当前位置:文档之家› 光栅衍射实验的误差分析及其改进

光栅衍射实验的误差分析及其改进

光栅衍射实验的误差分析及其改进
光栅衍射实验的误差分析及其改进

光栅衍射实验的误差分析及其改进

仲原 100104258 机械工程及其自动化

摘要:平行光未能严格垂直人射光栅将形成误差,常用的对称测盘法只能消除

误差的一阶修正项,但仍存在二阶修正项误差。若采用测t最小衍射角的方法就能有效地消除一阶、二阶修正项的误差,而且能观测到更高级次的衍射条纹,从而减少读数误差,提高实验精度。

关键字:光栅衍射一阶修正项二阶修正项测t最小衍射角法summray: the parallel light is not strictly vertical grating will be formed of people shooting error, the commonly used symmetric disk method can eliminate measurement error of a first-order correction term, there are still two order correction error. The T minimum diffraction angle method can effectively eliminate the first order, two order correction of the error, but also more advanced times the observed diffraction fringes, thus reducing reading error, improve the accuracy of experiment. Key words: grating diffraction order correction of two order correction of measuring

t minimum diffraction angle method

衍射光栅简称光栅,是利用多缝衍射原理使光发生色散的一种光学元件。它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝,通常分为透射光栅和平面反射光栅。透射光栅是用金刚石刻刀在平面玻璃上刻许多平行线制成的,被刻划的线是光栅中不透光的间隙。而平面反射光栅则是在磨光的硬质合金上刻许多平行线。实验室中通常使用的光栅是由上述原刻光栅复制而成的,一般每毫米约250-600条线。

1 实验原理

设平面单色光波垂直入射到光栅(图1)表面上,衍射光通过透镜聚焦在焦平面上,于是在观察屏上就出现衍射图样,如图2所示。

图10-1光栅片示意图

光栅方程 : sin d k φλ= (0,1,2,...k =±±)

图10-2 单色光光栅衍射光谱示意图 图10-3 复合光光栅衍射光谱示意图 当入射光为复合光时,在相同的d 和相同级别k 时,衍射角φ随波长增大而增大,这样复合光就可以分解成各种单色光。(如图3所示)根据光栅方程,若已知光栅常数,条纹级别能数出来,我们可以根据衍射角测量某光的波长。

波长测量表达式为: sin d k φλ=

或已知波长,可以根据衍射角测量光栅常数d 。

光栅常数d 测量表达式为:

sin k d λ

φ= 2 光栅放置误差的理论分析

当平行光与光栅平面法线成a 角斜入射时的光栅方程为

上两式中Φk ,Φ'k 的物理意义如下图所示。因此,如果光栅放置得不严格垂直于人射光,而实验测量时仍用公式(1) 进行波长、分辨率等物理量的计算,将造成实验误差。不失一般性,就方程(2)考虑人射角θ对测量结果的影。

图1 平行光斜入射光栅

将方程(2)展开并整理,得

(4)

与(1)式比较可知,由于人射角θ不等于零而产生了两项误差,如果θ很小,第一项tan (Φk/2)sinθ≈tan(Φk/2) x θ可视为一阶小量,第二项2sin2θ/2≈θ2/2可视为二阶小量,为方便计,称第一项为误差的一阶修正项,第二项为误差的二阶修正项。如果θ较大,则引起的误差不能忽略。进一步分析表明,在相同人射角θ的条件下,当衍射级次k增加时,Φk增加,由于tanΦk是递增函数,因此一阶修正项增大,测量高级次的光谱会使实验误差增大;而误差的二阶修正项与衍射级次k和衍射角Φk无关。

从测量理论来看,衍射级次k越高,衍射角Φk越大,估读Φk引起sinΦk的相对误差越小,因为△sinΦk/sinΦk= ctgΦk△Φk,而ctgΦk是递减函数。另外角色散率dΦk/dλ= tanΦk/λ因正比于tanΦk而增大;角分辨率因正比于衍射级次k而增加。因此测量高次的光谱非但不增大二阶修正项的相对误差,反而能减小其它物理量的测量误差,而误差的一级修正项则与此矛盾。

3 减少误差的途径

如果能测出θ值代入(4)进行计算,理论上能对光栅放置不精确而引起的误差进行修正。但作为教学型实验,人射角θ的测量有一定难度,而且从测量理论上考虑,应尽可能减少直接测量量的数目。考虑到第一修正项系数为奇函数,因此可以用对称测量的方法来消除,这也是通常实验所采用的。为此将(2)式和(3)式相加并两边同除2,得

可见第一修正项已消除,但第二修正项仍然存在。如按对称测量方法,取左右两个衍射角的平均值,计算波长等物理量应该用公式(5),而不能简单地把(Φk+Φ'k)当作Φk代人(1)式计算。

比如波长几的计算,若不计第二修正项,则有

因此,平行光不垂直入射引起波长测量的相对误差为

其相对误差完全由人射角θ决定,与衍射级次k和衍射角Φk无关,而且对不同光栅,

第二修正项误差都一样。其误差随人射角θ改变的理论计算结果如图2所示。

图2 光栅放置未能使平行光垂直入射引起的误差

我们在JJY型(测量精度为δ=1',光栅常数d = 1/300mm,待测光波长λ= 589.3nm)分光计上进行了测量,测量结果以散点形式在图2上标出,测量误差与理论计算误差相一致。当人射角θ=2°时,理论计算误差为0.061%,实验测定误差为0.11%;人射角θ=4°时理论计算误差为0.24%,实验测定误差为0.26%;人射角θ=30°时,理论计算误差为15%,实验测定误差为14%;理论计算和实验测量结果都表明,当不垂直而偏离的角度较小时(θ<2°),这部分误差较小而可以忽略;如果偏离角度大时,测量误差会显著增加。因此通常的对称测量方法并非是最佳的实验方案。

