当前位置:文档之家› (完整版)地铁基坑地连墙施工培训考试试题

(完整版)地铁基坑地连墙施工培训考试试题

(完整版)地铁基坑地连墙施工培训考试试题
(完整版)地铁基坑地连墙施工培训考试试题

XX地铁XX号线XX标地连墙施工培训考试

姓名:得分:

单项选择题(共20题、每题5分、共100分)

1、现浇钢筋混凝土导墙施工工艺流程中在“测量定位”之后应进行( )工作。

A.绑扎钢筋B.挖槽及处理弃土 C .支模板

2、一个槽段长度为( )m。

A.4~8 B.5~8 C.4~6

3、采用泥浆护壁时,在泥浆制备过程中,泥浆搅拌时间常用的为( )min。

A.5~7 B.4~7 C.4~8

4、采用泥浆护壁时,泥浆搅拌后不宜马上使用,宜贮存( )h以上再使用。

A.2 B.3 C.4

5、修筑导墙用的钢筋笼之间在槽段( )采用帮条焊焊接。

A.上口B.下口C.中部

6、混凝土的浇筑,使用垂直导管法浇筑水下混凝土时,导管间距一般( )m以下。

A.3 B.4 C.5

7、挖槽机最小挖掘长度为( )。

A.一单元B.一挖掘段单元C.一挖掘段

8、槽段划分时,一般采用( )挖掘段单元组成一个槽段。

A.两个B.三个或四个C.两个或三个

9、修筑导墙时,钢筋笼端部与接头管或混凝土接头面间应留有( )cm空隙。

A.10~15 B.10~20 C.15~20

10、地下连续墙的常用施工接头为( )接头。

A.螺栓B.接头管C.铆钉

11、槽段接头施工时,待混凝土浇筑后强度达到( )mpa时,开始拔出接头管。

A.0.15~0.25 B.0.15~0.20 C.0.05~0.20

12、槽段接头施工时,一般在混凝土浇筑后( )h开始拔管。

A.1~2 B.2~3 C.2~4

13、槽段接头施工时,在混凝土浇筑结束后( )h以内将接头管全部拔出。

A.5 B.7 C.8

14、地下连续墙挖槽方式中没有( )。 A.抓斗式B.组合式C.回转式

15、地下连续墙清理槽底和置换泥浆工作结束1h后,应进行检验,槽底以上()处的泥浆相对密

度不应大于1.15,其沉淀物厚度应符合设计要求。

A、300mm

B、200mm

C、500mm

16、导墙宜采用钢筋砼构筑,砼等级不宜低于()。

A、C20

B、C25

C、C15

17、为了确保地下连续墙槽段与槽段之间连接的止水性和整体性,应根据连续墙的目的选择适当的接头

形式,使其既能增加接缝处抗( )能力,又不渗漏。

A.剪B.压C.弯

18、泥浆下混凝土浇筑导管间距不得大于()m。 A. 3.0 B. 3.5 C. 4.0

19、地下连续墙混凝土浇筑导管接头外缘至最近处钢筋的间距应大于()mm 。

A. 50

B. 75

C. 100

20、当用反循环法清孔时,排碴管底口距孔底宜为()cm。

A. 10~15

B. 10~20 C . 20~25

答案:BABBA ABCCB CCCBB AABCB(不是每个人都是100分)

