期末考试题解答题 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件.首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质. 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子.爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的.(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比.(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子. 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态.这就是量子力学中的态叠加原理.态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ.它反映了微观粒子的波粒二象性矛盾的统一.量子力学中这种态的叠加导致在叠加态下观测结果的不确定性. 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值.这种状态称为定态.定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化. 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号.量子力学中采用算符来表示微观粒子的力学量.如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

量子力学与统计力学各章习题Word版

《量子力学与统计力学》各章习题 习题一 1.1、一颗质量为20克的子弹以仰角30o初速率500米/秒从60米的高度处射出。求在重力 作用下该子弹着地前的轨道以及射出50秒后对射出点的位矢、速度、动量、角动量、动 能和机械能。(不考虑空气阻力,重力加速度取10米/秒2 ,地面为零重力势能面)。 1.2、在极坐标平面中任取两点P 1和P 2,但它们和极点三者不共线。试分别画出在P 1和P 2处 的极坐标单位矢。 1.3、在球坐标系中任取一点P ,试画出P 点的球坐标单位矢。 1.4、对于做斜上抛运动的子弹,以抛出点为坐标系原点建立直角坐标系。试分别选取两组不 同的广义坐标,并用之表示子弹在任一时刻的直角坐标。 1.5、氢原子由一个质子和一个电子组成。试说明一个孤立氢原子体系是基本形式的Lagrange 方程适用的体系。 1.6、证明: Lagrange 方程的基本形式(1.59)式可写为如下的Nielsen 形式: αα αQ q T q T =??-??2 ,s ,,2,1 =α 1.7、设一个s 自由度的体系的广义坐标为αq ),,2,1(s =α。试证明存在一个任意可微函 数),,,,(21t q q q F s ,由它与该体系的Lagrange 函数构成的如下函数 dt t q q q dF s ) ,,,,(L L 21 + =' 满足Langrange 方程(1.67)式。 1.8、设一个s 自由度的体系的广义坐标为αq ),,2,1(s =α,满足Langrange 方程(1.67) 式的Lagrange 函数为),,,,,,,,(L 2121t q q q q q q s s 。设存在另一组广义坐标αξ,),,2,1(s =α,且有变换方程 ),,,,(21t q q s ξξξαα =,s ,,2,1 =α 此变换叫做点变换。证明: 若通过上述点变换将),,,,,,,,(L 2121t q q q q q q s s 变 换为),,,,,,,,(L L 2121t s s ξξξ ξξξ =,则有 s dt d , ,2 ,1 ,0L )L ( ==??-??αξξα α 这就是说,Lagrange 方程的形式与所选用的广义坐标无关。 1.9、一个质量为m 的物体在地球(质量为M )引力场中做周期运动。以地心为极点在轨道平面 上建立极坐标系),(?r ,并选极坐标为广义坐标。 1)、写出该物体的Lagrange 函数,广义动量,所受的广义力,并由Lagrange 方程导出 该物体的径向和横向运动方程; 2)、写出该物体的Hamilton 函数, 并由Hamilton 正则方程导出该物体的径向和横向运动方程。

大学物理 量子物理基础知识点总结

大学物理 量子物理基础知识点 1.黑体辐射 (1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。 (2)斯特藩—玻尔兹曼定律:4 o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设 (1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=?? (2)普朗克黑体辐射公式:2 5 21M T ( )1 hc kt hc e λπλλ =-(,) 3.光电效应和光的波粒二象性 (1)遏止电压a U 和光电子最大初动能的关系为:21 2 a mu eU = (2)光电效应方程: 21 2 h mu A ν= + (3)红限频率:恰能产生光电效应的入射光频率: 00V A K h ν= = (4)光的波粒二象性(爱因斯坦光子理论):2mc h εν==;h p mc λ ==;00m = 其中0m 为光子的静止质量,m 为光子的动质量。 4.康普顿效应: 00(1cos )h m c λλλθ?=-= - 其中θ为散射角,0m 为光子的静止质量,1200 2.42610h m m c λ-= =?,0λ为康普顿波长。 5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()221 11 T T H R m n n m m n ν λ ==-=->()()(), % (2)频率条件: k n kn E E h ν-= (3) 角动量量子化条件:, 1,2,3...e L m vr n n ===

其中 2h π = ,称为约化普朗克常量,n 为主量子数。 (4)氢原子能量量子化公式: 122 13.6n E eV E n n =-=- 6.实物粒子的波粒二象性和不确定关系 (1)德布罗意关系式: h h p u λμ= = (2)不确定关系: 2 x p ??≥ ; 2 E t ??≥ 7.波函数和薛定谔方程 (1)波函数ψ应满足的标准化条件:单值、有限、连续。 (2)波函数的归一化条件: (,)(,)1V r t r t d ψψτ* =? (3)波函数的态叠加原理: 1122(,)(,)(,)...(,)i i i r t c r t c r t c r t ψψψψ=++= ∑ (4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ??? =-?+????? 8.电子自旋和原子的壳层结构 (1)电子自旋: 1,2 S s = = ;1, 2 z s s S m m ==± 注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构 ①原子核外电子可用四个量子数(,,,l s n l m m )描述: 主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。 角量子数:0,1,2,...1l n =- 它决定电子轨道角动量。 磁量子数:0,1,2,...l m l =±±± 它决定轨道角能量在外磁场方向上的分量。 自旋磁量子数:1 2 s m =± 它决定电子自旋角动量在外磁场方向上的分量。