考虑(2)式,注意到衍射级次k和衍射角Φk与入射角θ有关,经过简单的数学证明可知,对于一定的衍射级次k,当θ=Φk /2时,dΦk /dθ=0,而且d2Φk /dθ2> 0,因此存在一个最小衍射角Φkmin ,此时光栅方程简化为

正如找三棱镜最小偏向角一样,可以通过实验方便地测量出这一最小衍射角。即首先把望远镜的十字叉丝对准某一衍射级次的谱线,转动载物台带动光栅作微小转动,在望远镜中可见到光谱线跟随着光栅转动而移动,由此可确定最小衍射角的截止位置,记下此时的读数Φ1,然后取走光栅,将望远镜对准平行光管,记下此时的读数Φ2,则Φkmin=|Φ2-Φ1|。与通常的测量方法一样,只需两次读数就能测出波长等物理量,而且消除了第一、第二修正项引起的误差。因此,测量光栅最小衍射角,由方程(8)进行波长、分辨率等物理量的计算,不仅消除了一阶、二阶修正项引起的误差,而且还有另外一个优点,即增加光栅的衍射级次k,如实验室常用光栅,用对称测量法一般只能观测到二级衍射条纹,采用最小衍射角法,则能方便地观则到四级衍射条纹,因而增加Φkmin值,减少读数引起的相对误差,从而有效地提高测量精度。

图3 最小衍射的测量

4 结束语

光栅衍射实验是测量精度比较高的普通物理实验,以波长测量为例,如果分光计的调整和光栅放置精确,则测量最大误差可由下式

进行估算。取分光计的仪器误差δ作为测量角度的误差,光栅常数d通过测量某一标准波长为λ0的入射光的衍射角求得,则测量光栅常数d的误差为△d/d二ctgΦk*△Φk,所以

可见,测量波长的相对误差随衍射角的增加而快速减小。以对汞灯光谱的绿光波长测量为例,对一、二级谱线,其衍射角分别约为9°33',和19°23',取△Φk=δ=1',则△λ/λ分别为0.24%和0.12%,但学生测量结果的相对误差大多超过1.0%,其主要原因在于分光计的调整和光栅放置不精确。我们将其改为测量三阶最小衍射角,结果实验精度在1.0%以内。因此测量最小衍射角法可以在学生实验推广使用。

这种方法的主要误差在于用光强来判断两套莫尔条纹重合的光强测量精度。因此,提高测量精度的主要方法是提高光强测量精度或增加z2- z1之值。

设由光强测量误差引起的位置误差为△z ,则

当光强测量精度为0.5%,则△z=1.16mm,按照(15)式计算的值为0.28%。实际测量中常用不同K时的位置代入式(14)中计算,取平均值作为测量结果,偶然误差的影响减少。

干涉条纹重迭法中,单独每一套条纹在空间任一位置对比度都比较好,因此,当两套干涉条纹重合时,对比度是更好的,测量将是更精确。此方法的条件限制是要求试件φ角比较小。

参考文献:

(1)李连臣夏云杰《光子学报》 1998 第9期

(2)李红军卢振武廖江红翁志成《光学精密工程》 2000 第1期

(3)张奇志周传宏《光电工程》

(4)王世平《物理与工程》 2001

(5)王淮生蒋秀丽张秋霞《上海电力学院学报》 2006 第2期

(6)刘娟欧阳敏周静刘大禾《北京师范大学学报(自然科学版)》 2008 第4期(7)陈水波《物理实验》 2007

光栅衍射实验实验报告

工物系 核11 李敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,(1)式中应取加号,即d (sin φ+sin ι)=mλ。以Δ=φ+ι为偏向角,则由三角形公式得 2d (sin Δ 2cos φ?i 2 )=mλ (3) 易得,当φ?i =0时,?最小,记为δ,则(2.2.1)变

为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角δ,就可以根据(4)算出波长λ。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 2.使用注意事项 (1)水银灯在使用中必须与扼流圈串接,不能直接接220V 电源,否则要烧 毁。 (2)水银灯在使用过程中不要频繁启闭,否则会降低其寿命。 (3)水银灯的紫外线很强,不可直视。 四、 实验任务 (1)调节分光计和光栅使满足要求。 (2)测定i=0时的光栅常数和光波波长。 (3)测定i=15°时的水银灯光谱中波长较短的黄线的波长

光栅衍射实验报告

字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm;绿色2=546.1nm;黄色两条3=577.0nm和4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比:

光栅衍射实验

光栅衍射 [目的] 1.了解光栅特性,观察光栅光谱,进一步加深对光的干涉与衍射的理解。 2.学习和掌握测定光栅特性常数的实验原理和方法。 3.学习和掌握用光栅测定谱线波长的实验原理和方法。 [原理] 平行、等宽而等间隔的多狭缝即为光栅。通常将光栅分为两种,一种是透射光栅,另一种是反射光栅;按制造的方法来分光栅也有两种,一种是用光刻机在玻璃上刻制出来的刻划光栅,另一种是用全息照相的方法拍摄而成的全息光栅。现代使用的多是原刻光栅的复制品和全息光栅。光栅和棱镜一样,都是重要的分光元件,它也可以把入射光中不同波长的光分开。利用光栅分光原理而制成的单色仪和光谱已被广泛应用科学研究中。 若以单色平行光垂直照射在光栅平面上,则透过各狭缝的光线因衍射将向各个方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一系列被相当宽的暗区隔开的、间距不等的明条纹,称为谱线。按照光栅衍射理论,衍射光栅中明条纹的位置由下式决定: ()λ?k b a k ±=?+sin 或 λ?k d k ±=?sin (k = 0,1,2,…) (23-1) 式中,b a d +=称为光栅常数,λ为入射光波长,k 为明条纹(光谱线)级数,k ?是k 级明条纹的衍射角,如图23-1所示。 如果入射光不是单色光,则由式(23-1)可以看出,对于同一级谱线,各色光的波长不同,其衍射角k ?也各不相同,于是复色光将被分解,而在中央0=k ,0=k ?处, 各色光仍然重叠在一起,组成中央明条纹。在中央明条纹两侧对称地分布着k = 0,1,2,… 级光谱,各级光谱线都按波长大小的顺序依次排列成一组彩色谱线,这样就把复色光分