地铁站深基坑工程的施工监测方法

地铁站深基坑工程的施工监测方法 发表时间:2019-07-22T13:28:39.627Z 来源:《基层建设》2019年第13期作者:何洪海 [导读] 摘要:现代城市发展水平的提升,地铁作为城市发展的重要交通工具,其施工难度比其它工程大,再加上地铁站通常位于城市人口聚集的繁华区域,周围建筑物居多,给地铁站深基坑开挖造成了很多施工困扰。 浙江中赫工程检测有限公司 310021 摘要:现代城市发展水平的提升,地铁作为城市发展的重要交通工具,其施工难度比其它工程大,再加上地铁站通常位于城市人口聚集的繁华区域,周围建筑物居多,给地铁站深基坑开挖造成了很多施工困扰。以某地铁站深基坑工程为例,从地下连续墙水平位移、混凝土结构内支撑梁轴力以及钢管支撑梁轴力等施工监测进行了阐述,为判断深基坑工程的稳定性给出了依据。以便满足其安全施工要求,降低这类工程深基坑施工风险. 关键词:地铁站;深基坑;支撑梁轴力;地下连续墙;施工监测 1工程概况 某地铁站工程基坑长度为 150.2m,宽度为 29.02m,地下支护结构采用连续墙加内支撑的方法。该深基坑工程整体上呈正方形结构,基坑开挖深度都在 25m 左右,基坑南侧位于地铁站隧道正上方,开挖深度为 21.09m,北侧开挖深度为24.91m,塔楼位置开挖深度为 25.14m。深基坑正下方为该地铁线区间盾构隧道,隧道结构顶部埋深约 28m,深基坑开挖至底部后,区间盾构隧道结构顶部正上方岩层厚度约 8m。根据工程概况,深基坑开挖过程施工监测项目主要有:地下连续墙水平位移监测、基坑壁即连续墙顶部水平位移监测、混凝土结构内支撑梁轴力以及钢管支撑梁轴力测试。在施工监测过程中,借助支撑梁内力监测和基坑位移监测大体上可以判断深基坑工程的稳定性。 2 深基坑工程监测过程 2.1 基坑内外各个监测项目测点布置 基坑开挖各个监测项目测点位置设置要按照工程设计进行,同时结合基坑开挖导致的应力场以及位移场分布状况变化、施工经验,在合适的位置布设,保证监测数据能够全面反应基坑变形、受力状况以及对外部环境的影响程度。例如该工程基坑开挖分为三段,即隧道正上方、北侧、塔楼,开挖前需要在不同开挖段设置监测点,同时了解基坑受力和变形状况,及时反馈基坑稳定情况。 2.2 各个监测点基坑埋设 深基坑施工监测点埋设要根据基坑支护结构以及周围环境状况确定,具体如下:①监测点埋设要优先考虑煤气管道和大口径用水管道位置,因为这些管道都是刚性压力管,对于差异沉降十分敏感,尤其是管道接头位置最为薄弱。②根据地表沉降曲线走向,对影响较大区域的管线加密布点,也要兼顾到其他管线。③监测点间距通常在 10~15m,本工程基坑长度为 150.2m,故监测点间距可设置为 15m。通常是根据每一节管道长度进行布点,这样能全面体现出地基沉降曲线。④监测点有直接埋设和间接埋设两种。前者是借助抱箍将测点放在管线上,这种埋设方法能真实体现管线沉降和位移变化,但是实际施工比较困难,对于本工程来讲,由于城市主干道下方管线较多,所以不建议使用该方法;后者是将测点安置在管线轴线对应地表。本工程建议使用两种埋设方法结合,直接测点借助管线于地面露出位置进行设置,间接测点则根据管道轴线设置。 2.3 工程应用 (1)监测点布置。根据工程设计要求,本工程在基坑周围一共设置 8 个测斜孔和18个墙顶位移监测点,第一层设置10 根混凝土支撑的钢筋应力计,另外设置 22 根钢支撑轴力计负责应力监测。 (2)测斜监测。①8 个测斜孔监测使用测斜仪监测,测斜孔监测精度为 0.25mm/m。②8 个测斜孔管道埋设过程中,事先在现场组装完成,然后绑扎固定在钢筋笼上,严格校正导向槽方位,保证导向槽与基坑边线走向垂直或平行,导向槽与钢筋笼一同放入槽内,用混凝土浇灌。③混凝土浇灌之前,事先将管底底盖封好,用清水注满测斜管,避免测斜管在混凝土浇灌过程中浮起,也可以防止水泥砂浆流入管内。测斜管出露冠梁顶部 20cm 左右。为了保证测斜管孔口不受损坏,使用镀锌钢管将测斜管顶部 1m 左右位置套住,并焊接在钢筋笼上,用堵头密封。镀锌管、测斜管间使用水泥砂浆填塞。④基坑开挖和地铁站地下结构施工中进行测斜监测,可以实时了解地下连续墙变形状况。测斜过程中保证测试仪导轮在导槽内,轻滑至管底,待稳定后以 50cm 为间隔单位进行测读;测量到管口位置,翻转测斜仪进行复测,保证每个测斜孔测量两次,同时将测试平均值作为初始值,这样可以降低仪器测量误差。 (3)支撑梁轴力监测。支撑轴力量监测目的是了解基坑开挖以及结构施工阶段的支撑轴力状况,同时结合围护体位移监测评估支护结构安全性,钢支撑受力情况使用轴力计量测。混凝土支撑钢筋应力使用钢筋应力计量测,首先用频率计量测钢筋计频率,然后根据量测的频率标定曲线;其次将最终量测的数据转换成轴力值;最后根据钢筋计直径计算钢筋应力。 (4)地下连续墙施工监测。地下连续墙各个监测点设置在压顶梁体上,按照基坑开挖深度 3 倍距离将基准点设置在该距离范围以外的位置,围护墙体水平位移监测使用小角度法或视准线法。该深基坑工程施工监测所用到的主要监测设备和具体型号:①全站仪 1 台,型号GTS602;②光学测量仪 1台,精密光学测量收敛仪和滑动测斜仪;③光学测量滑动测斜仪 2 台,型号为 CX- 01;④钢筋计 60 个,振弦式钢筋计。 2.4 施工监测中的监控报警值 深基坑施工监测中报警值至关重要,通常需要根据深基坑支护结构和现场环境来确定监测警戒值。一般基坑支护结构位移变化、受力状况、环境沉降位移等只要保持在警戒值允许范围内,就可以继续施工,否则需要及时调整施工方案,制定加固措施,保证基坑工程施工安全。警戒值的设置一方面需要考虑施工安全,另一方面也要考虑到施工经济性。如果警戒值设置过于严格,势必会影响施工进度;反之,警戒值设置较低也会威胁到支护结构稳定性和施工安全。通常警戒值的设置需要考虑以下几点因素:①按照基坑支护结构计算书确定监测报警值;②对于需要特殊保护的地下管线等设施,需要按照主管部门提出的设计要求设置警戒值;③严格按照周围建筑物变形承受能力合理控制警戒值标准;④满足现行的规范要求。按照上面的原则,监测频率应当根据施工进度确定,基坑开挖过程中每天监测一次,其他施工阶段每 3~5d 监测一次。如果监测结果超出预警值,要加密观测;若有危险事故征兆则需连续观测,同时要及时采取应急措施。为了保证基坑安全,要加强基坑基础监测,及时将监测数据反馈给设计人员,按照施工规范要求设置预警值,超出预警值要及时上报相关部门处理。当然除此之外,还需要考虑煤气管道变位、自来水管道变位、立柱桩差异隆沉等,具体见表 1。每次量测后都要对每个测量点进行

地铁基坑监测总结

天津地铁6号线土建施工第八合同段施工监测 总结报告 编制: 审核: 审批: 2015年10月

1.总体概述 (1) 1.1工程位置 (1) 1.2工程简况 (1) 1.3 沿线周边环境 (1) 1.4 工程地质与水文地质 (1) 2.编制依据 (3) 3.监测范围及内容 (3) 4.车站基坑监测点位(孔)布设情况 (4) 4.1围护墙顶水平位移、沉降点位布设情况 (4) 4.2 围护结构变形布设情况 (4) 4.3 地面沉降点位布设 (4) 4.4地下水位点位布设 (4) 4.5 支撑轴力点位布设 (4) 4.6建筑物沉降监测点布设 (5) 4.7 管线监测点位布设 (5) 5.监测控制值 (6) 6.车站主体部分变形监测数据分析 (7) 6.1 基坑周围建筑物沉降监测数据 (7) 6.2 地下管线沉降监测 (7) 6.3 围护体顶部水平位移监测 (8) 6.4 围护体顶部垂直位移监测 (9) 6.5 地表沉降监测 (10) 6.6地下水位监测 (10)

6.7支撑轴力监测 (11) 6.8围护体、土体内部水平位移观测数据 (12) 7.结论 (16) 8.致谢 (17) 9.监测测点布置图 (17)

1.总体概述 1.1工程位置 车站位于中山北路路中,横跨养鱼池路,中山北路交通翻交至北侧导行,导行路距离基坑10m。养鱼池路交通导改至车站盖板上方。车站主体基坑西南侧距十四中学教学楼(四层、浅基础)16.9m。 1.2工程简况 基坑总长286.8m,其中:标准段基坑长256m,净宽21.1m,开挖深度17.5m;两端头井基坑长15.4m,净宽24.9m,开挖深度19.2m。围护结构采用800mm厚地下连续墙,地下连续墙长31.4m。地下连续墙与主体结构内衬墙组成复合结构,车站采用明挖顺筑法施工(局部采用盖挖顺筑法施工)。基坑监测等级为一级。 1.3 沿线周边环境 十四中教学楼(位于车站西南侧,距离端头井16.9m,条基,四层框架结构)。天津泰嘉热力管理中心中山北路供热站辅助房(位于车站西南侧,距离端头井9.7m,条基,一层砖混)。河北饭店(位于车站西南侧,距离端头井25m,条基,四层砖混)。 中山北路管线均距离基坑较远,养鱼池路横跨车站逆做顶板上方管线中DN1000铸铁水管与Φ1000钢筋砼雨水管为二级风险源,设计变形控制参考值为20mm。 1.4 工程地质与水文地质 1.4.1 工程地质