量子物理基础--习题资料讲解

量子物理基础--习题

习题十五 15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的 m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度. 解:将这些星球看成绝对黑体,则按维恩位移定律: K m 10897.2,3??==-b b T m λ 对太阳: K 103.51055.010897.236 311 ?=??== --m b T λ 对北极星:K 103.81035.010897.236 322 ?=??== --m b T λ 对天狼星:K 100.110 29.010897.246 333 ?=??== --m b T λ 15-2 用辐射高温计测得炉壁小孔的辐射出射度(总辐射本领)为22.8W ·cm -2,求炉内温度. 解:炉壁小孔视为绝对黑体,其辐出度 242 m W 108.22cm W 8.22)(--??=?=T M B 按斯特藩-玻尔兹曼定律: =)(T M B 4T σ 41 8 44 )10 67.5108.22() (-??==σ T M T B K 1042.110)67 .58.22( 334 1?=?= 15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000ο A 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大? 解:(1)已知逸出功eV 2.4=A

据光电效应公式2 2 1m mv hv =A + 则光电子最大动能: A hc A h mv E m -=-== λ υ2max k 21 eV 0.2J 1023.310 6.12.41020001031063.61919 10 834=?=??-????=---- m 2 max k 2 1)2(mv E eU a = =Θ ∴遏止电势差 V 0.210 6.11023.319 19 =??=--a U (3)红限频率0υ,∴0 00,λυυc A h = =又 ∴截止波长 198 34010 60.12.41031063.6--?????==A hc λ m 0.296m 10 96.27 μ=?=- 15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7?=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量 J 1099.1100.51031063.65187 8 34---?=?????= ==λ υhc n nh E 功率 W 1099.118-?== t E 15-5 设太阳照射到地球上光的强度为8 J ·s -1 ·m -2 ,如果平均波长为5000ο A ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少?

清华大学《大学物理》习题库试题及答案__10_量子力学习题

一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红 限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射, 发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作 半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0 λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子 能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各 谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为 -0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时 氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨 道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ] 11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?=ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 [ ] 12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定 粒子动量的精确度最高的波函数是哪个图? [ ]

量子物理基础--习题

量子物理基础--习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

习题十五 15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的 m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度. 解:将这些星球看成绝对黑体,则按维恩位移定律: K m 10897.2,3??==-b b T m λ 对太阳: K 103.51055.010897.236 311 ?=??== --m b T λ 对北极星:K 103.81035.010897.236 322 ?=??== --m b T λ 对天狼星:K 100.110 29.010897.246 333 ?=??== --m b T λ 15-2 用辐射高温计测得炉壁小孔的辐射出射度(总辐射本领)为22.8W ·cm -2,求炉内温度. 解:炉壁小孔视为绝对黑体,其辐出度 242 m W 108.22cm W 8.22)(--??=?=T M B 按斯特藩-玻尔兹曼定律: =)(T M B 4T σ 41 8 44 )1067.5108.22() (-??==σ T M T B K 1042.110)67 .58.22( 334 1?=?= 15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000ο A 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少(2)遏止电势差为多大(3)铝的截止(红限)波长有多大 解:(1)已知逸出功eV 2.4=A 据光电效应公式2 2 1m mv hv =A + 则光电子最大动能:

量子物理基础习题解

量子物理基础 17.1 夜间地面降温主要是由于地面的热辐 射。如果晴天夜里地面温度为-5° C ,按黑体辐射计算,每平方米地面失去热量的速率多大? 解:每平方米地面失去热量的速率即地面的辐射出射度 2 4 8 4 W /m 29226810 67.5=??==-T M σ 17.2 在地球表面,太阳光的强度是1.0?103W/m 2。地球轨道半径以1.5?108 km 计,太阳半径以7.0?108 m 计,并视太阳为黑体,试估算太阳表面的温度。 解: 4 22 44T R I R M S E σππ== K 103.510 67.5)107.6(100.1)105.1(3 4 8 2 8 32 11 4 2 2 ?=??????= = -σ S E R I R T 17.3宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于3K 黑体辐射.求: (1)此辐射的单色辐射强度在什么波长下有极大值? (2)地球表面接收此辐射的功率是多少? [解答](1)根据公式λm T = b ,可得辐射的极值波长为 λm = b/T = 2.897×10-3/3 = 9.66×10-4(m). (2)地球的半径约为R = 6.371×106m , 表面积为 S = 4πR 2. 根据公式:黑体表面在单位时间,单位面积上辐射的能量为 M = σT 4 , 因此地球表面接收此辐射的功率是 P = MS = 5.67×10-8 ×34 ×4π(6.371×106)2 = 2.34×109(W). 17.4 铝的逸出功是eV 2.4,今有波长nm 200=λ的光照射铝表面,求: (1)光电子的最大动能; (2)截止电压; (3)铝的红限波长。 解:(1) A c h A h E k -=-=λ ν eV 0.22.410 6.110 20010 31063.619 9834 =-??????= --- (2)V 0.21/0.2/===e E U k c (3)A hc c = = 0νλ nm 296m 1096.210 6.12.410 310 63.67 19 8 34 =?=?????= --- 17.5 康普顿散射中入射X 射线的波长是λ = 0.70×10-10m ,散射的X 射线与入射的X 射线垂直.求: (1)反冲电子的动能E K ; (2)散射X 射线的波长; (3)反冲电子的运动方向与入射X 射线间的夹角θ. [解答](1)(2)根据康普顿散射公式得波长变化为 2 12 2 2sin 2 2.42610 sin 2 4 ? π λΛ-?==?? = 2.426×10-12 (m), 散射线的波长为 λ` = λ + Δλ = 0.72426×10-10(m). 反冲电子的动能为 ` k hc hc E λ λ= - 34 8 34 8 10 10 6.6310 310 6.6310 310 0.710 0.7242610 ----??????= - ?? = 9.52×10-17(J). (3)由于 /`tan /` hc hc λλθλ λ== , 0.70.96650.72426 = =, 所以夹角为θ = 44°1`.

量子力学试题

量子力学试题 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

河南工程学院至学年第学期 量子力学试卷2 考试方式: 闭卷 本试卷考试分数占学生总评成绩的 70 % 题 号 一 二 三 四 五 六 七 八 九 十 总分 核分人 得分 复查总分总复查人 <本题10分)一、填空题 2.按照玻恩的观点,和微观粒子相联系的物质波是一种,描 述的是大量粒子的统计行为。 3.称等固有性质的微观粒子为全同粒子。 4.能量和时间的测不准关系为。 5.如果全同粒子体系的波函数是反对称的,则组成该体系的全同粒子一定 是。 6.厄密算符的本征值必为。 7.泡利算符满足这样的关系式:。 8.算符在自身表象中的矩阵是一个矩阵。 9.变分法的实质是。 <本题10分)二、选择题 1. 下列波函数中与的几率密度不相同的是(为任意实数>: < )b5E2RGbCAP A. B. C. D. 2.量子力学理论的创立可以认为是物理学研究工作方式的转变,标志着物理学研究工作第一次集体的胜利,那么这一批物理 学 家 中 公 认 的 领 袖 是 : < ) p1EanqFDPw A. 玻恩 B. 爱因斯坦 C. 玻尔 D. 薛定谔 3.定态微扰理论只适用于求解的能量和对波函数修正。 < ) A. 分立能级 B. 连续能级 系部名称 专业班级: 姓名: 学号: 试卷份数 密 封 线 内 不 得 答 题 线 封 密 得分 评卷人 得分 评卷人

C. 分立能级和连续能级 D. 以上三个皆不对 4.下列没有显示电子自旋属性的实验或现象是: < ) A. Stern(斯特恩>和Gerlach(革拉赫>实验 B. 夫兰克-赫兹实验 C. 碱金属原子光谱的双线结构 D. 反常塞曼效应 5.在散射问题中人们感兴趣的不是问题。( > A. 能量本征值 B. 散射粒子的角分布 C. 散射粒子的角关联 D. 散射粒子的极化 <本题 10分)三、判断题 1.在量子力学中,粒子在某一点的能量等于动能与势能之和。 < ) 2.对于低能散射,分波法是一种方便、有效的方法。< ) 3.波函数归一化与否影响粒子的几率分布。< ) 4.如果 ,则的几率密度 。< ) 5.量子力学势垒贯穿模型中粒子的能量是已知的,且连续取值。 < ) 6.量子力学中厄密算符的本征值都是实数。< ) 7.泡利算符满足这样的关系式 :。 < ) 8.算符在自身表象中的矩阵是一个对角矩阵。 < ) 9.在国际单位制下,电子自旋的回转磁比率为 ,其中为电子 质 量。 < ) 10.变分法的实质是求平均能量的最小值。 < ) <本题20分)四、问答题 1.为什么可观察量要用线性厄密算符描写? 2.写出单个电子的自旋算符 和的矩阵形式。 3.何谓微观粒子的波粒两象性? 4. 波函数是用来描述什么的?它应该满足什么样的自然条件?它的 物 理 含 义 是 什 么 ? 5.写出两个算符有组成完全系的共同本征函数的条件。 得分 评卷人 得分 评卷 人

相关主题
文本预览
相关文档 最新文档