(整理)衍射光栅实验

衍射光栅实验 【实验目的】 1.了解分光计的原理与结构。 2.学习掌握分光计的调节方法。 3. 观察光通过光栅后的衍射现象。 4. 测透射光栅的光栅常数。 5. 用透射光栅测光波波长 【仪器用具】 分光计、光源、平面反射镜、汞灯光源、透射光栅 【实验原理】 1.分光计 分光计是一种用来精确测量角度的仪器,如测量反射角、折射率和衍射角等。通过测量有关角度,可以确定测定材料的折射率、光波波长和色散率等,其用途十分广泛。近代摄谱仪、单色仪等精密光学仪器也是在分光计的基础上发展起来的。 分光计结构复杂、构件精密、调节要求高,对初学者有一定难度。但只要了解了其结构和光路,严格按要求步骤耐心调节,就能掌握。 (一)仪器描述 图1 JJY型分光仪

1狭缝体锁紧螺钉;2 狭缝体锁紧螺钉;3 狭缝宽度调节手轮;4 狭缝体高低调节手轮; 5 平行光管部件;6平行光管水平调节螺钉;7载物台;8载物台调平螺钉;9 望远镜部件;10望远镜水平调节螺钉;11目镜组锁紧螺钉;12目镜组;13目镜调节手轮;14望远镜光轴高低调节螺钉;15支臂;16望远镜微调螺钉;17转座;18度盘止动螺钉;19载物台锁紧螺钉;20制动架;21望远镜止动螺钉;22度盘;23底座;24立柱;25游标盘微调手轮;26游标盘止动螺钉。 分光计的种类繁多,但构造基本相同。分光计主要由望远镜、平行光管、载物台、光学游标刻度盘四部分组成,其外形如图1所示。 分光计的下部是金属底座,底座中央装有竖直的固定轴,望远镜、载物台、主刻度盘和游标刻度盘都可绕这一固定竖轴旋转,此轴为分光计主轴(中心轴)。 (1)望远镜它由物镜、阿贝目镜、分划板三部分组成。分划板上刻有双十字准线(“╪”),在分划板的右下方紧贴一块45°全反射小三棱镜,其表面涂不透明薄膜,薄膜上刻有一个空心十字透光窗口,反射棱镜另一光学面上涂有绿色,当小电珠光从管侧射入后成为绿色。调节目镜前后位置,在望远镜视场中可见清晰的准线像。若在物镜前放一平面镜,前后调节目镜(连同分划板一起)与物镜的距离,使分划板(空心绿十字窗口)处于物镜焦平面上,小电珠照亮空心绿十字窗口的光经物镜后成平行光射在平面镜上,从平面镜反射经物镜在分划板上形成十字窗口的像。若平面镜与望远镜光轴垂直,此像将落在准线上方的交叉点上。 图2 阿贝目镜望远镜 调节目镜调节手轮(13),可改变目镜与分划板的距离,使准线调节清楚。松开望远镜水平调节螺钉(10)可改变分划板到物镜的距离,使平面镜反射回来的十字像调节清楚。调节螺钉(14)可改变望远镜光轴的倾斜度。放松螺钉(21),望远镜可自由转动;旋紧它,望远镜就不能转动,但此时可通过微调螺钉(16)使望远镜左右微动。注意:转动望远镜时,

光栅衍射实验报告

光栅衍射实验 系别 精仪系 班号 制33 姓名 李加华 学号 2003010541 做实验日期 2005年05月18日 教师评定____________ 一、0i =时,测定光栅常数和光波波长 光栅编号:___2____;?=仪___1’___;入射光方位10?=__7°6′__;20?=__187°2′__。 由衍射公式,入射角0i =时,有sin m d m ?λ=。 代入光谱级次m=2、绿光波长λ=546.1及测得的衍射角m ?=19°2′,求得光栅常数 ()2546.13349sin sin 192/60m m nm d nm λ??= ==+? cot cot 2m m m d d ?????==?=? ()4cot 192/601/60 5.962101802180ππ-????=+??=? ? ????? 445.96210 5.962103349 1.997d d nm nm --?=??=??= ()33492d nm =± 代入其它谱线对应的光波的衍射角,得 ()3349sin 2013/60sin 578.72 m nm d nm m ?λ?+?===黄1

()3349sin 209/60576.82 nm nm λ?+? = =黄2 ()3349sin 155/60435.72 nm nm λ?+?==紫 λ λ?== 578.70.4752nm nm λ?==黄1 576.80.4720nm nm λ?= =黄2 435.70.4220nm nm λ?==紫()578.70.5nm λ=±黄1,()576.80.5nm λ=±黄2,()435.70.4nm λ=±紫 由测量值推算出来的结果与相应波长的精确值十分接近,但均有不同程度的偏小。由于实验中只有各个角度是测量值(给定的绿光波长与级数为准确值),而分光计刻度盘读数存在的误差为随机误差,观察时已将观察显微镜中心竖直刻线置于谱线中心——所以猜测系统误差来自于分光镜调节的过程。 二、150'i =?,测量波长较短的黄线的波长 光栅编号:___2____;光栅平面法线方位1n ?=__352°7′__;2n ?=__172°1′__。

光栅衍射实验报告

光栅衍射实验报告 字体大小:大|中|小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 ------实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2. 加深对分光计原理的理解。 3. 用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其

示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

,常用的是复制光栅和 的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵 全息光栅。图1中的为刻痕的宽度,为狭缝间宽度,为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹 数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路 图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射, 所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜, 在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 岀现明纹时需满足条件 (2) (2 )式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2 )式光栅方程,若波长已知,并能测岀波长谱线对应的衍射角,则可以求岀光栅常数 d。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的 两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同 的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm; 绿色2=546.1 nm; 黄色两条3=577.0nm 和4=579.1 nm 。 衍射光栅的基本特性可用分辨本领和色散率来表征。