地铁盾构施工技术试题

地铁盾构施工技术试题 (含选择题80道,填空题25道,简答题10道) 一、选择题:(共80题) 1、刚性挡土墙在外力作用下向填土一侧移动,使墙后土体向上挤出隆起, 则作用在墙上的水平压力称为()。 A. 水平推力 B.主动土压力C .被动土压力 2、混凝土配合比设计要经过四个步骤,其中在施工配合比设计阶段进行 配合比调整并提出施工配合比的依据是()。 A.实测砂石含水率 B .配制强度和设计强度间关系 C.施工条件差异和变化及材料质量的可能波动 3、盾构掘进控制“四要素”是指()。 A .始发控制、初始掘进控制、正常掘进控制、到达控制 B .开挖控制、一次衬砌控制、线形控制、注浆控制 C.安全控制、质量控制、进度控制、成本控制 4、盾构施工中,()保持正面土体稳定 A .可 B .易C.必须 5、土压平衡盾构施工时,控制开挖面变形的主要措施是控制:() A .出土量 B .土仓压力 C .泥水压力 6、开挖面稳定与土压的变形之间的关系,正确的描述是:() A .土压变动大,开挖面易稳定

B .土压变动小,开挖面易稳定 C. 土压变动小,开挖面不稳定 7、土压平衡式盾构排土量控制我国目前多采用()方法 A.重量控制 B.容积控制 C.监测运土车 8、隧道管片中不包含()管片 A. A型 B. B型C . C型 9、拼装隧道管片时,盾构千斤顶应() A .同时全部缩回 B .先缩回上半部C.随管片拼装分别缩回 10、向隧道管片与洞体之间间隙注浆的主要目的是() A .抑制隧道周边地层松弛,防止地层变形 B .使管片环及早安定,千斤顶推力能平滑地向地层传递 C.使作用于管片的土压力均匀,减小管片应力和管片变形,盾构的方 向容易控制 11、多采用后方注浆方式的场合是:() A .盾构直径大的 B .在砂石土中掘进 C.在自稳性好的软岩中掘进 12、当二次注浆是以()为目的,多采用化学浆液。 A .补足一次注浆未填充的部分 B .填充由浆液收缩引起的空隙

地铁站工程深基坑的施工监测方法

地铁站工程深基坑的施工监测方法 [ 摘要] 某地铁站工程基坑开挖深度23 m , 采用地下连续墙加内支撑的支护方法 ,为保证基坑开挖及结构施工安全, 采用信息法施工,本文介绍其监测方法、监测设施、数据处理与反馈 [ 关键词] 基坑开挖;信息法施工;监测方法;监测设施;数据处理与反 1 概述某地铁站工程基坑长1481 2 m , 宽28175 m , 开挖深度2 3 m , 采用地下连续墙加内支撑的支护方法。按设计要求, 为保证基坑开挖及结构施工安全,基坑施工应与现场监测相结合,根据现场所得的信息进行分析 ,及时反馈并通知有关人员,以便及时调整设计、改进施工方法、达到动态设计与信息化施工的目的。该基坑的监测内容主要有:基坑壁(地下连续墙) 的水平位移观测(测斜);地下连续墙顶水平位移监测;混凝土内支撑梁的轴力测试;钢管支撑梁的轴力测试。通过基坑位移与支撑梁的内力监测,基本上可以了解基坑的稳定情况。该工程通过信息化施工,监测小组与驻地监理、设计、业主及相关各方建立良性的互动关系,积极进行资料的交流和信息的反馈,优化设计, 调整方案,保证了工程施工的顺利进行。2 监测组织按该工程的特点和要求,施工单位与勘察研究机构合作,组建专业监测小组,负责该工程监测的计划、组织和质量审核。制定如下组织措施: a) 监测小组由经验丰富的专业技术人员组成; b) 做好基准点和监测点的保护工作; c) 采用专门的测量仪器进行监测,并定期标定; d) 测量仪器由专人使用,专人保养,定期检验; e) 测量数据在现场检验,室内复核后才上报,并建立审核制度,对采集的数据及其处理结果经过校验审核后方可提交; f) 严格按现行《建筑基坑支护技术规程》等规范与有关细则操作; g) 根据测量及分析的结果,及时调整监测方案的实施; h) 测量数据的储存、计算与管理,由专人采用计算机及专用软件进行; i) 定期开展相应的QC 小组活动,交流信息和经验。3 测点布置及监测方法3.1 测点布置 按设计要求,在基坑周边共布置8 个测斜孔、19 个墙顶水平位移监测点、每层11 根钢筋混凝土支撑梁、23 根钢支撑梁进行应力监测。3.2 测斜方法测斜采用CX201 型测斜仪对土体进行监测, 精度0.01 mm 。测斜管埋设时,在现场组装后绑扎固定于钢筋笼上,校正导向槽的方向,使导向槽垂直或平行于基坑边线方向,随钢筋笼一起沉放到槽内, 并将其浇灌在混凝土中。浇灌混凝土前,封好管底底盖,并在测斜管内注满清水,防止测斜管在浇灌时浮起和防止水泥浆渗入管内。测斜管露出冠梁顶部约10~20 cm 。测斜管孔口的保护措施:用<100 镀锌钢管将测斜管顶部约1 m 套住,焊接在钢筋笼上,并用堵头封住。镀锌管与测斜管之间用水泥砂浆填塞。在基坑开挖及地下结构施工过程中实施测斜,以了解地下连续墙的变形情况。测试时保证测试仪导轮在导槽内,轻轻滑入管底待稳定后每隔50 cm 测读一次,直至管口;然后测斜仪反转180 度,重新测试一遍,以消除仪器的误差。第一次(基坑开挖前) 测试时,每个测斜孔至少测试2 次,取平均值作为初始值。3.3 支撑梁轴力监测方法对钢筋混凝土支撑梁,采用钢筋应力计测试混凝土内支撑梁的轴力。施工时在支撑梁每个测试断面的上下主筋上各焊接一只钢筋应力计,将导线引出。基坑开挖时由频率计测试其轴力变化情况。对钢管支撑梁,钢支撑安装好以后,将钢弦式表