2020年光栅衍射实验报告范文

实验时间2019 年 月 日签到序号 【进入实验室后填写】 福州大学 【实验七】 光栅的衍射 (206 实验室) 学学院 班班级 学学号 姓姓名 实验前必须完成【实验预习部分】 登录下载预习资料 携带学生证提前 10 分钟进实验室 实验预习部分【实验目的】 】 【实验仪器】( 名称、规格或型号) 【实验原理】(文字叙述、主要公式、衍射的原理图)实验预习部分【实验步骤和注意事项】 】 实验预习部分

一、 巩固分光计的结构(P 197 ,图25-10 ) 载物台 6 7 25 望远镜11 12 15 16 17 平行光管2 27 调节分光计,要求达到(验调节步骤参阅实验25 ) ⑴⑴望远镜聚焦于无穷远,且其光轴与仪器转轴垂直。 ⑵⑵平行光管产生平行光,且其光轴与望远镜光轴同轴等高,狭缝为宽度在望远镜视场中约为1 mm (狭缝宽度不当应由教师调节) 二、光栅位置的调节 1 、光栅平面与平行光管轴线垂直 ①①转动望远镜使竖直叉丝对准 。 ,然后固定望远镜位置。 ②放置光栅时光栅面要垂直

。 ③③调节 螺丝直到望远镜中看到光栅面反射回来的绿色十字叉丝像与 重合。 2 、光栅上狭缝与仪器转轴平行。 松开望远镜止动螺钉,向左(或向右)转动望远镜,观察各谱线,调节被螺丝使各谱线都被分划板视场中央的水平叉丝平分。 3 、反复调节直到1 和2 两个要求同时满足! 数据记录与处理【一】测定光栅常数 测出第一级绿光谱线的衍射角 绿=541 nm k=1 置望远镜位置 T 1 置望远镜位置 T 2 1 1 2 2 2 1 2 1 1- -41 1′= rad) (弧度) 10sin 绿 kd

光栅光谱仪实验报告

光栅光谱仪的使用 学号2015212822 学生姓名张家梁 专业名称应用物理学(通信基础科学)所在系(院)理学院 2017 年3 月14 日

光栅光谱仪的使用 张家梁 1 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 2实验原理 1. 光栅光谱仪 光栅光谱仪结构如图所示。光栅光谱仪的色散元件为闪耀光栅。入射狭缝和出射狭缝分别在两个球面镜的焦平面上,因此入射狭缝的光经过球面镜后成为平行光入射到光栅上,衍射光经后球面镜后聚焦在出射狭缝上。光栅可在步进电机控制下旋转,从而改变入射角度和终聚焦到出射狭缝处光线的波长。控制入射光源的波长范围,确保衍射光无级次重叠,可通过控制光栅的角度唯一确定出射光的波长。 光谱仪的光探测器可以有光电管、光电倍增管、硅光电管、热释电器件和CCCD 等多种,经过光栅衍射后,到达出射狭缝的光强一般都比较弱,因此本仪器采用光电倍增管和CCD 来接收出射光。

2. 光探测器 光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”) ──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。 CCD 是电荷耦合器件的简称,是一种金属—氧化物—半导体结构的新型器件,在电路中常作为信号处理单元。对光敏感的CCD 常用作图象传感和光学测量。由于CCD 能同时探测一定波长范围内的所有谱线,因此在新型的光谱仪中得到广泛的应用。 3. 闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(Φ=90°)光栅衍射的一般特性。当入射角

《大学物理实验》教案实验22 衍射光栅

实验 22 衍射光栅 一、实验目的: 1.观察光栅的衍射光谱,理解光栅衍射基本规律。 2.进一步熟悉分光计的调节和使用。 3. 测定光栅常数和汞原子光谱部分特征波长。 二、实验仪器: 分光计、光栅、汞灯。 三、实验原理及过程简述: 1.衍射光栅、光栅常数光栅是由大量相互平行、等宽、等距的狭缝(或刻痕) 构成。其示意图如图 1 所示。 图1 图2 光栅上若刻痕宽度为 a,刻痕间距为 b,则 d=a 十 b 称为光栅常数,它是光 栅基本参数之一。 2.光栅方程、光栅光谱 根据夫琅和费光栅衍射理论,当一束平行单色光垂直入射到光栅平面上时,光 波将发生衍射,凡衍射角满足光栅方程: , k 0 ,± 1 ,± 2... (1)时,光会加强。式中λ为单 色光波长, k 是明条纹级数。衍射后的光波经透镜会聚后,在焦平面上将形成 分隔得较远的一系列对称分布的明条纹,如图 2 所示。如果人射光波中包含有 几种不同波长的复色光,则经光栅衍射后,不同波长光的同一级( k )明条纹 将按一定次序排列,形成彩色谱线,称为该入射光源的衍射光谱。图 3 是普 0 通低压汞灯的第一级衍射光谱。它每一级光谱中有四条特征谱线:紫色λ14358 A ;绿色λ 0 0 025461 A ;黄色两条λ3=5770 A 和λ45791 A 。

3.光栅常数与汞灯特征谱线波长的测量由方程(1)可知,若光垂直入射到光栅上,而第一级光谱中波长λ 1 已知,则测出它相应的衍射角为 1 ,就可算出光栅常数 d;反之,若光栅常数已知,则可由式(1)测出光源发射的各特征谱线的波长 i 。角的测量可由分光计进行。 4.实验内容与步骤 a.分光计调整与汞灯衍射光谱观察 (1)调整好分光计。 (2)将光栅按图 4 所示位置放于载物台上。通过调平螺丝 a 1 或 a 3 使光栅平面与平行光管光轴垂直。然后放开望远镜制动螺丝,转动望远镜观察汞灯衍射光谱,中央( K 0 )零级为白色,望远镜转至左、右两边时,均可看到分立的四条彩色谱线。若发现左、右两边光谱线不在同一水平线上时,可通过调平螺丝a 2 ,使两边谱线处于同一水平线上。 (3)调节平行光管狭缝宽度。狭缝的宽度以能够分辨出两条紧靠的黄色谱线为准。 b.光栅常数与光谱波长的测量