地铁车站基坑监测方案

地铁车站基坑监测方案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

1 工程概况 武汉市轨道交通3号线为武汉市第一条穿汉江地铁,它起始于沌阳大道站,终止于汉口三金潭站。全长28公里,设站23座,范湖站为第14座车站。 范湖站为地下三层单柱两跨式岛式站台车站,地下分站厅、设备、站台三层,车站标准段结构外包尺寸为×,顶部覆土约~。主体建筑面积16443m2,附属建筑面积6808 m2,总建筑面积23251 m2。有效站台宽11m,有效站台中心处轨面绝对标高为。车站主体围护结构采用1000mm厚地下连续墙,并入岩以满足抗浮要求;出入口和风道部分采取SMW工法桩加内支撑,桩径850mm,咬合250mm 本站位于规划马场角路与青年路的交叉路口,沿规划马场角路布置于路下,路口北侧有富苑假日酒店,马场角路北侧为在建葛洲坝国际广场北区住宅小区,南侧为规划葛洲坝国际广场(如图1-1所示)。车站与2号线范湖站通过通道换乘。车站内主要有电力、电信、自来水、排水等管线。 图1-1 现场图片 拟建场区地形平坦,原始地貌属长江冲积I级阶地。场区内地表水体不发育,未发现有河、沟、塘等地表水体分布。地下水按赋存条件,可分为上部滞水、潜水、孔隙承压水、碎屑岩裂隙水。地下水对砼及砼中钢筋不具腐蚀性,对地下钢结构具弱腐蚀性。 2 编制依据及主要原则 编制依据 1)武汉市轨道交通3号线一期工程设计施工图 2)地下铁道、轻轨交通工程测量规范(GB-50308-1999) 3)《建筑变形测量规范》(JGJ8-2007) 4)《工程测量规范》(GB50026-2007) 5)《建筑基坑工程监测技术规范》GB 50497-2009 主要原则 1)对围护体系及支撑系统中相当敏感的区域加密测点数和项目,进行重点监测; 2)对勘察工程中发现地质变化起伏较大的位置,施工过程中有异常的部位进行重点监测; 3)除关键部位优先布设测点外,在系统性的基础上均匀布设监测点;结合施工实际确定测试方法、监测元件的种类、监测点的保护措施,调整监测点的布设位置,尽量减少对施工质量的影响;结合施工实际确定测试频率。

地铁深基坑工程施工员质量员考核试卷

地铁深基坑工程施工员、质量员考核试卷 一、填空题(共20题每题1分) 1.安全等级为一级的深基坑划分条件有:基坑开挖深度大于20米;距基坑1.0H 范围内有地铁、高速公路、煤气管、大型压力水管、在施的深基坑;距基坑0.7H 范围内有必须保护的建筑、管线等设施。 2.基坑工程中常见的围护结构有钢板桩、钻孔灌注桩、深层搅拌桩、SMW工法桩、高压旋喷桩、地下连续墙。 3.使用抓斗成槽机成槽时,导墙两内墙面净距宜大于设计墙厚的40mm至60mm;使用回旋式成槽机和冲击式成槽机成槽时,宜大于设计墙厚的60mm至100mm。 4.地连墙钢筋骨架钢筋笼水平筋与桁架钢筋交叉点、吊点2m范围,钢筋笼笼口处及边框一定范围内宜100%焊接牢固。 5.地连墙成槽所需的泥浆池和泥浆罐容量应不小于所成槽段体积的2倍。 6.地连墙成槽施工时,护壁泥浆液面应高出地下水位1.0米以上,还应保持在导墙顶面以下300mm至500mm。 7.地连墙钢筋笼吊装作业的一般流程为:试吊、平抬吊起、倾斜提升、平行移动、安放入槽。 8.地连墙施工时接头宜放入与接头形式对应的接头箱;槽孔较浅的槽段,接头箱放置宜深入槽底300至500mm,槽孔较深的槽段,墙体开挖底板以下5.0m至7.0m 到槽底可不放置接头箱,此部分可在钢板接头处投放土团袋或石子并采取措施密实。 9.地连墙浇筑施工时,一个单元槽段使用两套或两套以上导管灌注时,两套导管中心距不宜大于3m,导管中心与槽孔端部或接头管壁面的距离不宜大于1.5m,开始灌注时导管底端距槽底不宜大于0.5m,浇筑过程中,导管埋入混凝土深度一般为2-6m。 10.疏干井井底一般设置在基坑开挖面以下5m,减压井井底一般深入目标含水层3~5m。 11.减压井封井条件依据结构设计单位对现状承压水水头与现状结构形式进行抗浮验算,验算满足条件后,经设计单位与业主同意后对减压井进行封堵。 12.基坑开挖按照“分层、分段、分块、对称、平衡、限时”,“先撑后挖”的方法确定开挖顺序。 13.基坑开挖应采用全面分层开挖或台阶式分层开挖的方式,分层厚度不应大于4米,开挖过程中的临时边坡坡度不宜大于1:1.5。

地铁工程深基坑结构工程施工质量、安全监督规定【最新版】

地铁工程深基坑结构工程施工质量、安全监督规定 地铁工程深基坑,是指基坑开挖深度超过5米(含5米)的基坑。深基坑支护工程施工包括:支护结构(地下连续墙、咬合桩围护工程、SWM工法桩、喷锚、桩锚、土钉墙等),支撑体系(钢结构支撑、钢筋砼支撑等),地下水处理(深井降水、侧壁帷幕、水平封底等)。深基坑结构工程施工质量、安全须符合以下监督规定: 一、地铁深基坑工程施工图设计文件须依据国务院《建设工程质量管理条例》、建设部《房屋建筑和市政基础设施工程施工图设计文件审查管理办法》(建设部令第134号)做好施工图审查工作;施工专项方案必须符合国家有关规范的要求,并做好审查、专家论证、技术交底工作和现场的各项准备工作。当深基坑工程的设计单位为非原主体结构工程的设计单位时,其设计文件应由原主体结构工程设计单位核验、确认。 二、深基坑工程的设计单位应做好技术交底和工程施工过程的跟踪服务工作,及时掌握施工现场情况,发现实际情况与勘察报告不符或者出现异常情况时,应当及时通知建设单位,必要时应当提出进行补充勘察或修改设计的要求。 三、深基坑工程的施工单位应依据设计文件、勘察报告及环境资

料,编制深基坑工程施工组织设计。施工组织设计应当具有针对性和可操作性,从施工方法、施工程序、进度安排、安全防范等方面进行有效控制,并符合下列要求: (一)对相邻设施应当有周密的保护措施; (二)对地面堆载、地表水、地下水应当有详细的控制措施; (三)对地质条件和周围环境及地下管线复杂的深基坑工程应当有控制险情的应急措施。 深基坑工程的土方开挖前,施工单位应组织专家对土方开挖专项施工方案进行论证。 四、监理单位要针对深基坑工程特点,认真编写、完善监理规划、监理实施细则及旁站、见证监理方案,并落实各项监理措施,严格按经依法审查批准的设计文件和施工组织设计监督施工和监测,及时掌握监测数据、分析意见。 监理单位发现深基坑工程的施工问题应当及时向施工单位下达整改通知单;出现险情的,应当及时下达暂停令并向建设单位和监督机构报告,并立即采取应急措施。