光栅衍射实验实验报告

工物系 核11 敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,

(1)式中应取加号,即。以为偏向角,则由三 角形公式得 (3) 易得,当时,?最小,记为 ,则(2.2.1)变为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角,就可以根据(4) 算出波长。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 颜色 紫 绿 黄 红 波长/nm 404.7 491.6 577.0 607.3 407.8 546.1 579.1 612.3 410.8 623.4 433.9 690.7

光栅光谱仪的使用实验报告-董芊宇

实验报告 题目: 光栅光谱仪的使用 姓名董芊宇 学院理学院 专业应用物理学 班级2013214103 学号2013212835 班内序号22 2015年9 月

一. 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 二. 实验原理 1.闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(φ=90?)光栅衍射的一般特性。当入射角φ=90?时,衍射强度公式为 22 2 sin sin sin I u Nv A u v = ???? ? ????? (9.1) 光栅衍射强度仍然由单缝衍射因子和多缝干涉因子共同决定。只不过此时 ()sin sin a u π φθλ= + (9.2) ()sin sin d v πφθλ =+ (9.3) 当衍射光与入射光在光栅平面法线同侧时,衍射角θ取+号,异侧时取-号,单缝衍射中央主 极大的条件是0u =,即sin sin φθ=-或?θ=-。将此条件代入到多缝干涉因子中,恰好满足0v =,即0级干涉最大条件。这表明单缝衍射中央极大与多缝衍射0级最大位置是重合的,光栅衍射强度最大的峰是个波长均不发生散射的0级衍射峰,没有实用价值。而含有丰富信息的高级衍射峰的强度却非常低。 为了提高信噪比,可以采用锯齿形的反射光栅(又称闪耀光栅)。闪耀光栅的锯齿相当于平面光栅的“缝”,与平面光栅一样,多缝干涉条件只取决于光栅常数,与锯齿角度、形状无关。所以当光栅常数及入射角与平面光栅一样时,两者0级极大的角度也一样。闪耀光栅的沟槽斜面相当于单缝,衍射条件与锯齿面法线有关。中央极大的衍射方向与入射线对称于齿面法线N ,于是造成衍射极大与0级干涉极大方向不一致。适当调整光栅参数,可以使光栅衍射的某一波长最强峰发生在1级或其他高级干涉极大的位置。 2.非平衡光辐射(发光) 处于激发态上的电子处于非平衡态。它向低能级跃迁时就会发光。设电子跃迁1 E 和0E ,发 射光子的能量为 10hc hv E E E λ ==-=? (9.4) 电子受光辐射激发到高能态上导致的发光成为光致发光。光致发光时,电子在不同能级间跃迁常见如下情况。 (1) 电子受光辐射激发,然后以无辐射情况跃迁到低能级。(无发射跃迁释放的能量转化成热能

光栅常数的实验报告

光栅常数的实验报告

————————————————————————————————作者:————————————————————————————————日期:

得分教师签名批改日期 一、实验设计方案 1、实验目的 1.1、了解光栅的分光特性; 1.2、掌握什么是光栅常数以及求光栅常数的基本原理与公式; 1.3、掌握一种测量光栅常数的方法。 2、实验原理 2.1、测量光栅常数 光栅是由许多等宽度a(透光部分)、等间距b(不透光部分)的平行缝组成 的一种分光元件。当波长为λ的单色光垂直照射在光栅面上时,则透过各狭缝的 光线因衍射将向各方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一 系列间距不同的明条纹。根据夫琅和费衍射理论,衍射光谱中明条纹的位置由下 式决定: (a+b)sinφk=kλ(k=0,±1,±2,…)(2.1.1) 式中a+b=d称为光栅常数,k为光谱级数,φk为第k级谱线的衍射角。见图2.1.2, k=0对应于φ=0,称为中央明条纹,其它级数的谱线对称分布在零级谱线的两侧。 如果入射光不是单色光,则由式(2.1.1)可知,λ不同,φk也各不相同, 于是将复色光分解。而在中央k=0,φk=0处,各色光仍然重叠在一起,组成中 央明条纹。在中央明条纹两侧对称地分布k=1,2,…级光谱线,各级谱线都按波 长由小到大,依次排列成一组彩色谱线,如图2.1.2所示。 根据式(2.1.1),如能测出各种波长谱线的衍射角φk,则从已知波长λ的大 小,可以算出光栅常数d; 反之,已知光栅常数d, 则可以算出波长λ。本试 验则是已知波长λ求光 栅常数。 2.2、注意事项 2.2.1、光源必须垂直 入射光栅,否则会引起较 大的误差。 2.2.2、所有装置尽量 处于同一水平面上,这样 才能发生明显的衍射。 图2.1.2 光栅衍射谱

光栅衍射实验报告

光栅衍射实验报告 字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期:20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为

光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入 射时衍射光路 图3光栅衍射光谱示意图图4载物台当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色 1=435.8nm;绿色 2=546.1nm;黄色两条 3=577.0nm和 4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比: (3)

光栅衍射实验报告

光栅衍射实验报告 【实验目的】 1、观察光栅衍射现象,了解光栅的主要特征,加深对光栅衍射原理的理解; 2、进一步熟悉和巩固分光计的调节使用; 3、学会测量光栅常数,以及用光栅测光波的波长。 【实验仪器】 光栅、分光计、氦灯 【实验原理】 实验装置如图4-16-1所示。光栅放置在分光计的载物台上,氦灯光经过分光计的平行光管垂直入射到光栅上,经光栅色散后,由分光计的望远镜光谱,由分光计的读数窗读出各衍射光谱的衍射角。 凡含众多全同单元,且排列规则、取向有序的周期结构,统称为光栅。一维多缝光栅是一个最简单也是最早被制成的光栅,如图4-16-2所