地铁车站主体结构施工培训考试试题

XX地铁XX号线XX标地铁车站主体结构培训考试 姓名:得分: 单项选择题(共20题、每题5分、共100分) 1、结构底板、顶板混凝土采用覆盖洒水养护,养护期不少于()。 A.10天B.14天 C .28天 2、墙、柱(钢管柱除外)模板不需预留一下哪一项( )。 A.吹扫空B.振捣窗C.输料口 3、车站底板布料、柱和墙混凝土初始布料时,泵车布料口伸入到下部,保证混凝土下料高度()m。 A H≤1.5 B H≤2 C H≤1 4、止水带不符合要求的是:( )。 A、塑料或橡胶止水带接头应采用热接或叠接 B、金属止水带应平整、尺寸准确,其表面的铁锈、油污应清除干净,不得有砂眼、钉孔 C、金属止水带在伸缩缝中的部分应涂防锈和防腐涂料 5、车站主体结构防水混凝土一般要求:抗渗等级≥S10,其余附属 结构混凝土抗渗等级不得小于( )。A.S6 B.S8 C.S10 6、若车站防水等级为二级,即在满足使用要求前提下,结构不允许渗漏水,结构表面只允许有少量、 偶见的湿渍,但其总面积不大于总防水面积的( )。 A.2‰B.4‰C.5‰ 7、地下工程主体结构设置诱导缝、施工缝,地下工程主体与出入 口通道之间的连接部位设置( )。A.诱导缝B.施工缝C.变形缝 8、地铁工程所用五芯电缆必须包含淡蓝、()二种颜色绝缘芯线。 A.绿/黄B.绿/红C.绿/蓝 9、砼结构工程拆模时间:不承重侧墙模板,在砼强度达到( )时即可拆除。 A.2.5MPa B.1MPa C.3MPa 10、结构墙体砼应左右对称、水平、分层连续灌注,至顶板交 接处间歇( ),然后再灌注顶板砼。A. 1.5~2h B. 1~1.5 h C. 2~2.5 h 11、地体车站出入口的数量一般不宜少于()个。A.2 B.3 C.4 12、车站站台形式主要有三类,不包括( )。 A.岛式站台B.桥式站台C.侧式站台 13、车间换乘按乘客换乘方式分为三种,不包括( )。 A.站台直接换乘B.混合换乘C.通道换乘 14、地铁车站施工原则上优先使用( )法。 A.浅埋暗挖B.盖挖C.明挖 15、每段结构的底板、中边墙及顶板混凝土应留置抗压强度试件,车站主体应留置4组区间,附属建筑 物结构应留置()。A、2组B、3组C、4组 16、模板支立平面位置允许偏差为正负()。A、5mm B、10mm C、15mm 17、关于模板的架设,下列说法错误的是( )。 A.顶板结构应先立架后铺设模板B.钢筋混凝土柱的模板应自下而上分层支立C.墙体结构应根据放线位置分层支立模板,外侧模板应在钢筋绑扎完前支立 18、钢筋绑扎位置允许偏差值为正负()mm。 A. 5 B. 10 C. 15 19、关于结构边顶后贴卷材防水层施工应符合的规定,以下说法错误的是()。 A. 铺贴前应先将接茬部位各层卷材揭开,并将其表面清理干净,如有局部损伤应修补 B.卷材应采用错茬相接,上层卷材盖过下层卷材不应小于80mm C. 卷材铺贴宜先顶板后边墙先大面,后转角 20、地铁车站施工过程中,停止基坑降水的时间是()。

杭州市地铁深坑工程监测管理规定

杭州市地铁深基坑工程监测管理规定 第一章总则 第一条为进一步加强本市地铁建设工程深基坑施工监测工作的监督管理,提高监测水平,确保工程及相邻设施和人员的安全,依据《中华人民共和国建筑法》、《建设工程安全生产管理条例》、《建筑基坑工程监测技术规范》、建设部《城市轨道交通工程安全质量管理暂行办法》等法律、法规和规定,结合本市实际,特制订本规定。 第二条本市行政区域内地铁建设工程深基坑(以下简称深基坑)施工的监测活动,应遵守本规定。 第三条本规定所称地铁深基坑,是指地铁基坑开挖深度5米及以上的基坑。本规定所称深基坑施工过程,包括基坑(含边坡)支护结构、支撑体系、基底加固、地下水处理和土方开挖、主体结构等阶段。 第四条杭州市建设工程质量安全监督总站(以下简称总站)负责实施对所办理监督登记手续的地铁工程深基坑施工监测活动的监督管理。 第二章一般规定 第五条地铁深基坑工程设计单位应当在施工图中明确工程及其周边环境的监测要求和监测控制标准等内容。工程监测的设计要求应包括监测范围、监测项目、监测频率和监测报警值等。 当有深基坑施工影响范围内需进行保护的周边建筑物、构筑物及地下管线时,设计单位应明确所涉及的建筑物、构筑物及地下管线的监测

要求和监测控制标准。 第六条深基坑工程施工前,应由建设方委托具备相应资质的第三方监测单位对基坑工程实施监测,第三方监测单位应当具有相应工程勘察资质,监测单位不得转包监测业务,不得与所监测工程的施工单位有隶属关系或者其他利害关系。 第七条监测单位应根据工程地质和水文地质条件、安全质量风险评估报告、基坑安全等级、基坑周边环境和设计文件要求,制定科学合理、安全可靠的第三方监测方案,报由建设单位组织专家进行专项论证,并经建设、设计、施工、监理及监测单位主要负责人签字认可,必要时还须与基坑周边环境涉及的有关管理单位协商一致后方可实施。方案内容应包括: (一)监测工程概况及测点布点平面图; (二)监测范围、项目及内容,包括监测范围、监测项目、监测周期、测点数量、测点布臵、监测方法及精度、监测频率、报警值及巡视检查的内容、记录和报警信息传送方式; (三)监测计划,包括监测人员、仪器设备、监测时间和监测项目负责人; (四)遇有异常天气或突发情况的报告及应急措施。 第八条建设与监测单位填写《杭州市地铁深基坑工程监测方案登记表》(附件1),携带设计文件(平面布臵图、说明)、经建设、设计、施工、监理及监测单位主要负责人签字认可的监测方案等材料,到总站相关工程质量监督部门提出登记申请。 第九条监测单位对监测方案、监测成果、监测工作质量承担监测责任。