示,其透光的缝宽为a,挡光的宽度为b,即这光栅的空间周期为d =(a+b),亦称其为光栅常数。 其中d是光栅常数,j为衍射角,l为入射光波长,k为该明纹的级次。该式叫做光栅衍射方程。 如果用会聚透镜将衍射后的平行光会聚起来,透镜后焦面上将出现一系列亮线----谱线.在j= 0的方向上可以观察到零级谱线,其他级数的谱线对称分布在零级两侧. 【实验内容与步骤】 测量氦灯光经过光栅衍射后各个谱线的衍射角度,求出光栅的光栅常数。 1、仪器调节 本实验在分光计上进行.要使实验满足式(2)成立的条件,入射光应是平行光垂直入射,衍射后要用聚焦于无穷远的望远镜观察和测量。为了保证测量准确,衍射谱线的等高面应该与分光计转轴垂直。 所以,对分光计的调节要求是:

平行光管产生平行光; 望远镜聚焦于无穷远(即能接收平行光); 使平行光管和望远镜的光轴都垂直仪器的转轴。并要求光栅平面与平行光管光轴垂直;光栅的刻痕与仪器转轴平行。 视频介绍分光计的调整方法 (1)调节光栅平面(即刻痕所在平面)与平行光管光轴垂直 调节方法是:先用水银灯把平行光管的狭缝照亮,使望远镜目镜中分划板中心垂直线对准狭缝像。然后固定望远镜。把光栅放置在载物台上(如图六所示),根据目测尽可能做到使光栅平面垂直平分连线,而栅平面反射回来的亮“+”字像与分划板中心垂直线重合。此时光栅平面与望远镜光轴垂直应在光栅平面内,并使光栅平面大致垂直于望远镜。再用自准直法调节光栅平面,直到从光。再调节平行光管狭缝像与“+”字像重合,使光栅平面与平行光管光轴垂直,然后刻固定游标盘。 (2)调节光栅使其刻痕与仪器转轴平行

光栅衍射实验

一、 实验名称:光栅衍射实验 核51 粟鹏文 2015011744 二、实验目得: (1)进一步熟悉分光计得调整与使用; (2)学习利用衍射光栅测定光波波长及光栅常数得原理与方法; (3)加深理解光栅衍射公式及其成立条件。 三、 实验原理: 衍射光栅简称光栅,就是利用多缝衍射原理使光发生色散得一种光学元件。它实际上就是一组数目极多、平行等距、紧密排列得等宽狭缝,通常分为透射光栅与平面反射光栅。透射光栅就是用金刚石刻刀在平面玻璃上刻许多平行线制成得,被刻划得线就是光栅中不透光得间隙。而平面反射光栅则就是在磨光得硬质合金上刻许多平行线。实验室中通常使用得光栅就是由上述原刻光栅复制而成得,一般每毫米约250~600条线。由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器得分光元件,用来测定谱线波长、研究光谱得结构与强度等。另外,光栅还应用于光学计量、光通信及信息处理。 1、测定光栅常数与光波波长 光栅上得刻痕起着不透光得作用,当一束单色光垂直照射在光栅上时,各狭缝得光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜得焦平面上形成一系列明暗条纹。 如图1所示,设光栅常数d=AB 得光栅G ,有一束平行光与光栅得法线成i角得方向,入射到光栅上产生衍射。从B点作B C垂直于入射光C A,再作B D垂直于衍射光AD ,AD 与光栅法线所成得夹角为?。如果在这方向上由于光振动得加强而在F 处产生了一个明条纹,其光程差CA +AD 必等于波长得整数倍,即: (1) 式中,λ为入射光得波长。当入射光与衍射光都在光栅法线同侧时,(1)式括号内取正号,在光 栅法线两侧时,(1)式括号内取负号。 如果入射光垂直入射到光栅上,即i=0,则(1)式变成: (2) 这里,m =0,±1,±2,±3,…,m 为衍射级次,?m第m 级谱线得衍射角。 2.用最小偏向角法测 定光波波长 如图2所示,波长为得光束入射在光栅G上,入射角为i,若与入射线同在光栅 法线n 一侧得m 级衍射光得衍射角为沪,则由式(1)可知 (3) 若以△表示入射光与第m 级衍射光得夹角,称为偏向角, (4) 显然,△随入射角i而变,不难证明时△为一极小值,记作,称为最小偏向角。并且仅在入射光与衍射光处于法线同侧时才存在最小偏向角。此时 (5) 带入式(3)得 m=0,±1,±2, (6) 图1 光栅得衍射 图2衍射光谱得偏向角示意图 图3 光栅衍射光谱

大学物理实验报告系列之衍射光栅.doc

大学物理实验报告 【实验名称】衍射光栅 【实验目的】 1.观察光栅的衍射光谱,理解光栅衍射基本规律。 2.进一步熟悉分光计的调节和使用。 3.学会测定光栅的光栅常数、角色散率和汞原子光谱部分特征波长。 【实验仪器】 JJY1′型分光计、光栅、低压汞灯电源、平面镜等 【实验原理】 1.衍射光栅、光栅常数 图40-1中a为光栅刻痕(不透明)宽度,b为透明狭缝宽度。d=a+b为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本参数之一。 图40-1 图40-2 光栅衍射原理图图40-1中a为光栅刻痕(不透明)宽度,b为透明狭缝宽度。d=a+b为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本参数之一。2.光栅方程、光栅光谱 由图40-1得到相邻两缝对应点射出的光束的光程差为: ? ?sin sin ) (d b a= + = ? 式中光栅狭缝与刻痕宽度之和d=a+b为光栅常数,若在光栅片上每厘米刻有n条刻 痕,则光栅常数 n b a 1 ) (= +cm。?为衍射角。 当衍射角?满足光栅方程: λ ?k d= sin( k =0,±1,±2…) (40-1) 时,光会加强。式中λ为单色光波长,k是明条纹级数。 如果光源中包含几种不同波长的复色光,除零级以外,同一级谱线将有不同的 衍射角?。因此,在透镜焦平面上将 出现按波长次序排列的谱线,称为 光栅光谱。相同k值谱线组成的光 谱为同一级光谱,于是就有一级光 谱、二级光谱……之分。图40-3为 低压汞灯的衍射光谱示意图,它每 一级光谱中有4条特征谱线:紫色 λ1= 435.8nm,绿色λ2=546.1nm, 黄色两条λ3= 577.0nm和λ4=579.1nm。 3.角色散率(简称色散率) 从光栅方程可知衍射角?是波长的函数,这就是光栅的角色散作用。衍射光栅的色散率定义为: λ ? ? ? = D 上式表示,光栅的色散率为同一级的两谱线的衍射角之差??与该两谱线波长差?λ的比值。通过对光栅方程的微分,D可表示成: 图40-3

光栅常数的实验报告

图2.1.2光栅衍射谱 得分 教师签名 批改日期 一、实验设计方案 1 、实验目的 1.1、 了解光栅的分光特性; 1.2、 掌握什么是光栅常数以及求光栅常数的基本原理与公式; 1.3、 掌握一种测量光栅常数的方法。 2、实验原理 2.1、测量光栅常数 光栅是由许多等宽度a (透光部分)、等间距b (不透光部分)的平行缝组成 的一种分光 元件。当波长为入的单色光垂直照射在光栅面上时,则透过各狭缝的 光线因衍射将向各方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一 系列间距不同的明条纹。根据夫琅和费衍射理论,衍射光谱中明条纹的位置由下 式决定: (a+b ) sin ? k=k 入(k=0,± 1,± 2,…) 式中a+b=d W 为光栅常数,k 为光谱级数,? k 为第k 级谱线的衍射角。见图2.1.2, k=0对应于? =0,称为中央明条纹,其它级数的谱线对称分布在零级谱线的两侧。 如果入射光不是单色光,则由式(2.1.1)可知,入不同,? k 也各不相同, 于是将复色光分解。而在中央k=0, ? k=0处,各色光仍然重叠在一起,组成中 央明条纹。在中央明条纹两侧对称地分布k=1,2,…级光谱线,各级谱线都按波 长由小到大,依次排列成一组彩色谱线,如图 2.1.2所示。 根据式(2.1.1),如能测出各种波长谱线的衍射角? k ,则从已知波长入的大 小,可以算出光栅常数d ; 反之,已知光栅常数d , 则可以算出波长入。本试 验则是已知波长入求光 栅常数。 2.2.1、 光源必须垂直 入射 光栅,否则会引起较 大的误差。 2.2.2、 所有装置尽量 处于 同一水平面上,这样 才能发生明显的衍射。 2.2、注意事项 (2.1.1) 入射光 -毂明撇 屮眞囲条 3级囲*

分光计和透射光栅测光波波长实验报告【最新版】

分光计和透射光栅测光波波长实验报告 【实验目的】 观察光栅的衍射光谱,掌握用分光计和透射光栅测光波波长的方法。 【实验仪器】 分光计,透射光栅,钠光灯,白炽灯。 【实验原理】 光栅是一种非常好的分光元件,它可以把不同波长的光分开并形成明亮细窄的谱线。 光栅分透射光栅和反射光栅两类,本实验采用透射光栅,它是在一块透明的屏板上刻上大量相互平行等宽而又等间距刻痕的元件,刻痕处不透光,未刻处透光,于是在屏板上就形成了大量等宽而又等间距的狭缝。刻痕和狭缝的宽度之和称为光栅常数,用d表示。 由光栅衍射的理论可知,当一束平行光垂直地投射到光栅平面上时,透过每一狭缝的光都会发生单缝衍射,同时透过所有狭缝的光又会彼此产生干涉,光栅衍射光谱的强度由单缝衍射和缝间干涉两因素共同决定。用会聚透镜可将光栅的衍射光谱会聚于透镜的焦平面上。凡衍射角满足以下条件 k=0,±1,±2, (10) 的衍射光在该衍射角方向上将会得到加强而产生明条纹,其它方向的光将全部或部分抵消。式(10)称为光栅方程。式中d为光栅的光栅常数,θ为衍射角,λ为光波波长。当k=0时,θ=0得到零级明

纹。当k=±1,±2…时,将得到对称分立在零级条纹两侧的一级,二级…明纹。 实验中若测出第k级明纹的衍射角θ,光栅常数d已知,就可用光栅方程计算出待测光波波长λ。 【实验内容与步骤】 1.分光计的调整 分光计的调整方法见实验1。 2.用光栅衍射测光的波长 (1)要利用光栅方程(10)测光波波长,就必须调节光栅平面使其与平行光管和望远镜的光轴垂直。先用钠光灯照亮平行光管的狭缝,使望远镜目镜中的分划板上的中心垂线对准狭缝的像,然后固定望远镜。将装有光栅的光栅支架置于载物台上,使其一端对准调平螺丝a,一端置于另两个调平螺丝b、c的中点,如图12所示,旋转游标盘并调节调平螺丝b或c,当从光栅平面反射回来的“十”字像与分划板上方的十字线重合时,如图13所示,固定游标盘。 物理实验报告·化学实验报告·生物实验报告·实验报告格式·实验报告模板 图12光栅支架的位置图13分划板 (2)调节光栅刻痕与转轴平行。用钠光灯照亮狭缝,松开望远镜紧固螺丝,转动望远镜可观察到0级光谱两侧的±1、±2级衍射光谱,调节调平螺丝a(不得动b、c)使两侧的光谱线的中点与分划板中央十字线的中心重合,即使两侧的光谱线等高。重复(1)、(2)的调节,直到两个条件均满足为止。 (3)测钠黄光的波长

光栅的衍射实验报告模板

实验时间:2019年月日 签到序号:【进入实验室后填写】 福州大学 【实验七】光栅的衍射 (206实验室) 学院 班级 学号 姓名 实验前必须完成【实验预习部分】 登录下载预习资料 携带学生证提前10分钟进实验室