地铁工程深基坑施工监测技术应用

地铁工程深基坑施工监测技术应用 2010年第5期 铁道建筑 RailwayEngineering53 文章编号:1003—1995(2010)05—0053—03 地铁工程深基坑施工监测技术应用 李瑞杰 (中铁二十局集团第四工程有限公司,山东青岛266061) 摘要:以地铁深基坑工 程为例,首先分析了深基坑的变形机理及影响因素,进而全 面深入地阐明了地铁 深基坑工程的监测技术及实际应用效果,同时还预测了此项监测技术的发展前景. 关键词:地铁工程深基坑监测技术应用 中图分类号:U455.45;U2314文献标识码:B 1工程概况 地铁二号线大学站位于中山路与中华街交叉口, 地处中山路上,基坑为地下两层,宽度不一,其中车站西段(A区)宽36I/1,长54m;东段(C区)宽3O.85m, 长43m;中段(B区)宽2t.1m,长85m;车站全长 182.90m.工程所在区域地质构造简单,未见断层;但地层复杂,厚度变化比较大,地面呈东低西高之势.地下水主要为地表潜水和基岩裂隙水两大类;而地表潜水主要赋存于第四系人工填土和冲,残积层中的粉细砂,粉土,粉质黏土的孔隙中,站区岩石富水性差,基岩裂隙水贫乏,地下水位为1.6,2.5ITI,主要补给为大气降水和生产用水.本车站采用明挖顺筑法施工,基坑支护主要采用人工挖孔桩加预应力锚杆支护形式, 另外在基坑四角及变截面处安设四道+600mm,壁厚

12mm的钢管内支撑. 2基坑变形机理 2.1基坑周围地层移动 1)坑底土体隆起 坑底隆起是垂直方向卸荷而改变坑底土体原始应力状态的反应.在开挖深度不大时,坑底土体在卸荷后发生垂直的弹性隆起;随着开挖深度的增加,基坑内外的土面高差不断增大,当开挖到一定深度时,基坑内外土面高差所形成的加载和地面各种超载的作用,就会使维护墙外侧土体产生向基坑内移动,使基坑坑底收稿日期:2009-1124;修回日期:2010~2—18 作者简介:李瑞杰(1979一),男,山西襄汾人,工程师,硕士. 产生向上的塑性隆起,同时在基坑周围产生较大的塑性区,并引起地面沉降. 2)围护墙位移 围护墙墙体变形是由水平方向改变基坑外雕土体的原始应力状态而引起的地层移动.事实上基坑开挖从一开始,围护墙便开始受力变形了.由于总是开挖在前支撑在后,所以围护墙在开挖过程巾安装每道支撑前已经发生了一定的先期变形.实践证明,挖到设计坑底高程时,墙体最大位移发生在坑底面下l,2nl 处.围护墙位移使墙体主动压力区和被动压力区的土体发生位移,从而产生塑性区及坑底局部塑性区.j. 墙体变形不仅使墙外侧发生地层损失而引起地面沉降,而且使墙外侧的塑性区扩大,从而增加了墒外土体向坑内的位移和相应的坑内隆起. 2.2周围地层移动的相关因素 1)支护结构系统的特征 墙体的刚度,支撑水平与垂直向的间距,墒体厚度 及插入深度,支撑预应力的大小及施加的及时程度,安装支撑的施工方法和质量等这些支护结构系统的特征参数都是影响地层位移的重要因素.

地铁基坑监测方案编制原则

3.2 监测原则 3.2.1 系统性原则 (1)所设计的各种监测项目有机结合,相辅相成,测试数据能相互进行校验; (2)发挥系统功效,对围护结构进行全方位、立体、实时监测,并确保监测的准确性、及时性; (3)在施工过程中进行连续监测,保证监测数据的连续性、完整性、系统性; (4)利用系统功效尽可能减少监测点的布设,降低成本。 3.2.2 可靠性原则 (1)所采用的监测手段应是比较完善的或已基本成熟的方法; (2)监测所使用的监测仪器、元件均应事先进行率定,并在有效期内使用; (3)监测点应采取有效的保护措施。 3.2.3 与设计相结合原则 (1)对设计使用的关键参数进行监测,以便达到进一步优化设计的目的; (2)对评审中有争议的工艺、原理所涉及的部位进行监测,通过监测数据的反演分析和计算对其进行校核; (3)依据设计计算确定支护结构、支撑结构、周边环境等的警界值。3.2.4 关键部位优先、兼顾全局的原则 (1)对支护结构体敏感区域增加测点数量和项目,进行重点监测; (2)对岩土工程勘察报告中描述的岩土层变化起伏较大的位置和施工中发现异常的部位进行重点监测; (3)对关键部位以外的区域在系统性的基础上均匀布设监测点。 3.2.5 与施工相结合原则 (1)结合施工工况调整监测点的布设方法和位置; (2)结合施工工况调整测试方法或手段、监测元器件种类或型号及测点保护方式或措施;

(3)结合施工工况调整测试时间、测试频率。 3.2.6 经济合理性原则 (1)在安全、可靠的前提下结合工程经验尽可能地采用直观、简单、有效的测试方法; (2)在确保质量的基础上尽可能的选择成本较低的国产监测元件; (3)在系统、安全的前提下,合理利用监测点之间的关系,减少测点布设数量,降低监测成本。

地铁工程施工技术人员培训考试(试题及答案)

长沙地铁盾构及深基坑施工技术培训考试题 部门:姓名: 一、填空题(每空1分,30空,30分) 1.本次培训的主要课题有:盾构施工基础理论知识,盾构端头井(或始发和到达端头井)加固技术、哈尔滨地铁车站富水深基坑施工技术、深基坑半明挖半盖挖开挖施工技术等。 2.地层渗透系数对于盾构的选型是一个很重要的影响因素。当地层的透水系数小于 10-7m/s时,可以选用土压平衡盾构;当地层的渗水系数在 10-7m/s 和 10-4m/s之间时,既可以选用土压平衡盾构也可以选用泥水式盾构;当地层的透水系数大于 10-4m/s时,宜选用泥水盾构。 3.哈尔滨地铁车站施工时,地下水位比较高,在地面下3米处,可分为潜水、孔隙微承压水及承压水;使用的基坑降水井包括基坑内侧的疏干井和基坑外侧的降压井。 4.深基坑施工成败的关键是围护结构的选择与施工。 5.PBA(Pile柱、Beam梁、Arch拱)工法又称为“洞桩法”,它的特点是把成熟的施工工法(小导洞、边桩、纵横梁、扣拱)进行有序组合,形成的一种新的工法。 6.旋喷桩施工有单重管、二重管、三重管等几种施工方法,在地基加固、提高地基承载力、改善土质进行护壁、挡土、隔水等起到很好的作用。 7.按照建质【2009】87号关于印发《危险性较大的分部分项工程安全管理办法》通知,光达站及出入段线施工过程中,应编制深基坑和混凝土模板支撑(或混凝土模板支架)安全专项方案。按照相关规定,应由企业(或局集团公司)技术负责人审批,并由施工单位(或项目经理部)组织不少于 5 名的社会专家进行论证评审。 8.目前正在施工的预应力锚索为出入段线Z5型桩的第一排锚索,该排锚索设计长度 17 m,锚固段长度 6.5 m,自由段长度 10.5 m,设计预加力(锁定值) 110 KN,水平间距 3.0 m。 9.车站防水等级为二级,在满足使用要求前提下,结构不允许渗漏水,结构表面只允许有少量、偶见的湿渍,但其总面积不大于总防水面积的 2‰。 10.深度超过__2__ m的基坑、挖孔桩或其他洞口施工,应有临边安全防护设施和警示标志,防止人员坠落。

广州地铁基坑及围护结构施工监测方案

广州市轨道交通二十一号线工程【施工15标】土建工程项目 施工监测方案 编制: 审核: 批准: 中铁电气化局集团有限公司 广州地铁二十一号线15标项目经理部 2014年10月

目录 1.编制依据 (1) 2. 工程概况 (1) 2.1 区间概况............................................................................................................... 错误!未定义书签。 2.2 区间工程地质概况 (2) 2.3 水文地质概况....................................................................................................... 错误!未定义书签。 2.4 周围建筑及其管线............................................................................................... 错误!未定义书签。 2.5 风险工程内容....................................................................................................... 错误!未定义书签。 3. 监测组织机构和设备配置 (10) 3.1监测组织机构 (10) 3.2主要的试验/测量/质检仪器设备表 (11) 4.施工监测内容及巡视内容 (11) 4.1监测基本项目及要求 (11) 4.2施工安全性判别 (15) 5.主要监测和巡视技术方案 (16) 5.1建筑物沉降监测 (16) 5.2 地下管线沉降及差异沉降监测 (19) 5.3 道路及地表沉降监测 (20) 5.4 围护结构桩顶水平位移监测 (21) 5.5 围护结构桩体水平位移监测 (23) 5.6 支撑轴力监测 (25) 5.7 地下水位观测 (27) 5.8 临时立柱垂直位移监测 (28) 5.9 施工期间现场监测、巡视作业要求 (28) 6. 成果报送要求 (29) 7.视频监控系统要求 (29) 8.安全质量保证措施 (30) 9. 应急预案 (31) 9.1 应急领导小组建立 (31) 9.2 成立应急队伍 (31) 9.3 应急响应 (31) 10. 附件 (32)

地铁基坑监测方案

地铁XXXX深基坑监测技术方案 第一章工程概况 1、工程概况 XXXX是XXXX轨道交通二号线一期工程的第三个车站,车站位于金雅二路中段,东侧是正在建设中的XXXXC区,西侧是XXX移动公司,站前折返线上部地面东侧为常青花园空地,西侧为建设中的XXXXD区。周边空间比较狭窄。长港路以北西北角拟占用作为轨排基地。车站外包尺寸为530.2×30.5×12.61m(长×宽×高),车站顶部覆土约3.0m。车站所处位置周边交通处于发育中,车流量不大。 XXXX主体结构为两层两跨局部单跨双层矩形框架结构,采用明挖法施工。车站标准段明挖基坑深度15.89米,宽度18.5米;盾构井加宽段明挖基坑北侧深度约17.8米,宽度约30.5米;南侧深度16.822米,宽度约为23.3米。根据本站基坑深度和周边环境条件,确定本基坑安全等级为一级,支护结构的水平位移ε≤3‰H,且ε≤30mm。 2、工程地质、水文地质情况 2.1工程地质 拟建场区地形平坦,原始地貌属长江冲积一级阶地。根据钻探揭示及对地层成因、年代的分析,本代地层主要由第四纪全新统人工堆积层(Q4ml)组成,岩性为粉质粘土、淤泥质粉质粘土、淤泥质粉质粘土夹粉土、粉质粘土粉土粉砂互层、粉砂夹粉土、粉砂、砂类土。各土层描述如下: (1-1)层杂填土:松散,由粘性土,砂土与砖块、碎石、块石、炉渣等建筑及生活垃圾混成。该层全场地分布,层厚约0.6~2.4m。 (1-2)素填土:褐黄~灰色,松散,高压缩性,粘性土及砂土为主组成,混少量碎石,砖瓦片等。该层局部分布,层厚1.1~1.7m。 (1-3)层淤土:灰黑色,软~流塑,高压缩性,含有机质及生活垃圾。该层局部分布,层厚2.8~3.9m。 (3-1)层粘土:黄褐~褐黄~灰褐色,可塑(局部偏硬塑),中压缩性,含氧化钛、铁锰质结核。该层大部分地段分布,厚1.0~6.8m。 (3-1a)层粘土:褐黄色,中偏高压缩性,含氧化铁、铁锰质结核。该层局部分

地铁施工考试题库B

地铁施工技术试题 B卷(综合) 一、选择题:(共题) 1、用中线法进行洞内测量的隧道,中线点间距直线部分不宜短于( C ) A、50m B、80m C、100m 2、二次衬砌的施作时间为( C ) A、初期支护完成1.5个月后 B、初期支护完成后 C、围岩和初期支护变形基本稳定后 3、浅埋隧道地质条件很差时,不宜采用的超前辅助方法施工( C ) A、长、短管棚注浆加固 B、超前小导管注浆加固 C、系统(径向)锚杆 4、系统锚杆施工时打设方向( B ) A、任意方面打设 B、垂直岩面 C、竖直方向 5、隧道工程通过瓦斯地段施工技术安全措施( A ) A、隧道通过瓦斯地区宜采用全断面开挖 B、隧道通过瓦斯地区宜采用多台阶法开挖 C、隧道电灯照明电压为220V 6、隧道工程超挖处处理方法( C ) A、用浆砌片石回填 B、用干砌片石回填 C、用喷射混凝土回填 7.二次衬砌混凝土其强度达到多少时方可拆模( B )。 A.2MPA B.2.5MPA C.1.5MPA 8、长隧道设置的精密三角网或精密导线网,应定期对其( B)进行校核。 A、基准点 B、基准点和水准 C、后视点 9、锚杆安装作业应在(B )及时进行。 A、初喷混凝土前 B、初喷混凝土后 C、架设钢架之前 10、喷射混凝土、砂浆所用水泥标号不得低于(B )号。 A、325 B、425 C、特种水泥。 11、一次喷射混凝土厚度应根据设计厚度和喷射部位确定,初喷厚度不得小于(C )cm。 A、5 B、6 C、4~6 12、超前围岩预注浆加固施工中注浆结束的条件是( A )。 A、注浆压力达到设计终压,浆液注入量达到设计值的80%以上 B、注浆压力为达到设计终压,但浆液注入量已达到设计值 C、允许少量孔注入量达到设计50% 13、拆除拱架、墙架和模板,应符合以下要求( A ) A、不承受外荷载的拱、墙,砼强度应达到5.0mpa或在拆模时砼表面和棱角不被损坏并能承受自重 B、砼浇筑5天以后。 C、承受围岩压力较小的拱、墙,封顶和封口的砼应达到设计强度的50% 14、隧道基坑必须保持地下水位稳定在基底以下多少米?(A) A、0.5m B、1.0m C、1.5m 15、基坑开挖前,对开挖范围内的管线应采取保护措施,以下哪项不是保护措施?(A) A、拆迁 B、改移和悬吊 C、深埋 16、结构变形缝设置嵌入式止水带时,混凝土应符合相应规定,以下说法不对的是(B) A、灌注前应校正止水带位置,表面清理干净,止水带损坏处应修补