【实验目的】 【实验仪器】(名称、规格或型号) 【实验原理】(文字叙述、主要公式、衍射的原理图)

【实验步骤和注意事项】

实验预习部分 一、巩固分光计的结构(P 197,图25-10) 载物台: 6 7 25 望远镜:11 12 15 16 17 平行光管:2 27 调节分光计,要求达到(调节步骤参阅实验25) ⑴望远镜聚焦于无穷远,且其光轴与仪器转轴垂直。 ⑵平行光管产生平行光,且其光轴与望远镜光轴同轴等高,狭缝 宽度在望远镜视场中约为1 mm(狭缝宽度不当应由教师调节)二、光栅位置的调节 1、光栅平面与平行光管轴线垂直: ①转动望远镜使竖直叉丝对准,然后固定望远镜位置。 ②放置光栅时光栅面要垂直。 ③调节螺丝直到望远镜中看到光栅面反射回来 的绿色十字叉丝像与重合。 2、光栅上狭缝与仪器转轴平行。 松开望远镜止动螺钉,向左(或向右)转动望远镜,观察各谱线, 调节螺丝使各谱线都被分划板视场中央的水平叉丝平分。 3、反复调节直到1和2两个要求同时满足!

数据记录与处理 【一】测定光栅常数: 测出第一级绿光谱线的衍射角 λ绿=546.1 nm k =1 ()=+= 21211--4 1 ββαα? ??=1′= rad (弧度) ==10sin ?λ绿k d =???=????λ11 2 cos sin 绿 k d =?±=d d d 0 【二】测定汞灯紫光谱线的波长: 测出第二级紫光谱线的衍射角 λ紫=435.8 nm k =2 ()=+= 21212--4 1 ββαα? ==k d 2 02sin ?λ == 紫紫λλλ-2B

对衍射光栅试验的总结

对衍射光栅实验的总结 姓名:刘影学号:090401206 大学物理实验课覆盖面广,有丰富的实验思想、方法、手段,能提高综合性很强的基本技能训练,是培养学生科学实验能力、提高科学素质的重要基础。大一下学期和大二上学期,我们接触了大学物理实验,从中体会到了些物理带给我们的乐趣,也感受到了些物理的精密。 这学期做了个衍射光栅实验。衍射光栅由大量相互平行、等宽、等间距的狭缝(或刻痕)组成,它利用多缝衍射原理使光波发生色散。由于它具有较大的色散率和较高的分辨本领,故已被广泛地应用于各种光谱仪器中。 本实验使用的是透射式激光全息光栅,利用分光计测量衍射光栅的光栅常数和光波的波长。本次实验使用到的仪器有JJY-1型分光计,全息光栅,高压汞灯。原理是当一束平行光垂直照在平面透射光栅上时,相邻两缝在衍射角φ方向上的光程差为dsinφ(d为光栅常数)。当dsinφ =kλ(k=0,1,2……)时,在φ方向上将得到波长为的k级主极大。如果将被复色光照明的狭缝置于透镜物方焦面上,经透镜形成的平行光束垂直照射在光栅上,光栅刻痕和狭缝平行,再用一正透镜将衍射后的平行光会聚在像方焦面上,就得到各个波长、各个级次的亮线,称为光栅光谱。用分光计测量某一级已知波长的衍射角φ,就可由公式求得光栅常数d。测出某一级待测波长的衍射角,则可由已知的d算出波长。除了用光栅常数d 描述光栅的特性外,分辨本领和色散率也是描述光栅的重要参数,但本次实验中,我们并未用到那两个参数。 做这个实验其实最麻烦的就是调整分光计。老师课上讲过我们实验室的分光计为了便于学生做实验,已经不需要做精密的调节。即使没有调节的很准确,对实验影响并不大,但实际上,调节分光计是很麻烦的。 分光计又称光学测角仪,是一种精密测量平行光线偏转角的光学仪器。它常被用于测量棱镜顶角、折射率、光栅衍射实验、光波波长和观测光谱等。它主要由带“+”叉丝的自准直望远镜、平行光管、刻度盘、游标读书装置、小平台及机座等组成。望远镜、平行光管和度盘有共同的转轴。其中平行光管固定,望远镜和度盘可自由转动。 调整分光计时,(1)首先要目测粗调(凭眼睛观察判断):用眼睛从仪器侧面观察,使望远镜光轴、平行光管光轴和载物台面均大致垂直仪器主轴;目镜套筒位置合适。虽然这一步并非必须,但却是很重要的。(2)然后调节望远镜能接受平行光,并准确地与仪器中心轴垂直:先要找到由载物小平台上放置的小反射镜反射回来,又在望远镜中形成的“+”字反射像。为了调节方便,在载物台上放置双面反射镜,并改变双面反射镜与望远镜之间的相对方位,当两者基本垂直时,在目镜中能看到“+”字反射像。再用自准直法调节目镜与物镜的间距,使分划板位于物镜焦面上。接下来要调节望远镜的光轴垂直于分光计主轴。调节望远镜下的望远镜光轴俯仰调节螺丝,使“+”字反射像与叉丝的上交点完全重合,则说明望远镜的光轴已垂直于分光计主轴了。但通常反射像高低会改变,所以还得细心调节。做好前面的调节后,转动载物台180°,再找到由反射镜另一面反射回来的“+”字像。此时,通常“+”字反射像与叉丝的上交点不完全重合,我们就用各半调节法进行调节。如果还要使载物小平台垂直于分光计的主轴,可把反射镜转过90°,调节平台下的螺丝,使两个面的反射像仍与叉丝的上交点重合。(3)调整平行光管产生平行光,并垂直于分光计的主轴:调节平行光管时,可以以调好的望远镜为基准,打开光源和狭缝,将望远镜对准狭缝像。从望远镜

相关主题
文本预览
相关文档 最新文档