62号关于进一步加强地铁深基坑施工安全质量管理的若干意见.doc

杭建监总〔2016〕62号 关于进一步加强地铁深基坑施工 安全质量管理的若干意见 市地铁集团、各有关单位: 为进一步提高地铁深基坑施工安全质量管理,落实各责任主体责任,强化基坑围护结构设计,规范施工缺陷处置质量安全工作,防范基坑突涌等事故发生,根据建质(2009)87号《危险性较大的分部分项工程安全管理办法》和《杭州市建设工程施工安全管理条例》等法律法规和文件的规定,对地铁深基坑施工的风险预控和质量安全管理,提出如下管理意见,请遵照实施。在实施过程中,意见或建议请及时反馈我站。 一、优化基坑围护结构设计管理 设计单位应根据地铁深基坑所处水文、工程地质条件、管线种类及迁改、交通环境条件等,在设计阶段进行优化设计,根据相关方案的比选结果,明确以下内容: 1、地连墙接缝形式;支撑种类及支撑方式;当存在“Z、L、T”等异形墙幅的,应对异形墙幅的接头方式予以明确,附相应的节点大

样图; 2、对存在饱和砂土、杂填土以及地下水位高的地连墙,应明确地连墙槽壁的加固范围和深度; 3、对周边环境复杂、变形控制要求高的基坑,应明确地连墙插入比、基坑被动区土层加固、基坑内降水、基坑外降水以及地下水回灌等设计控制要求。 二、强化基坑临近通行道路质量控制 基坑临近通行道路质量控制是基坑安全的重要组成部分,应充分考虑基坑施工对周边环境的相互影响。 1、设计单位应对临近机动车辆通行道路进行专项设计,并进行承载能力验算; 2、涉及管线迁改的,设计单位应明确临时或永久迁改的具体管位及质量控制要求。 3、建设单位应在相关合同中明确临时便道通行的承载能力要求和维护要求,并落实附件《地铁车站深基坑边交通导改、管线迁改质量控制要求》相关内容。 三、强化专业分包作业管理 总包单位应强化分包作业管理,总包单位在选择围护结构(地连墙)专业分包队伍时,应比选分包队伍在杭地铁施工业绩和质量安全管理情况,择优选择,按程序进行申报和审批。 1、对超深地连墙、入岩隔水地连墙、砂卵石层厚度较大的复杂岩土地层的地连墙,总包单位应组织分包单位对成槽设备的选择进行

地铁项目深基坑监测技术方案

地铁项目深基坑监测技术方案 地铁XXXX站深基坑监测技术方案 地铁XXXX深基坑监测技术方案 第一章工程概况 1、工程概况 XXXX是XXXX轨道交通二号线一期工程的第三个车站,车站位于金雅二路中段,东侧是正在建设中的XXXXC区,西侧是XXX移动公司,站前折返线上部地面东侧为常青花园空地,西侧为建设中的XXXXD区。周边空间比较狭窄。长港路以北西北角拟占用作为轨排基地。车站外包尺寸为530.2×30.5×12.61m(长×宽×高),车站顶部覆土约3.0m。车站所处位置周边交通处于发育中,车流量不大。 XXXX主体结构为两层两跨局部单跨双层矩形框架结构,采用明挖法施工。车站标准段明挖基坑深度15.89米,宽度18.5米;盾构井加宽段明挖基坑北侧深度约17.8米,宽度约30.5米;南侧深度16.822米,宽度约为23.3米。根据本站基坑深度和周边环境条件,确定本基坑安全等级为一级,支护结构的水平位移 ε?3‰H,且ε?30mm。 2、工程地质、水文地质情况 2.1工程地质 拟建场区地形平坦,原始地貌属长江冲积一级阶地。根据钻探揭示及对地层成因、年代的分析,本代地层主要由第四纪全新统人工堆积层(Q4ml)组成,岩性为粉质粘土、淤泥质粉质粘土、淤泥质粉质粘土夹粉土、粉质粘土粉土粉砂互层、粉砂夹粉土、粉砂、砂类土。各土层描述如下: (1-1)层杂填土:松散,由粘性土,砂土与砖块、碎石、块石、炉渣等建筑及生,2.4m。活垃圾混成。该层全场地分布,层厚约0.6

(1-2)素填土:褐黄~灰色,松散,高压缩性,粘性土及砂土为主组成,混少量碎石,砖瓦片等。该层局部分布,层厚1.1,1.7m。 (1-3)层淤土:灰黑色,软~流塑,高压缩性,含有机质及生活垃圾。该层局部分布,层厚2.8,3.9m。 (3-1)层粘土:黄褐~褐黄~灰褐色,可塑(局部偏硬塑),中压缩性,含氧化钛、铁锰质结核。该层大部分地段分布,厚1.0,6.8m。 (3-1a)层粘土:褐黄色,中偏高压缩性,含氧化铁、铁锰质结核。该层局部分 1 地铁XXXX站深基坑监测技术方案布,厚1.0,4.2m。 (3-3)层淤泥质粉质粘土:褐灰,深灰色,软~流塑,高压缩性,含有机质,腐植物,局部夹薄层粉土。该层大部分地段分布,层厚1.2,10m。 (3-4)层粉质粘土夹粉土、粉砂:灰色,中密,少夹粉质粘土薄层。含长石、石英、云母等。该层连续分布,层厚6.4,12.3m。 (3-5)层粉质粘土、粉土和粉沙的互层:灰褐色,粉质粘土~可塑状态。粉质粘土软~可塑,粉土稍~中密,粉沙松散~稍密。该层大部分地段分布,层厚 4.6,21.1m。 (4-1)层粉细砂:灰色,稍密~中密,由云母、长石、石英等矿物质组成,土质均匀。该层局部地段分布,层厚1.7,4.9m。 (7-1)层粘土:褐黄色,可~硬塑,压缩性中偏低,含氧化铁、铁锰质结核、高岭土,分布于里程右AK2+848以北地段,该层分布不连续,层厚2.2,7.2m。 (7-2)层粘土:褐黄色,硬塑层粘土:褐黄色,可~硬塑,压缩性中偏低,含氧化铁、铁锰质结核。该层分布于里程右AK2+873以北地段。层厚1.7,8.4m。 (7-3)层粉质粘土:灰色,可塑(局部软塑),压缩性中,含氧化铁,云母片及少量腐殖物,夹薄层粉土。该层分布于里程右AK2+897以北地段,层厚0.9,9.2m。 (9)层粉质粘土夹砂、卵石:褐黄~灰色,硬塑~坚硬,含铁锰氧化物,夹粉细砂、中粗砂、砾卵石、

相关主题
文本预览
相关文档 最新文档